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By the well-known Krohn-Rhodes theorem (see, for example, [4]) the finite irreducible semi-
groups are exactly the finite simple groups and the subsemigroups of the monoid with two
right-zero elements. It is trivial that all finite cyclic simple groups are irreducible in equal
length. Moreover, it is easy to see that all subsemigroups of the monoid with two right-zero
elements also have this property. Using the Dénes-Hermann theorem [3], we can also show
that all finite non-commutative simple groups are irreducible in equal length. Therefore,
the finite irreducible semigroups are irreducible in equal length too. Z. Esik (see [1] and [2])
gave a direct proof of this statement such that he did not use the Dénes-Hermann theorem.
Using an idea of P. Pilfy [5], we give another direct, elementary proof. (We note that the
only known proof of the Dénes-Hermann theorem uses the Feit-Thompson theorem.)

It is said that a semigroup S divides a semigroup T, written S <X T, iff T has a sub-
semigroup having a homomorphism onto S. If H is a subset of the semigroup T and the
subsemigroup T” generated by H has a homomorphism onto S then we also say that S
divides T with respect to H and we write S <y T.

Let H be a nonvoid subset of elements of the semigroup T" and consider a subsemigroup
T’ of T generated by H. Consider a homomorphism v : T' — S of T” onto a given semigroup
S.Put S |™H T iff y~1(s) N H™ # @ for all s € S. In addition, we put S |F T if S |~7 T
holds for some n.

Given two transformation semigroups (X, S) and (Y,T), we define the wreath product
(Y,T) f(X,S) to be the transformation semigroup with set Y x X and action semigroup
TX x S with action (y, z).(f, s) = (y.f(z), z.s).

Given a semigroup S, we define S* to be S if S contains an identity element 1 € S
with s1 = 1s = s for all s € S, otherwise we take S* to be S with new identity element 1
adjoined. Thus S* is the minimal monoid containing S as a subsemigroup.

For a semigroup S, we consider the transformation semigroup (S*, S) with s.s’ = ss’
for all s, € S and 1.s =3,3 € S. If S and T are semigroups then we shall write T [ S for
the wreath product of (T*,T) [(S*,S). For every subset H of TS" x S, we put Hy = {t |
teT:3s' € S*,(f,s)€H:t=f(s')} and H, = {s s € S: I(f,s) € H}.

If for arbitrary semigroups S, T, and a subset H of TS x S, S <u TS x S necessarily
implies that either S’ <y, T or S’ <y, S then it is said that S’ is irreducible.

A direct consequence of the Krohn-Rhodes Theorem [4] is the next statement.

Theorem 1. The finite irreducible semigroups are ezactly the finite simple groups and the
subsemigroups of the monoid with two right-zero elements.
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Let H be a subset of TS" x S again and consider Hy = {t |t € T : 35’ € S*,(f,s) €
H:t=f(s')} and Hy ={s|s€S:3(f,s) € H} as before.

If for arbitrary semigroups S,T, a subset H of T5* x S, and a positive integer n,
S’ |~H TS* x § necessarily implies that either S’ | ¥t T or S’ |#2 S then it is said that S is
irreducible in equal length. By this definition, a semigroup is irreducible if it is irreducible
in equal length. ' :

The following statement is obvious.

Proposition 2. The finite simple cyclic groups are irreducible in equal length.
Next we prove

Proposition 3. The subsemigroups of the finite monoid with two right-zero elements are
irreducible in equal length.

Proof: Let S = {e, 21,22} be the monoid with the identity e and distinct right zeros
21, z2. By Theorem 1, all subsemigroups of S are irreducible. Prove that they are irreducible
in equal length.

Consider a semigroup T with S <X T and let TV be a subsemigroup of T having a
homomorphism % : T — S onto S. Consider an arbitrary subset H of T” having strings
po,P1,p2 € H with ¥(po) = e,%(p1) = z1,%(p2) = 22. Take words o, q1,92 € T't having
G = (po)lPtliFal, g = (py)lPoliPal g, = (py)lPollP2l. 1t is clear that |go| = |g1| = |g2l, and
simultaneously, ¥(go) = e, %(q1) = 21, ¥(g2) = 22. Obviously, S |™¥# T with n = |po||p1||p2|-
This shows that for every subset H of T, S <y T implies S |¥ T. On the other hand, S is
irreducible. Clearly, then S is irreducible in equal length. We omit the easy proof for the
appropriate subsemigroups.

Next we prove
Theorem 4. Let G = {g1,..-,9n} be a (finite) order n group. Put Pg =
{g9p1) - - - gpP(n) : P is a permutation over {1,...,n}}. If G is simple and noncommutative

then there exists a positive integer m with P = G.

Proof: First, for every positive integer ¢ and r € Pg, we have IP(t;"'ll > |rP| = | P&,
and the group is finite. Therefore, this growing should be finished, i.e., there exists an
to such that t > to implies |P%| = |PZ|. Let m > ty be such that e € P, where e
denotes the identity element of the group G. (Of course, for every r € Pg, rr~1 = e.
Thus, for example, m may be an arbitrary positive even number with m > #5.) Then
PZPZ = PZ™ and P2™ C ePZ = PZ. But they have the same number of elements, thus
FPZPZ = PZ, therefore, PZ is a subgroup. Prove that for arbitrary r € G, rPg* = Pg'r.
Indeed, let gp,(1)---9Pi(n) -+ - 9Pm(1) - - - 9Pm(n) € Pc™» T € G. Then, using the fact that for
every ¢',9" € G, vy : 9 — g'9,9 € G and g : g — g9”', g € G are one-to-one mappings, for
everyi=1,...,m, {rgp,)r"1,...,7gp,(n)r "'} = G. In other words, for every i =1,...,m,
rgp,)r "} ...T9p,m)r! € Pg, leading to rPZr~! = PZ, ie., rPg = PZr. Therefore,
every element of G normalizes PZ', and thus Pg* is normal subgroup in G. Since G is non-
commutative, there are g;,g; € G with g;g; # g;g;- But then we get 9;g;9]...9hm—2 #
93991 - - - Ghm—2> 915+ -+ s Ihm—2 € G. Thus, of course, | P3'| > 2. Therefore, by the simplicity
of G, PZ* = G necessarily holds.



52

Let G be a group. An element g € G is called commutator if g = aba='b~! for some
elements a,b € G. The smallest subgroup that contains all commutators of G is called the
commautator subgroup or derived subgroup of G, and is denoted by G'. It is well-known that
G = G’ whenever G is simple and non-commutative. Thus we can also get our previous
result as a direct consequence of the following well-known theorem.

Theorem 5. (Dénes-Hermann Theorem) Let G = {g1,...,9n} be a (finite) order
n non-commutative group and denote G’ its commutator subgroup. Put Pc = {gp()---
gp(n) : P is a permutation over {1,...,n}}. There ezists a g € G with Pg = G'g. Thus
Pg = G, whenever G =G'.

Now we show the following
Theorem 8. The non-commutative finite simple groups are irreducible in equal length.

Suppose that S = {g1,...,9a} is a non-cyclic simple group. Consider a semigroup
T with S < T and let T' be a subsemigroup of T having a homomorphism % : T' —
S onto S. Consider an arbitrary subset H of T’ having strings r1,...,7a € H* with
¥(r:) = gi, i € {1,...,n}. Then, using Theorem 4., there exists a positive integer m
such that for every s € S there are permutations P, ;,...,P,m over {1,...,n}, with
8 = gP,1(1) -+ 9Py 1(n) -+ IPsm(1) + - - GPs m(n)- But then, of course, Y(Tp, (1) --TP,1(n) - - -
TPym(l) ++ TPym(n)) = V(TP 1(1) -+ TP s(n) -+ - TPu,m(1) - - .TP, (n)) = 8. Consequently, there
exists a positive integer ¢ (= m(|r1|+...+]|ra|)) such that for every s € S, there is a ¢-length
word p € H* with ¥(p) = s. Thus we have S [t T. Therefore, for every subset H of T,
S <y T implies S |¥ T. On the other hand, by Theorem 1, S is irreducible. It is easy to
show that in this case S is irreducible in equal length too. This ends the proof.

Thus we received a new proof of the following result of Z. Esik [1], [2].
Theorem 7. The irreducible semigroups are irreducible in equal length too.
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