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1 Motivation and Introduction
Asemilattice (S,$*)$ is aset S with asingle binary, idempotent, commutative and
associative $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*$ . Under the relation defined by

$a\leq_{*}b\Leftrightarrow a*b=b$ , (1)

any semilattice $(S, *)$ is apartially ordered set $(S, \leq_{\mathrm{s}})$ . Let $L$ be alattice with two
operations $\vee(\mathrm{j}\mathrm{o}\mathrm{i}\mathrm{n})$ and $\wedge(\mathrm{m}\mathrm{e}\mathrm{e}\mathrm{t})$ . Then, $(L, \vee)$ and $(L, \wedge)$ are semilattices. From
(1), we can construct two ordered sets $(L, \leq_{\mathrm{v}})$ and $(L, \leq_{\wedge})$ , respectively $(a\leq_{\mathrm{v}}b\Leftrightarrow$

$a\vee b=b$ and $a\leq_{\wedge}b\Leftrightarrow a\wedge b=b$). The dual of $(L, \leq_{\mathrm{v}})$ is $(L, \leq_{\wedge})$ . That is, the order
$\leq_{\mathrm{v}}$ is nothing but the reverse of the order $\leq\wedge\cdot$ The reason why $\vee \mathrm{a}\mathrm{n}\mathrm{d}$ $\wedge \mathrm{i}\mathrm{n}\mathrm{t}\mathrm{r}\mathrm{o}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{e}$

the reverse order is that lattices satisfy the absorption laws:

$a\vee(a\wedge b)=a$ , $a\wedge(a\vee b)=a$ (absorption). (2)

Suppose that there is an object with arope on aline, and that we are able to pull
the rope from the right (see Figure 1). Then, we can move the object to the right
direction, but not to the left direction. This situation is considered to be irreversible.

Figure 1: one dimensional irreversible

Next, see Figure 2. By pullng the rope from either right or left directions, we can
move the object to any point on the Hue. This situation is considered to be reversible.
Asemlattice is aset having one order, i.e. one direction, like in Figure 1. Alattice
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Figure 2: one dimensional reversible

is aset having two orders, i.e. two directions, like in Figure 2. Any object on the
line can be moved to another arbitrary point on the line by pulling the object to the
positive or negative directions.

Figure 3: two dimensional reversible

Suppose that there is an object not on aHue but in aplane (two dimensional
Euclidian space). If we want to move the object to an arbitrary point in the plane,
it is sufficient to have three “suitable” directions to $\mathrm{p}\mathrm{u}\mathrm{U}$ the object, as shown in
Figure 3.

If the three directions are not “suitabl\"e, we cannot move the original object to
an arbitrarily chosen target point. Movements in three directions are not necessarily
restricted to the two dimensional plane. Consider that alattice corresponds to the
one dimensional reversible case (Figure 2). What systems with three binary opera-
tions (semilattice) correspond to the two dimensional reversible cases (Figure 3)?

For $A$ anonempty set and $n$ apositive integer, let $(A, *_{1}, *_{2}, \ldots, *_{n})$ be an algebra
with $n$ binary operations, and $(A, *:)$ be asemilattice for every $i\in\{1,2, \ldots, n\}$ .
Then, $(A, *_{1}, *_{2}, \ldots, *_{n})$ is called a $\mathrm{n}$-semilattice. We will deal mainly with triple
semilattice, (that is, $n=3$). We denote each order on $A$ by $a\leq_{:}b\Leftrightarrow a*:b=b$ , re-
spectively. Let $S_{n}$ be the symmetric group on $\{1, 2, \ldots n\}$ . An algebra $(A, *_{1}, *_{2}, \ldots, *_{n})$

has the $\mathrm{n}$-roundabout absorption laws if it satisfies the following $n!$ identities:

$((((a*_{\sigma(1)}b)*_{\sigma(2)}b)*_{\sigma(3)}b)\ldots*_{\sigma(n)}b)=b$. (3)

for all $a$ , $b\in A$ and for all $\sigma\in S_{n}$ . Of cause, the 2-roundabout absorption laws is the
absorption laws. An algebra $(A, *_{1}, *_{2})$ which satisfies the 2-roundabout absorption
laws is alattice. The operations $*_{1}$ and $*_{2}$ are denoted by $\vee \mathrm{a}\mathrm{n}\mathrm{d}$ $\wedge$ .
An algebra $(A, *_{1}, *_{2}, *_{3})$ which satisfies the $\theta$-roundabout absorption laws is said to
be atrice. To simplify explanation, we often omit “3” of “3-roundabout absorption
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laws.” The operations ,
$1_{\mathrm{t}}$ ’2 and $3 will be denoted $\mathrm{b}\mathrm{y}/\ovalbox{\tt\small REJECT}_{1,\mathrm{a}_{2}}$ and $\mathrm{t}_{3}$ . Now, we

can easily check that alattice L has folowing properties:

$\forall a$ , b $\in L\exists c\in L$ such that a $\leq {}_{}\mathrm{C}\leq_{\wedge}b$

$\forall a,$ b $\in L\exists c\in L$ such that a $\leq {}_{\wedge}\mathrm{C}\leq_{\mathrm{v}}b$.

Proposition 1Let an algebra $(A, *_{1}, *_{2}, \ldots, *_{n})$ have the $\mathrm{n}$-roundabout absorption
laws. For every $a,b\in A$ and for evry $\sigma\in S\mathrm{n}$ , there exists $c_{1}$ , $\ldots$ , $c_{n-1}\in A$ such that

$a\leq_{\sigma(1)}c_{1}\leq_{\sigma(2)}c_{2}\leq_{\sigma(3)}$ ... $\leq_{\sigma(n-1)}c_{n-1}\leq_{\sigma(n)}b$. (4)

We say that $(A, *_{1}, *_{2}, \ldots, *_{n})$ is attainable if (4) is true for every $a$ , $b\in A$ . The
“attainable” of lattice corresponds to the notion of reversiblity in the case of one
dimension (Figure 2). We can consider that the “attainablity” of trice corresponds
to the case of Figure 3, that is, the two dimensional reversible cases. The “trice” is
anotion to correspond to “lattice.”

2Construction of trice
If we introduce three orders into aset under the condition that aU two elements on
it have aleast upper bound for each order, then we can construct triple-semilattice.
However it is difficult to examine whether it is trice. Next question is naturally.

Question 1Let (A,$*_{1},*_{2},$\ldots ,
$*_{n})$ be a $\mathrm{n}$-semilattice. By adding any operations,

is it possible to materialize the roundabout absorption laws?

We consider about some fundamental cases of the above question.

2,1 From lattice to trice
Question 2Let (L,$\vee, \wedge)$ be lattice. What kind $\mathrm{o}\mathrm{f}\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*$ , so that (L,$\vee, \wedge, *)$

is atrice, exists?

If the $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*\mathrm{i}\mathrm{s}$ equal to $\vee \mathrm{o}\mathrm{r}$ $\wedge$ , then the algebra $(L, \vee, \wedge, *)$ is atrice. This
type $\mathrm{n}$-semilattice is called stammered semilattice. It is being studied well (see [4]).
Let $(L,*)$ be any lnearly orderd set, then the algebra $(L, \vee, \wedge, *)$ is atrice.
And we can always make atrice by adding another type operation to alattice.

Example 1The lattice $(M_{3},\vee,\wedge)$ has five elements: $a$ , $b$, $c$ , 0, 1 and $a\wedge b=$

$a\wedge c=b\wedge c=0$ , $a\vee b=a\vee c=b\vee c=1$ . Let (A $,$
$*_{1}$ ) be asemilattice which

diagram is Figure 4-(a), let $(M_{3},*_{2})$ be asemilattice which diagram is Figure 4-(b).
And let $(M_{3}, *_{2})$ be asemilattice which diagram is Figure 4-(c). Then, the algebra
$(M_{3},\vee,\wedge, *_{1})$ , (M3, $\mathrm{V},$ $\wedge,$ $*_{2}$ ) and $(M_{3},\vee, \wedge, 3)$ are trice.

92



$c$

Figure 4: trice on $M_{3}$

2.2 From 2-semilattice to trice
Definition 1Let $(S, *_{1}, *_{2})$ be a2-semilattice. The $(S, *_{1}, *_{2})$ is tricable when
an algebra $(S, *_{1}, *_{2}, *_{3})$ is atrice for some semilattice operation $3 on $S$ .

Every lattice (L,$\vee, \wedge)$ is tricable 2-semilattice. We will show another interested tri-
cable 2-semilattice.

The two delegates on linearly ordered set
Suppose that $X$ is alinearly ordered set and }$X|\geq 2$ . Let $X(2)$ be the set of all two
points subset of $X$ , that is,

$X(2)=\{\{x_{1},x_{2}\}|x_{1},x_{2}\in X\mathrm{s}.\mathrm{t}. x_{1}<x_{2}\}$ .

Suppose that $\{a_{1}, a_{2}\}$ , $\{b_{1},b_{2}\}\in X(2)$ . Let $c_{2}$ be V62. This $c_{2}$ is the largest member
of $\{a_{1}, a_{2}, b_{1}, b_{2}\}$ . And take

$c_{1}=\{$

$\mathrm{a}_{2}\vee b_{1}$ if $a_{2}<b_{2}$

$a_{1}\vee b_{2}$ if $b_{2}<a_{2}$

$a_{1}\vee b_{1}$ if $a_{2}=b_{2}$

Then $c_{1}$ is the second largest member of $\{a_{1}, a_{2}, b_{1}, b_{2}\}$ . We define the binary
operation $\mathrm{u}$ on $X(2)$ by

$\{a_{1}, a_{2}\}\square$ $\{b_{1}, b_{2}\}=\{c_{1}, c_{2}\}$ .

Clearly, $(X(2), \square )$ is asemilattice. For example, let $X$ be aset of students, and
we want to select two students as deledats to attend aconvention. Some members
of committee recommend $a_{1}$ and $a_{2}$ . The other members of committee recommend
$b_{1}$ and $b_{2}$ . Then, we may select $c_{1}$ and $c_{2}$ From $a_{1}$ , a2, $b_{1}$ and $b_{2}$ according to this
method. Hence, we called this operation two delegates.

Next, we define the dual operation of U. Let $d_{1}$ be the $a_{1}\wedge b_{1}$ . This $d_{1}$ be the
smallest member of $\{a_{1}, a_{2}, b_{1}, b_{2}\}$ . And take

$d_{2}=\{$

$a_{2}\wedge b_{1}$ $ifa_{1}<b_{1}$

$a_{1}\wedge b_{2}ifb_{1}<a_{1}$

$a_{2}\Lambda b_{2}$ if $a_{1}=b_{1}$
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Then, $d_{2}$ be the second smallest member of $\{a_{1_{\rangle}}a_{2_{\rangle}}b_{1_{\rangle}}/_{2}\ovalbox{\tt\small REJECT}\}$ . We define the binary
operation n on $X(2)$ by

$\{a_{1},a_{2}\}\cap\{b_{1},b_{2}\}=\{d_{1},d_{2}\}$ .

This $(X(2), \cap)$ is also asemilattice. The $(X(2), \mathrm{U}, \cap)$ is not alattice. But it is tricable
2-semilattice. Now we define another $\mathrm{o}\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}*\mathrm{o}\mathrm{n}X(2)$ by

$\{a_{1},a_{2}\}*\{b_{1},b_{2}\}=\{d_{1}, c_{2}\}$ .

This $*\mathrm{i}\mathrm{s}$ the operation which chose the smallest member and the largest member
among $\{a_{1},a_{2}, b_{1}, b_{2}\}$ . Clearly, $(X(2), *)$ is asemilattice. The algebra $(X(2), \mathrm{u}, \cap, *)$

is atrice.

Example 2Let $X$ be the four points linearly ordered set {1, 2, 3, 4}. We denote
the two points subset {1,2}, {1, 3}, {1, 4}, {2, 3}, {2, 4} and {3, 4} by $a$ , $b$ , $c$ , $d$, $e$

and $f$ . Then, the set $X(2)$ is $\{a,b, c,d,e, f\}$ (see Figure 5). This $(X(2),\mathrm{u}, \mathrm{n}, *)$ is a
trice.

the order from u the order from $\cap$ the order ffom $*$

$c$

Figure 5: Example 2

The three delegates on linearly ordered set
We consider replacing “two delegates” with “three delegates”. Suppose that $X$ is
alnearly ordered set and $|X|\geq 3$ . Define $X(3)=\{\{x_{1},x_{2},x_{3}\}|$ Xi, $x_{2}$ ,x3 $\in X$

$\mathrm{s}.\mathrm{t}$ . $x_{1}<x_{2}<x_{3}$ }. For { $a_{1}$ , $a_{2}$ , a3} $\{b_{1},b_{2},b_{3}\}\in X(3)$ , suppose that $c_{3}$ is the largest
member in $\{a_{1},a_{2}, a_{3}, b_{1}, b_{2},b_{3}\}$ . Let $c_{2}$ be the second largest member and let $c_{1}$ be the
third largest member. That is, we select three different points from top in descending
order. We define the binary operations $\mathrm{u}$ on $X(3)$ by

$\{a_{1},a_{2}, a_{3}\}\mathrm{U}$ $\{b_{1},b_{2},h\}=\{c_{1},c_{2},c_{3}\}$ .

Let $d_{1}$ be the smallest member of { $a_{1}$ a2, $a_{3},b_{1},b_{2},b_{3}$}, let $d_{2}$ be the second smallest
member and let $d_{3}$ be the third smaUaet member. That is, we select three different
points from bottom in ascending order. We define the binary operations $\cap \mathrm{o}\mathrm{n}$ $X(3)$

by
$\{a_{1},a_{2},a_{3}\}\cap\{b_{1},b_{2},b_{3}\}=\{d_{1},d_{2},d_{3}\}$.
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Then, the algebra $(X(3),$L, 1) is not tricable 2-semilattice(see Example 3). However,
define the two operations V and 6by

{ $a_{1}$ a2, $a_{3}$ } $\nabla\{b_{1},b_{2},b_{3}\}=\{d_{1},c_{2},c_{3}\}$

$\{a_{1},a_{2},a_{3}\}\triangle\{b_{1},b_{2},b_{3}\}=\{c_{1},d_{2},d_{3}\}$.

Then, $\mathrm{u},$
$\cap$ , $\nabla$ and $\triangle$ have the 4-roundabout absorption laws.

Figure 6: Example 3

Example 3Let $X$ be the four points linearly ordered set {1, 2, 3, 4}. We denote
the three points subset {1, 2, 3}, {1, 2, 4}, {1, 3, 4} and {2, 3, 4} by 4, 3, 2and 1.
Then, the set $X(3)$ is $\{\check{1},\check{2},\check{3},\check{4}\}$. (see Figure 6). $\mathrm{L}\mathrm{e}\mathrm{t}*\mathrm{b}\mathrm{e}$ asemilattice on $X(3)$ . If
$2*3$ $=\check{1}$ , then $((\check{2}*\check{3})\mathrm{u}\check{3})\cap\check{3}=\check{4}$ . If $2*3$ $=\check{2}$ , then $((\check{2}*\check{3})\mathrm{u}\check{3})\cap\check{3}=\check{4}$ . If $2*3$ $=\check{3}$ ,
then $((\check{3}*\check{2})\square \check{2})\Pi\check{2}=\check{4}$ . If $2*3=\check{4}$ , then $((\check{2}*\check{3})\mathrm{U}\check{3})\cap\check{3}=\check{4}$ . In any case, the
algebra $(X(3), \square , \cap, *)$ is not atrice.

As the generalities, we have next question.

Question 3How many operations is it necessary to add to a $\mathrm{n}$-semilattice to
satisfy the roundabout absorption laws?

2.3 From semilattice to trice
When $(A, *_{1})$ is asemilattice, the $*_{1}$ is not always one of the operations of alat-
tice. That is, it is not sufficient to add one operation to semilattice to satisfy the
roundabout absorption laws.

Question 4By adding two operations, does any semilattice become atrice? Is
there aconcrete way of composing it? Then, can we make interested trice which it
should pay attention to?
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Definition 2Let (A,$*\cdot)$ be asemilattice. The semilattice (A,$*_{1})$ is tricable
when an algebra (A,$*_{1}, *_{2}, *_{\mathrm{S}})$ is atrice for some semilattice operations $2 and $3 on
A.

Of course, if it knows that an algebra $(T, \nearrow_{1},\nwarrow 2, \downarrow 3)$ is trice, then $(T, \nearrow_{1})$ , $(T, \nwarrow_{2})$

and $(T, \downarrow 3)$ are tricable. If $(L, \vee, \wedge)$ is alattice, then $(L, \vee)$ and $(L, \wedge)$ are tricable.
If the 2-semilattice $(S, *_{1}, *_{2})$ is tricable in the meaning of the definition 1, $(S, *_{1})$ and
$(S, *_{2})$ are tricable. But, the 2-semilattice $(A, *_{1}, *_{2})$ is not tricable even if $(A, *_{1})$

and $(A, *_{2})$ are tricable. For example, the $(X(3), \mathrm{U})$ and the $(X(3), \cap)$ are tricable,
however the $(X(3), \mathrm{u}, \cap)$ is not tricable.

Example 4The seven points semilattice which diagram is Figure 7-left is not
tricable. But the eight points semilattice which diagram is Figure 7-right is tricable.

Figure 7: Example 4

Then, the suk emilattice of (A,$*)$ is not tricable even if (A,$*)$ is tricable.

We gained the next propositions about the concrete way of composing atricable
semilattice.

Suppose we are given afamily $\{(A_{t}, *_{\mathrm{g}})\}_{\epsilon\in S}$ of pairwise disjoint tricable semilat-
tice, i.e., that $A_{*}\cap A_{\epsilon’}$ for $s\neq s’$ .

Proposition 2Let $S$ be alnearly ordered set. Cosider the set $A= \bigcup_{s\in S}A_{s}$ .
And let the operation $\nearrow 1$ on $A$ defined by

$x\nearrow_{1}y=\{$

$x*_{\epsilon}y$ if $x,y\in A_{t}$

$x$ if $x\in A_{\delta}$ , $y\in A_{s’}$ axsd $s>s’$

$y$ if $x\in A_{s}$ , $y\in A_{s’}$ and $s<s’$ .

The algebra (A,$\nearrow_{1})$ is atricable semilattice.

Proposition 3Let $\mathrm{O}\in S$ and the semilattice $(A_{0}, *_{0})$ have aminimum element $e$ ,
that is, $e*_{0}x=x$ for all $x\in A_{0}$ . Cosider the set $A= \bigcup_{s\in S}A_{s}$ . And let the operation
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$\nearrow 1$ on $A$ defined by

$x\nearrow_{1}y=\{$

$x*_{s}y$ if $x,y\in A_{t}$

$x$ if $x\in A_{0}$ , $y\in A_{s}$ and $s\neq 0$

$y$ if $y\in A_{0}$ , $x\in A_{s}$ and $s\neq 0$

$e$ if $x\in A_{s}$ , $y\in A_{s’}$ and $0\neq s\neq s’\neq 0$ .

The algebra (A,$\nearrow_{1})$ is atricable semilattice.

Proposition 4Suppose that the diagram of asemilattice is atree structure, then
it is made atrice by adding two operations which induced linearly ordered.

Example 5Suppose that $(S, \nearrow_{1})$ is asemilattice which diagram is the tree of
Figure 8-left. Let $(S, \nwarrow_{2})$ and $(S, \downarrow 3)$ be next linearly ordered sets. Then, the
algebra $(S, \nearrow_{1}, \nwarrow 2, \downarrow 3)$ is atrice.

Figure 8: Example 5

Question 5wiu not there be another good method which composes atrice of a
semilattice?

Question 6Will not there be agood way ofjudging that asemilattice is tricable?
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