Finitely Generated Idempotent-free Semilattice-Indecomposable Semigroups with Relations I

田村孝行 (Takayuki Tamura)

Department of Mathematics

University of California, Davis

A semigroup S is called S-indecomposable if S has no semilattice homomorphic image except the trivial semilattice. We assume $S \neq S^2$, $|S \setminus S^2| < \infty$ and S is generated by $S \setminus S^2$. Let $B = S \setminus S^2 = \{a_1, \ldots, a_k\}$. The purpose of this paper is to report the structure of idempotent-free S-indecomposable semigroup S generated by B with relation as defined below. Let Z_+ be the set of all positive integers. We assume

(1)
$$a_1^{m_1} = \cdots = a_k^{m_k} \quad \text{for some } m_1, \ldots, m_k \in \mathbb{Z}_+.$$

In particular we study here the free semigroup satisfying (1), that is, every such semigroup is a homomorphic image of the free one. The condition (1) is so strong that the property of S-indecomposability is derived from (1).

Lemma 1. If S is a semigroup generated by B and satisfies (1), then S is S-indecomposable.

Since $|B| < \infty$ the condition (1) is equivalent to (1') below.

(1') For each pair $a_i, a_j \in B$ there exist $n_i, n_j \in Z_+$ such that

$$a_i^{n_i} = a_j^{n_j}.$$

If B satisfies (1'), equivalently (1), we say S is power jointly generated by B.

Let S be an idempotent-free semigroup which is power-jointly generated by B with (1), and let F be the free semigroup over B. There is a homomorphism $f: F \to S$ which satisfies the following conditions

i)
$$X \in F$$
, $a \in B$, $f(X) = f\{(a)\} \Rightarrow X = \{a\}$.

ii)
$$f(a_1)^{m_1} = \cdots = f(a_k)^{m_k}$$
.

Let ρ denote the congruence on F generated by the set of binary relations

$$\{(a_i^{m_i}, a_j^{m_j}) : a_i, a_j \in B\}.$$

Then S is a homomorphic image of F/ρ keeping every element of B fixed. In this paper we study F/ρ . For simplicity of notation, let $S = F/\rho$, so $X\rho Y$ in F if and only if X = Y in S.

From (1) we immediately have

Lemma 2. $a_i^{\lambda m_i} a_j^x = a_j^x a_i^{\lambda m_i}$ for i, j = 1, ..., k, for any $\lambda \in \mathbb{Z}_+$.

Let $X \in S$. X has the form $X = a_{i_1}^{x_1'} \cdots a_{i_s}^{x_s'}$ where $a_{i_j} \in B$, $(j = 1, \dots, s)$ $x_i' \in Z_+$,

(2) $a_{i_j} \neq a_{i_{j+1}}, (j = 1, ..., s-1).$

We rewrite $x_i' = x_i + \lambda_i m_i$ where $0 < x_i \le m_i$, $\lambda_i \in Z_+^0 = Z_+ \cup \{0\}$. Let $M = a_1^{m_1} = \cdots = a_k^{m_k}$. By using Lemma 2 repeatedly we have

(3)
$$X = a_{i_1}^{x_1} \cdots a_{i_s}^{x_s} a_{i_1}^{\lambda_1 m_{i_1}} \cdots a_{i_s}^{\lambda_s m_{i_s}} = a_{i_1}^{x_1} \cdots a_{i_s}^{x_s} M^{\lambda} \text{ where } \lambda = \lambda_1 + \cdots + \lambda_s.$$

Likewise $Y = a_{i_1}^{y_1} \cdots a_{i_t}^{y_t} a_{i_1}^{\mu_1 m_{j_1}} \cdots a_{i_t}^{\mu_t m_{j_t}} = a_{i_1}^{y_1} \cdots a_{i_t}^{y_t} M^{\mu}$ where $\mu = \mu_1 + \cdots + \mu_t$.

Consider the product XY. Again by using Lemma 2 we have:

If
$$i_s \neq j_1$$

$$XY = a_{i_1}^{x_1} \cdots a_{i_s}^{x_s} a_{j_1}^{y_1} \cdots a_{j_t}^{y_t} M^{\lambda + \mu}.$$

If $i_s = j_1$ and $x_s + y_1 \le 2m_{i_s}$, then $XY = a_{i_1}^{x_1} \cdots a_{i_{s-1}}^{x_{s-1}} a_{i_s}^{x_s} a_{j_2}^{y_2} \cdots a_{j_t}^{y_t} M^{\lambda + \mu}$ where $0 < z_s \le m_{i_s}$ and $z_s \equiv x_s + y_1 \pmod{m_{i_s}}$.

If $i_s = j_1$ and $x_s + y_1 > 2m_{i_s}$, then $XY = a_{i_1}^{x_1} \cdots a_{i_{s-1}}^{x_{s-1}} a_{i_s}^{x_s} a_{j_2}^{y_2} \cdots a_{j_t}^{y_t} M^{\lambda + \mu + 1}$ where $0 < z_s \le m_{1_s}$ and $z_s \equiv x_s + y_1 \pmod{m_{i_s}}$.

Let P denote the set of finite sequences V of elements of B, $V=a_{i_1}\cdots a_{i_s}$ satisfying $a_{i_j}\neq a_{i_{j-1}}, \quad j=1,\ldots,s-1$.

The binary operation on P is defined by

$$(a_{i_1}\cdots a_{i_s})*(a_{j_1}\cdots a_{j_t}) = \begin{cases} a_{i_1}\cdots a_{i_s}a_{j_1}\cdots a_{j_t} & \text{if } i_s \neq j_1 \\ \\ \\ a_{i_1}\cdots a_{i_s}a_{j_2}\cdots a_{j_t} & \text{if } i_s = j_1 \end{cases}$$

that is, if $i_s \neq j_1$, the product is juxtaposition, if $i_s = j_1$ then one of a_{i_s} and a_{j_1} is omitted.

Proposition 1. P is a semigroup and S is homomorphic onto P under the mapping $a_{i_1}^{x_1} \cdots a_{i_s}^{x_s} \rightarrow a_{i_1} \cdots a_{i_s}$.

P is regarded as the set of finite sequences $i_1 \cdots i_s$ of elements of $B = \{1, \ldots, k\}$ subject to $i_j \neq i_{j+1}, j = 1, \ldots, s-1, s \geq 1$. In the form (3): $X = a_{i_1}^{x_1} \cdots a_{i_s}^{x_s} M^{\lambda}$, we

rewrite x_j by x_{i_j} (j = 1, ..., s)(3') $X = a_{i_1}^{x_{i_1}} \cdots a_{i_s}^{x_{i_s}} M^{\lambda}$.

The sequence $x_{i_1} \cdots x_{i_s}$ is regarded as a mapping from a sequence $i_1 \cdots i_s$ of elements of $\{1, \ldots, k\}$ to a sequence $x_{i_1} \cdots x_{i_s}$ such that $x_{i_j} \in Z_{m_{i_j}}$ (i.e. an element modulo m_{i_j}) and $0 < x_{i_j} \le m_{i_j}$, $j = 1, \ldots, s$, $s = 1, \ldots, k$. Let $\varphi : i_1 \cdots i_s \to x_{i_1} \cdots x_{i_s}$, $\psi : j_i \cdots j_s \to y_{j_1} \cdots y_{j_s}$ and let Φ denote the set of all such φ 's and define the binary operation $\varphi \psi$ on Φ as follows:

If $i_s \neq j_1$, $(i_1 \cdots i_s) * (j_1 \cdots j_t) = i_1 \cdots i_s j_1 \cdots j_t \to x_{i_1} \cdots x_{i_s} y_1 \cdots y_{j_t}$. If $i_s = j_1$, $(i_1 \cdots i_s) * (j_1 \cdots j_t) = i_1 \cdots i_{s-1} i_s j_2 \cdots j_t \to x_{i_1} \cdots x_{i_{s-1}} z_{i_s} y_{j_2} \cdots y_{j_t}$, where $z_{i_s} \equiv x_{i_s} + y_{j_1} \pmod{m_{i_s}}, \ 0 < z_{i_s} \leq m_{i_s}$.

Proposition 2. Φ is a semigroup, and S is homomorphic onto Φ under the mapping $X = a_{i_1}^{x_{i_1}} \cdots a_{i_s}^{x_{i_s}} M^{\lambda} \to \varphi$ where $\varphi : i_1 \cdots i_s \to x_{i_1} \cdots x_{i_s}$.

Define a mapping $g: \Phi \times \Phi \to Z^0_+$ as follows:

$$g\left(\varphi,\psi
ight) = \left\{ egin{array}{ll} 1 & ext{if } i_s = j_1 ext{ and } x_{i_s} + y_{j_1} > m_{i_s} \ 0 & ext{otherwise} \end{array}
ight. .$$

Let $\Gamma = \{(\varphi, \lambda) : \varphi \in \Phi, \ \lambda \in \mathbb{Z}_+^0\}$ and define the binary operation on Γ as follows:

$$(\varphi, \lambda) (\psi, \mu) = (\varphi \psi, \ \lambda + \mu + g (\varphi, \psi)).$$

Note that g satisfies the condition:

$$g(\varphi, \psi) + g(\varphi\psi, \xi) = g(\varphi, \psi\xi) + g(\psi, \xi)$$
 for all $\varphi, \psi, \xi \in \Phi$.

Now we have the main theorem

Theorem . Γ is a semigroup and S is isomorphic onto Γ under the mapping $X = a_{i_1}^{x_{i_1}} \cdots a_{i_s}^{x_{i_s}} M^{\lambda} \to (\varphi, \lambda)$ where $\varphi : i_1 \cdots i_s \to x_{i_1} \cdots x_{i_s}$.

The idea of constructing S-indecomposable semigroups from a certain free semigroup was initiated by the author in case of finite nil semigroups 1958 [2], and also the idea was used in case of finitely generated Z-semigroups [3].

The representation of S by means of Γ is similar to N-semigroups (i.e. idempotent-free cancellative commutative archimedean semigroups) [1].

Acknowledgement. The author expresses heartfelt appreciation to Professor Kunitaka Shoji for advice and presentation on behalf of the author at the Research Conference.

REFERENCES

- [1] Tamura, T. Commutative nonpotent archimedean semigroups with cancellation law I, Journal of Gakugei, Tokushima University, Vol VIII, (1957), 5-11.
- [2] Tamura, T. The theory of construction of finite semigroups. III. Osaka Mathematical Journal 10(1958) 191-204.
- [3] Tamura, T. Note on S-indecomposable semigroups having zero as a unique idempotent II, to appear in Proceedings of the Fourth Symposium on Algebra, Languages and Computation, Japan,