A Localization of a Semigroup Ring, II

松田 隆輝 (Ryûki Matsuda)

茨城大学理学部 (Faculty of Science, Ibaraki University)

This is a continuation of our [M4]. Thus a submonoid S of a torsion-free abelian (additive) group is called a g-monoid. For a g-monoid S, the quotient group of S is denoted by q(S), and for a commutative ring R, the total quotient ring of R is denoted by q(R). Throughout the paper S denotes a g-monoid which is not $\{0\}$.

Let F(S) be the set of fractional ideals of the g-monoid S. A mapping $I \mapsto I^*$ of F(S) to F(S) is called a star-operation on S if the following conditions hold for every element $a \in q(S)$ and $I, J \in F(S)$:

$$(a)^* = (a); (a+I)^* = a+I^*; I \subset I^*;$$

If $I \subset J$, then $I^* \subset J^*; (I^*)^* = I^*.$

Let * be a star-operation on S. If, for all finitely generated fractional ideals J_1, J_2 and $I, (I + J_1)^* \subset (I + J_2)^*$ implies $J_1^* \subset J_2^*$, then * is called an e.a.b. star-operation on S.

Let F'(S) be the set of non-empty subsets of q(S) such that $S + I \subset I$. A mapping $I \longmapsto I^*$ of F'(S) to F'(S) is called a semistar-operation on S if the following conditions hold for every element $a \in q(S)$ and $I, J \in F'(S)$:

$$(a+I)^* = a+I^*; I \subset I^*;$$

If $I \subset J$, then $I^* \subset J^*; (I^*)^* = I^*.$

Let * be a semistar-operation on S. If, for all finitely generated fractional ideals J_1, J_2 and I, $(I + J_1)^* \subset (I + J_2)^*$ implies $J_1^* \subset J_2^*$, then * is called an e.a.b. semistar-operation on S.

Let R be a commutative ring. A non-zerodivisor of R is called a regular element of R. If an ideal I of R contains at least one regular element, then I is called a regular ideal of R. If every regular ideal is generated by regular elements, then R is called a Marot ring. If, for every regular element f of the polynomial ring R[X], the ideal of R generated by the coefficients of f is a regular ideal of R, then R is said to have property (A).

Let I be an R-submodule of q(R) such that $rI \subset R$ for some regular $r \in R$. Then I is called a fractional ideal of R. Let F(R) be the set of non-zero fractional ideals of R. A mapping $I \longmapsto I^*$ of F(R) to F(R) is called a star-operation on R if the following conditions hold for every regular element $a \in q(R)$ and $I, J \in F(R)$:

- (1) $(a)^* = (a)$; (2) $(aI)^* = aI^*$; (3) $I \subset I^*$;
- (4) If $I \subset J$, then $I^* \subset J^*$; (5) $(I^*)^* = I^*$.

Let * be a star-operation on R. If, for all finitely generated non-zero fractional ideals J_1, J_2, I with I regular, $(IJ_1)^* \subset (IJ_2)^*$ implies $J_1^* \subset J_2^*$, then * is called an e.a.b. star-operation on R.

Let F'(R) be the set of non-zero R-submodules of q(R). A mapping $I \mapsto I^*$ of F'(R) to F'(R) is called a semistar-operation on R if the following conditions hold for every regular element $a \in q(R)$ and $I, J \in F'(R)$:

- (1) $(aI)^* = aI^*$; (2) $I \subset I^*$;
- (3) If $I \subset J$, then $I^* \subset J^*$; (4) $(I^*)^* = I^*$.

Let * be a semistar-operation on R. If, for all finitely generated non-zero fractional ideals J_1, J_2, I with I regular, $(IJ_1)^* \subset (IJ_2)^*$ implies $J_1^* \subset J_2^*$, then * is called an e.a.b. semistar-operation on R.

Let $f = \sum_{1}^{n} a_i X^{s_i} \in R[X; S]$, where $s_i \neq s_j$ for $i \neq j$, and $a_i \neq 0$ for each i. Then the ideal (s_1, \dots, s_n) of S is denoted by e(f), and the ideal (a_1, \dots, a_n) of R is denoted by c(f).

Proposition 1. Let * be a star-operation on a domain D. The following conditions are equivalent:

- (1) * is e.a.b.
- (2) If f/g = f'/g', where $f, g, f', g' \in D[X]$ with g, g' non-zero, and if $c(f)^* \subset c(g)^*$, then $c(f')^* \subset c(g')^*$.

Proof. Assume that, if f/g = f'/g', where $f, g, f', g' \in D[X]$ with g, g' non-zero, and if $c(f)^* \subset c(g)^*$, then $c(f')^* \subset c(g')^*$. Let I, J_1, J_2 be finitely generated non-zero fractional ideals of D, and assume that $(IJ_1)^* \subset (IJ_2)^*$. We may assume that I, J_1, J_2 are ideals of D. Let $I = (a_0, \dots, a_n), J_1 = (b_0, \dots, b_m)$ and $J_2 = (c_0, \dots, c_l)$. Put $f = \sum a_i X^i, g = \sum b_i X^{i(n+1)}$ and $h = \sum c_i X^{i(n+1)}$. Then $c(fg) = IJ_1, c(fh) = IJ_2$. Since, (fg)/(fh) = g/h and $c(fg)^* \subset c(fh)^*$, we have $c(g)^* \subset c(h)^*$. That is, $J_1^* \subset J_2^*$. Hence * is e.a.b.

In the following, let D be a domain, and let A be a Marot ring with property

Theorem 1. Let * be a star-operation on A. The following conditions are equivalent:

- (i) * is e.a.b.
- (ii) If f/g = f'/g', where $f, g, f', g' \in A[X; S]$ with g, g' regular, and if $c(f)^* \subset c(g)^*$, then $c(f')^* \subset c(g')^*$.
 - (2) Let * be a star-opetration on S. The following conditions are equivalent:
 - (i) * is e.a.b.
- (ii) If f/g = f'/g', where $f, g, f', g' \in D[X; S]$ with g, g' non-zero, and if $e(f)^* \subset e(g)^*$, then $e(f')^* \subset e(g')^*$.
- (3) Let * be a semistar-operation on A. The following conditions are equivalent:
 - (i) * is e.a.b.
- (ii) If f/g = f'/g', where $f, g, f', g' \in A[X; S]$ with g, g' regular, and if $c(f)^* \subset c(g)^*$, then $c(f')^* \subset c(g')^*$.
- (4) Let * be a semistar-operation on S. The following conditions are equivalent:
 - (i) * is e.a.b.
- (ii) If f/g=f'/g', where $f,g,f',g'\in D[X;S]$ with g,g' non-zero, and if $e(f)^*\subset e(g)^*$, then $e(f')^*\subset e(g')^*$.

The proof of Theorem 1 is similar to that of Proposition 1.

Let R be a commutative ring. If every finitely generated regular ideal of R is principal, R is called an r-Bezout ring. If every finitely generated regular ideal of R is invertible, R is called a Prüfer ring. A multiplicative system of R consisting of regular elements is called a regular multiplicative system of R, and a quotient ring of R with respect to a regular multiplicative system is called a regular quotient ring of R.

Let * be a star-operation (resp. semistar-operation) on a g-monoid S. If the set $\{I^* \mid I \text{ is a finitely generated fractional ideal of } S\}$ is a group under the sum $(I_1^*, I_2^*) \longmapsto (I_1^* + I_2^*)^*$, then S is called a Prüfer *-multiplication semigroup. Assume that * is an e.a.b. star-operation (resp. semistar-operation) on S, let D be a domain. Then the ring $S_*^D = \{f/g \mid f,g \in D[X;S] - \{0\}$ with

 $e(f)^* \subset e(g)^* \} \cup \{0\}$ is called the Kronecker function ring of S with respect to * and D.

Let * be a star-operation (resp. semistar-operation) on R. If the set $\{I^* \mid I \text{ is a finitely generated regular fractional ideal of } R\}$ is a group under the product $(I_1^*, I_2^*) \longmapsto (I_1^*I_2^*)^*$, then R is called a Prüfer *-multiplication ring. Assume that * is an e.a.b. star-operation (resp. semistar-operation) on A. Then the ring $A_*^S = \{f/g \mid f, g \in A[X; S] - \{0\} \text{ with } g \text{ regular and } c(f)^* \subset c(g)^*\} \cup \{0\}$ is called the Kronecker function ring of A with respect to * and S.

Let P be a prime ideal of R. The overring $\{x \in L \mid sx \in R \text{ for some } s \in R - P\}$ of R is denoted by $R_{[P]}$.

Theorem 2. Let * be an e.a.b. star-operation on A, and let $T = \{g \mid g \text{ is a regular element of } A[X;S] \text{ with } c(g)^* = A\}$. Then the following conditions are equivalent:

- (0) $A[X;S]_T$ is a Prüfer ring.
- (1) A is a Prüfer *-multiplication ring.
- (2) $A[X;S]_T = A_*^S$.
- (3) $A[X;S]_T$ is an r-Bezout ring.
- (4) Each regular prime ideal of $A[X;S]_T$ is the extension of a prime ideal of A.
 - (5) A_*^S is a regular quotient ring of A[X;S].
 - (6) Each prime ideal of $A[X;S]_T$ is the contraction of a prime ideal of A_*^S .
- (7) Each regular prime ideal of $A[X;S]_T$ is the contraction of a prime ideal of A_*^S .
- (8) Each valuation overring of A_*^S is of the form $A[X;S]_{[PA[X;S]]}$, where P is a prime ideal of A such that $A_{[P]}$ is a valuation overring of A.
 - (9) A_{\star}^{S} is a flat A[X; S]-module.

Moreover, thre exists a Prüfer Marot ring A with property (A) which satisfies the following conditions: Let * be any e.a.b. *-operation on A. Then there exists a prime ideal of $A[X; \mathbf{Z}_0]_T$ which is not the extension of a prime ideal of A, where \mathbf{Z}_0 is the g-monoid of non-negative integers.

For the proof of equivalence of $(0) \sim (9)$ we confer [M3, Propositions 3.1 and 3.9 and Theorem 3.7]. Let k be a field, let $X_1, X_2, \dots, Y_1, Y_2, \dots$ be indeter-

minates, and let D_0 be a Prüfer domain. Let $R = k[[X_1, X_2, \dots, Y_1, Y_2, \dots]]_1/(X_iX_j, Y_iY_j \mid i \neq j)$, and let $A = R \oplus D_0$, where $k[[X_1, X_2, \dots, Y_1, Y_2, \dots]]_1 = \bigcup_{n=1}^{\infty} k[[X_1, X_2, \dots, X_n, Y_1, Y_2, \dots, Y_n]]$, and $(X_iX_j, Y_iY_j \mid i \neq j)$ is the ideal of $k[[X_1, X_2, \dots, Y_1, Y_2, \dots]]_1$ generated by the subset $\{X_iX_j, Y_iY_j \mid i \neq j\}$. Then A is such a ring (cf. [M1, Theorem (1.3)]).

A similar result to Theorem 2 holds for semistar-operations on the ring A as follows.

Theorem 3. Let * be an e.a.b. semistar-operation on A, and let $W = \{g \mid g \text{ is a regular element of } A^*[S] \text{ such that } c(g)^* = A^*\}$. Then the following conditions are equivalent:

- (0) $A^*[X;S]_W$ is a Prüfer ring.
- (1) A is a Prüfer *-multiplication ring.
- (2) $A^*[X;S]_W$ coincides with the Kronecker function ring A^s_* of A with respect to * and S.
 - (3) $A^*[X;S]_W$ is an r-Bezout ring.
- (4) Each regular prime ideal of $A^*[X;S]_W$ is the extension of a prime ideal of A^* .
 - (5) A_*^S is a regular quotient ring of $A^*[X;S]$.
 - (6) Each prime ideal of $A^*[X;S]_W$ is the contraction of a prime ideal of A^s_* .
- (7) Each regular prime ideal of $A^*[X;S]_W$ is the contraction of a prime ideal of A_*^S .
- (8) Each valuation overring of A_*^S is of the form $A^*[X;S]_{[QA^*[X;S]]}$, where Q is a prime ideal of A^* such that $(A^*)_{[Q]}$ is a valuation overring of A^* .
 - (9) A_*^S is a flat $A^*[X; S]$ -module.

For the proof we confer [M3, Propositions 3.2, 3.8 and 3.9].

Theorem 4. Let D be a domain, and let * be an e.a.b. star-operation on a g-monoid S, and let $T = \{g \mid g \text{ is a non-zero element of } D[X; S] \text{ with } e(g)^* = S\}$. The following conditions are equivalent:

- (0) $D[X; S]_T$ is a Prüfer ring.
- (1) S is a Prüfer *-multiplication semigroup.
- (2) $D[X;S]_T$ coincides with the Kronecker function ring S^D_* of S with respect

to * and D.

- (3) $D[X; S]_T$ is a Bezout ring.
- (4) Each prime ideal of $D[X;S]_T$ is the extension of a prime ideal of S.
- (5) S_{\star}^{D} is a quotient ring of D[X; S].
- (6) Each prime ideal of $D[X;S]_T$ is the contraction of a prime ideal of S_*^D .
- (7) Each valuation overring of S_*^D is of the form $D[X;S]_{PD[X;S]}$, where P is a prime ideal of S such that S_P is a valuation oversemigroup of S.
 - (8) S^D_{\star} is a flat D[X; S]-module.

For the proof we confer [MS, Theorems 8 and 25].

A similar result to Theorem 4 holds for semistar-operations on S.

Theorem 5. Let * be an e.a.b. semistar-operation on S, and let $W = \{g \mid g \text{ is a non-zero element of } D[X; S^*] \text{ such that } e(g)^* = S^*\}$. The following conditions are equivalent:

- (0) $D[X; S^*]_W$ is a Prüfer ring.
- (1) S is a Prüfer *-multiplication semigroup.
- (2) $D[X; S^*]_W = S^D_*$.
- (3) $D[X; S^*]_W$ is a Bezout ring.
- (4) Each prime ideal of $D[X; S^*]_W$ is the extension of a prime ideal of S^* .
- (5) S_{\star}^{D} is a quotient ring of $D[X; S^{*}]$.
- (6) Each prime ideal of $D[X; S^*]_W$ is the contraction of a prime ideal of S^D_* .
- (7) Each valuation overring of S_*^D is of the form $D[X; S^*]_{QD[X;S^*]}$, where Q is a prime ideal of S^* such that $(S^*)_Q$ is a valuation oversemigroup of S^* .
 - (8) S_*^D is a flat $D[X; S^*]$ -module.

For the proof we confer [M2, Proposition 4 and Theorem 23].

Appendix

Theorem. Let S be a g-monoid, and let T be an extension semigroup. If T is a Noetherian semigroup, and if T is a finitely generated S-module, then S is a Noetherian semigroup.

REFERENCES

- [M1] R. Matsuda, Generalizations of multiplicative ideal theory to commutive rings with zerodivisors, Bull. Fac. Sci., Ibaralki Univ. 17(1985), 49-101.
- [M2] R. Matsuda, Kronecker function rings of semistar-operations on semi-groups, Math. J. Toyama Univ. 19(1996),159-170.
- [M3] R. Matsuda, Kronecker function rings of semistar-operations on rings, Alg. Colloq. 5(1998),241-254.
- [M4] R. Matsuda, A localization of a semigroup ring, Proc. 4th Sympos. on Algebra, Languages and Computation, 2000, 57-64.
- [MS] R. Matsuda and K. Satô, Kronecker function rings of semigroups, Bull. Fac. Sci., Ibaraki Univ. 19(1987), 31-46.