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\S 1 . Introduction

By ahyperbolic 3-c0ne-manif0ld, we will mean an orientable (not necessarily volume-finite)

riemannian 3–manifold $C$ of constant sectional $\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}-1$ with cone-type singularity along

a1-dimensional graph $\Sigma$ which consists of geodesic segments in $C$ . The subset $M:=C-\Sigma$

has asmooth, incomplete hyperbolic structure whose metric completion is identical to the

singular hyperbolic structure on $C$ . The hyperbolic 3–manifold $M$ is incomplete near I.

In this paper, we will inform that Stokes’ theorem for smooth $L^{2}$ -forms on the incom-

plete hyperbolic manifold $M$ holds. The proof can be performed by following the argument

described in Hodgson-Kerckhoff [5]. (In [5], Stokes’ theorem in the case where each comp0-

nent of the singular locus $\Sigma$ is homeomorphic to $S^{1}$ and the complement of an open tubular

neighborhood of $\Sigma$ is compact was shown.) Then from Stokes’ theorem, by using aresult of

Gaffney [3], it is shown that there is amaximal extension of the Laplacian on $M$ which is

self-adjoint on its adequately defined domain. Thus, we have an extension of Hodge theory

to hyperbolic 3cone-manifolds whose singular loci are smooth 1-manifolds. Let $E$ denote the

flat vector bundle of local killing vector fields on the hyperbolic 3-manifold $M$ . Then, if the

singular locus $\Sigma$ of the hyperbolic 3-c0ne-manif0ld $C$ is asmooth 1-dimensional manifold,

for any $E$-valued1-form $\tilde{\omega}$ which represents an infinitesimal deformation of the hyperbolic

structure on $M$ around $\Sigma$ and which satisfies some conditions related with the domain of the

Laplacian ($\tilde{\omega}$ is called to be ” in standard form”), there is aclosed and $\mathrm{c}\mathrm{o}$-closed E-valued

1-form $\omega$ which is equivalent to $\tilde{\omega}$ in the de Rham cohomology group $H^{1}(M;E)$ . The l-form
$\omega$ is arepresentative with specific control on the asymptotic behavior near the singular locus.
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\S 2. Stokes’ theorem and self-adjointness of the Laplacian for hyperbolic $3$-cone-
manifolds

First we will give the definition of hyperbolic 3-c0ne-manif0lds. Consider asmooth 3-

dimensional manifold $N$ , which has apath metric given by agluing of the faces of finitely

many geodesic polyhedra possibly with ideal verticies in the 3-dimensional hyperbolic space
$\mathrm{H}^{3}$ . The gluing is performed by orientation reversing isometries of $\mathrm{H}^{3}$ . It is permitted that

the polyhedra have “faces” on the sphere at infinity $S_{\infty}^{2}$ which are not glued to another such
(

$‘ \mathrm{f}\mathrm{a}\mathrm{c}\mathrm{e}\mathrm{s}$
” We assume that the link of avertex is piecewise linear homeomorphic to asphere

and the link of an ideal vertex is piecewise homeomorphic to atorus, an open annulus or an

open disk. We also assume that the path metric on $N$ is complete. The manifold $N$ with

the metric above is caUed ahyperbolic 3-c0ne-manif0ld.
The singular locus Iof ahyperbolic 3-c0ne-manif0ld consists of the points with no neigh-

borhood isometric to aball in $\mathrm{H}^{3}$ . It is aunion of totaly geodesic closed simplices of

dimension 1. At each point of Iin an open 1-simplex, there is acone angle which is the

sum of dihedral angles of polyhedra containing the point. The subset $N-\Sigma$ has asmooth

riemannian metric of constant $\mathrm{c}\mathrm{u}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{e}-1$, but this metric is incomplete near $\Sigma$ if $\Sigma\neq\phi$.

Let $C$ be a(not necessarily volume-finite) hyperbolic 3-c0ne-manif0ld with singular locus

I. Let $M:=C-\Sigma$ be asmooth (but incomplete) hyperbolic 3-manifold. Atubular

neighborhood of asingular point of $C$ , which is not avertex, has the metric

$dr^{2}+\sinh^{2}rd\theta^{2}+\cosh^{2}rdz^{2}$ ,

by using the cylindrical coordinate. There are finitely many vertices of I.

We have adeveloping map of $M$ from its universal covering space $\tilde{M}$ ,

$D_{C}$ : $\tilde{M}arrow \mathrm{H}^{3}$ ,

and aholonomy representation,

$\rho c$ : $\pi_{1}(M)arrow \mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ .

They are called adeveloping map and aholonomy representation of the cone-manifold $C$ .

Let $\Omega^{p}(M)$ denote the space of smooth, real-valued pforms of $M$ and $\Omega^{*}(M)$ denote the

space of smooth, real-valued forms on $M$ . Let $\hat{d}$ be the usual exterior derivative of smooth

real-valued forms on $M$ :
$\hat{d}$ : $\Omega^{p}(M)arrow\Omega^{p+1}(M)$ .

Let $*\wedge$ be the Hodge star operator defined by using the riemannian metric $g$ on $M$ :

$g(\phi,\wedge*\psi)dM=\phi\wedge\psi$
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for any real-valued pform $\phi$ and $(3-p)$-form $\psi$ . Let $\hat{\delta}$ be the adjoint of $\hat{d}$:

$\hat{\delta}$ : $\Omega^{p}(M)arrow\Omega^{p-1}(M)$ .

Let $\hat{\Delta}$ be the Laplacian on smooth real-valued forms for the riemannian manifold $M$ :

IS $=\hat{d}\hat{\delta}+\hat{\delta}\hat{d}$ .

We will use $<,$ $>\mathrm{t}\mathrm{o}$ denote an $L^{2}$ inner product on real-valued forms:

$< \xi,\eta>=\int_{M}\xi\wedge*\eta=\wedge\int_{M}g(\xi, \eta)dM$.

It is seen that Stokes’ theorem for smooth $L^{2}$-forms on the incomplete hyperbolic manifold
$M$ can be proved as in Hodgson-Kerckhoff [5]. The proof is performed by using Cheeger’s
method in [1].

Theorem 1(Stokes’ theorem). Let $C$ be a hyperbolic S-cone-manifold utith singular locus
$\Sigma$ . Let $M:=C-\Sigma$ be the smooth, incomplete hyperbolic 3-manifold. Then Stokes’ theorem
holds:

$\int_{M}\hat{d}\alpha\wedge*\beta\wedge=\int_{M}\alpha\wedge*\hat{\delta}\wedge\beta$ ,

for smooth $L^{2}$ -forms $\alpha,$
$\beta$ on $M$ such that $\hat{d}\alpha,\hat{\delta}\beta$ are $L^{2}$ -forms on $M$ .

If we define the domains of $\hat{d}$ and $\hat{\delta}$ by

$\mathrm{d}\mathrm{o}\mathrm{m}\hat{d}=$ { $\alpha\in\Omega^{*}(M)$ ; $\alpha$ and $\hat{d}\alpha$ are $L^{2}$ },
$\mathrm{d}\mathrm{o}\mathrm{m}\hat{\delta}$

$=$ { $\beta\in\Omega^{*}(M)$ ; 13 and $\hat{\delta}\beta$ are $L^{2}$ },

then Theorem 1saids that $<\hat{d}\alpha,\beta>=<\alpha,\hat{\delta}\beta>\mathrm{h}\mathrm{o}\mathrm{l}\mathrm{d}\mathrm{s}$ for all $\alpha\in \mathrm{d}\mathrm{o}\mathrm{m}\hat{d},$ $\beta\in \mathrm{d}\mathrm{o}\mathrm{m}\hat{\delta}$ .
The strong closure $-\hat{d}$ of $\hat{d}$ is defined as follows (see [1]): $-\hat{d}ox$

$=\eta$ means that $\alpha$ is an $L^{2}$-form
and there exist $\alpha_{i}\in \mathrm{d}\mathrm{o}\mathrm{m}\hat{d}(i\in \mathrm{N})$ such that $\alpha:arrow\alpha,\hat{d}\alpha_{i}arrow\eta$ . The domain of $-\hat{d}$ is defined
by

$\mathrm{d}\mathrm{o}\mathrm{m}\hat{d}=-$ { $\alpha$ ; $\alpha$ and $-\hat{d}\alpha$ are $L^{2}$-forms on $M$ }.
In the same manner, the strong closure $-\hat{\delta}$ of $\hat{\delta}$ and its domain $\mathrm{d}\mathrm{o}\mathrm{m}\hat{\delta}-$ are defined.

The theorem above means that the manifold $M$ has anegligible boundary (see $[3],[4]$ ).
Then, by the result of Gaffney [3], for our manifold $M$ , the Hibert space closure $\hat{\Delta}$ of $\hat{\Delta}$ i $\mathrm{s}$

self-adjoint.

Theorem 2(self-adjointness of $-\hat{\Delta}$). Let $C$ be a hyperbolic 3-c0ne-manif0ld with singular
locus C. Let $M:=C-\Sigma$ be the smooth, incomplete hyperbolic 3-manifold. $Let-\hat{\Delta}$ be the
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Hilbert space closure of the Laplacian for the riemannian manifold $M$ so that

the domain of $-\hat{\Delta}=$ {a $\in \mathrm{d}\mathrm{o}\mathrm{m}\hat{d}-\cap \mathrm{d}\mathrm{o}\mathrm{m}\overline{\hat{\delta}}$ ; $-\hat{\delta}\alpha\in \mathrm{d}\mathrm{o}\mathrm{m}\hat{d}-,$ $-\hat{d}\alpha\in \mathrm{d}\mathrm{o}\mathrm{m}\hat{\delta}$ }
$-$

.
$Then—\hat{\Delta}=\hat{d}\hat{\delta}+\hat{\delta}\hat{d}--$ , $and-\hat{\Delta}$ is a closed, non-negative, self-adjoint and elliptic operator.

\S 3. Hodge theorem for hyperbolic 3-c0ne-manif0lds

Let $C$ be the hyperbolic 3-c0ne-manif0ld with singular locus $\Sigma$ and $M=C-\Sigma$ be the

hyperbolic 3-manifold considered in \S 2. Let $G$ denote the group consisting of orientation
preserving isometries of $\mathrm{H}^{3}$ . The group $G$ can be naturaly identified with $\mathrm{P}\mathrm{S}\mathrm{L}_{2}(\mathrm{C})$ . Let $\mathcal{G}$

denote the Lie algebra of $G$ and $Ad$ the adjoint representation of $G$ on $\mathcal{G}$ . Associated to the

hyperbolic structure $\rho_{C}$ is aflat $\mathcal{G}$ vector bundle $E$ over $M$ :

$E=\overline{M}\mathrm{x}_{Ad\circ\rho C}\mathcal{G}$ .

Let $\Omega^{p}(M;E)$ denote the space consisting of smooth $E$-valued $p$-for1ns on $M$ . Let $d$ be a
covariant exterior derivative

$d$ : $\Omega^{p}(M;E)arrow\Omega^{p+1}(M;E)$ ,

which is given by the flat connection on $E$ . Then the $p\mathrm{t}\mathrm{h}$ de Rham cohomology group
$H^{p}(M;E)$ of $M$ with coefficients in $E$ is defined by $d$ .

There is anatural metric on $E$ as follows. For each $x\in M$ , the fiber $E_{x}$ of the bundle $E$

decomposes as adirect sum $P\oplus \mathcal{K}$ , where $P$ consists of the infinitesimal pure translations at
$x$ and $\mathcal{K}$ consists of the infinitesimal rotations at $x$ . Since an infinitesimal pure translation
at $x$ corresponds to atangent vector to $M$ at $x,P$’is identified with the tangent space $T_{x}M$

of $M$ at $x$ . Then we give $P$ the metric induced from the riemannian metric on $M$ . Similarly,

since an element of $\mathcal{K}$ operates linearly and isometrically on the tangent space, ametric on
$\mathcal{K}$ comes from identifying it with asubspace of $o(3)$ with its usual metric. In fact, $\mathcal{K}$ is

identified with the total space $o(3)$ . Then we give ametric on $P\oplus \mathcal{K}$ by regarding the direct

sum as an orthogonal direct sum. Let $h$ denote the metric on $E$ given as above.
$\mathrm{L}\mathrm{e}\mathrm{t}*\mathrm{d}\mathrm{e}\mathrm{n}\mathrm{o}\mathrm{t}\mathrm{e}$ the Hodge star operator on $\Omega^{*}(M;E)$ defined by using the riemannian metric

$h$ on $E$ and the Hodge star operator $*\wedge$ on $\Omega^{*}(M)$ :

$\alpha\wedge*\beta=(a\xi)\wedge(b*\eta)\wedge=(ab)(\xi\wedge*\eta)\wedge=h(a, b)g(\xi, \eta)dM$ ,

for any $\alpha=a\xi,$ $\beta=b\eta(a, b\in\Omega^{0}(M;E),$ $\xi,$ $\eta\in\Omega^{*}(M))$ . For two forms $\alpha=a\xi,$ $\beta=b\eta\in$

$\Omega^{*}(M;E)$ , put
$( \alpha, \beta)=\int_{M}\alpha\wedge*\beta=\int_{M}h(a, b)g(\xi,\eta)dM$.
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This is an $L^{2}$ inner product on $\Omega^{*}(M;E)$ . We define

$\delta$ : $\Omega^{p}(M;E)arrow\Omega^{p-1}(M;E)$

by putting
$\delta\alpha=(-1)^{3(p+1)+1}*d*\alpha$

for any $\alpha\in\Omega^{p}(M;E)$ . Then the associated Laplacian $\Delta$ is defined by

$\Delta:=d\delta+\delta d$.

Let $\nabla$ denote the Levi-Civita connection on $E$ with respect to the metric $h$ , and $D$ denote

acovariant exterior derivative induced by the connection $\nabla$ :

$\nabla$ : $\Omega^{0}(M;E)arrow\Omega^{1}(M;E)$ ,

$D$ : $\Omega^{p}(M;E)arrow\Omega^{p+1}(M;E)$ .

Put
$D^{*}\alpha=(-1)^{3(p+1)+1}*D*\alpha$ ,

for all $\alpha\in\Omega^{p}(M;E)$ . Let { $e_{1},$ $e_{2}$ , e3} be any orthonormal frame for $TM$ and $\{\omega^{1}, \omega^{2}, \omega^{3}\}$

be the dual $\mathrm{c}(\succ \mathrm{f}\mathrm{r}\mathrm{a}\mathrm{m}\mathrm{e}$ . Let $i()$ denote the interior product on forms. Then $D$ and $D^{*}$ are

described as in the following:

$D$ $=\Sigma_{j=1}^{3}\omega^{j}\wedge\nabla_{e_{j}}$ ,

$D^{*}$ $=-\Sigma_{j=1}^{3}i(e_{j})\nabla_{e_{j}}$ .

Put

$T$ $:= \sum_{j=1}^{3}\omega^{j}\wedge \mathrm{a}\mathrm{d}(E_{j})$ ,

$T^{*}$ $:= \sum_{j=1}^{3}i(e_{j})\mathrm{a}\mathrm{d}(E_{j})$ ,

where $E_{j}$ is the element in the fiber over any point on $M$ , which is the infinitesimal translation

in the direction $e_{j}$ at that point, and $\mathrm{a}\mathrm{d}(E_{j})$ sends an element $\mathrm{Y}$ in the fiber to $[E_{j}, Y].$ Then

we have

$d$ $=D+T$,
$\delta$ $=D^{*}+T^{*}$ .

This shows arelationship between the flat structure on $E$ , which is defined by the hyperbolic

structure on $M$ , and the natural metric $h$ on $E$ , which is defined by using the local geometry

on $M$ . (See Matsushima-Murakami [8] for the formulation above.)
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As described above, at each point $x\in M$ , the fiber $E_{x}$ is decomposed into the orthogonal

direct sum $\mathcal{P}\oplus \mathcal{K}$ . Then the vector bundle $E$ is decomposed into an orthogonal direct sum

of two sub-bundles which we also denote as $P$ and $\mathcal{K}$ :

$E=P\oplus \mathcal{K}$ .

This decomposition induces adecomposition:

$\Omega^{p}(M;E)=\Omega^{p}(M;\mathcal{P})\oplus\Omega^{p}(M;\mathcal{K})$.

The bundle $\mathcal{P}$ is naturaly identified with the tangent bundle $TM$ of $M$ . The Levi-Civita

connection $\nabla$ restricted to $’\rho$-valued forms is the Levi-Civita connection on $M$ . On $\mathcal{K}=$

$o(3)\subset Hom(TM, TM)$ , it is again the Levi-Civita connection induced by the one on $TM$ .

The operators $D$ and $D^{*}$ preserve the decomposition, while $T$ and $T^{*}$ map $\Omega^{*}(M;P)$ to
$\Omega^{*}(M, \mathcal{K})$ and vice versa:

$\Omega^{*}(M;P)$ $\oplus$ $\Omega^{*}(M;\mathcal{K})$ $\Omega^{*}(M;P)$ $\oplus$ $\Omega^{*}(M;\mathcal{K})$

$D,D^{*}\downarrow$ $\downarrow D,D^{*}$ $T,T^{*}\downarrow$ $\downarrow T,T^{*}$

$\Omega^{*}(M;P)$ $\oplus$ $\Omega^{*}(M;\mathcal{K})$ , $\Omega^{*}(M;\mathcal{K})$ $\oplus$ $\Omega^{*}(M;P)$ .

The Lie algebra $\mathcal{G}=sl_{2}(\mathrm{C})$ has anatural complex structure which is related to the

decomposition $E=\mathcal{P}\oplus \mathcal{K}$ by $\mathcal{K}=i$ P. The multiplication by $i$ in the Lie algebra induces

abundle isomorphism from $P$ to $\mathcal{K}$ , which respects the local geometry of $M$ . For example,

if $t$ denotes an infinitesimal translation, then it is an infinitesimal rotation around the axis

of $t$ , and $t$ and it are orthogonal. Now we will think of $\Omega^{*}(M;P)$ and $\Omega^{*}(M;\mathcal{K})$ as the real

and imaginary parts of $\Omega^{*}(M;E)$ :

$\Omega^{*}(M;E)$ $=$ ${\rm Re}\Omega^{*}(M;E)$ $\oplus$ ${\rm Im}\Omega^{*}(M;E)$

$=$ $\Omega^{*}(M;\mathcal{P})$ $\oplus$ $\Omega^{*}(M;\mathcal{K})$

$=$ $\Omega^{*}(M;P)$ $\oplus$ $i\Omega^{*}(M;\mathcal{P})$ .

An $E$-valued rform $\alpha$ is apair of areal part $\alpha_{real}$ and aimaginary part $\alpha_{imag}$ . The

real part $\alpha_{real}$ is a $\mathcal{P}$-valued $p$-form on $M$ . If $v$ is a $P$-valued0-form(namely atangent

vector field) on $M$ , then $(dv)_{real}$ is $Dv\in\Omega^{1}(M;P)(=\Omega^{1}(M;TM)=Hom(TM, TM))$ ,

which is also equal to $\nabla v$ , and $(dv)_{imag}$ is $Tv\in\Omega^{1}(M;\mathcal{K})(=i\Omega^{1}(M;P)=i\Omega^{1}(M;TM)$

$=iHom(TM, TM))$ . By using the orthonormal frame $\{e_{k}, e_{l}, e_{j}\}$ and the dual c0-frame
$\{\omega^{k}, \omega^{l}, \omega^{j}\}$ , we can describe acanonical isomorphism between skew-symmetric elements of

$Hom(TM, TM)$ and vector fields:

$Hom(TM,TM)_{skew}\ni e_{l}\otimes\omega^{j}-ej\otimes\omega^{l}arrow e_{k}\in\Omega^{0}(M;TM)$ .
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If $v$ is atangent vector field on $M,$ $Dv$ is an element of $Hom(TM, TM)$ . The skew-symmetric

part $(Dv)_{skew}$ of $Dv$ is called the curl of $v$ , and is denoted by curl $v$ . By the isomorphism

above, curl $v$ is regarded as avector field on $M$ . Note that this vector field is the half of the

usual curl considered in elementary vector calculus. The $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{c}\mathrm{e}$ of $Dv$ is called the divergence

of $v$ , and is denoted by $divv$ . The traceless, symmetric part of $Dv$ is called the strain of $v$ ,

and is denoted by sir $v$ .
If $v$ is alocally defined tangent vector field on $M$ , then we can consider alocal section of

the bundle $E$ , which is defined by $s_{v}=v-i$ curl $v$ . Call it the canonical lift of $v$ .

Let $\sigma$ be any closed smooth $E$-valued1-form on $M$ . Choosing apoint $x\in M$ , we can

locally define asection $\int_{x}\sigma$ of the bundle $E$ by integrating $\sigma$ along paths beginning at $x$ ,

which is called the associated local section. Note that we are using the flat connection on
$E$ to identify the fibers at different points along the path in order to do the integration.

Since $\sigma$ is closed, the value of the integral depends only on the homotopy class of the path;

awell-defined section is determined on any simply connected subset of $M$ . Then $d \int_{x}\sigma=\sigma$

on such asubset. In general, the section will not extend to aglobal section on $M$ .

In the rest of the paper, we assume that the singular locus $\Sigma$ of the cone-manifold C is a

smooth l-manifold:
$\Sigma\approx \mathrm{R}$ u\ldots uR $\mathrm{u}S^{1}\mathrm{u}\ldots \mathrm{u}S^{1}$ .

Some examples of hyperbolic 3-c0ne-manif0lds with infinite volume, whose singular loci

are homeomorphic to R, are illustrated in [9].

In atubular neighborhood $U_{k}$ of each component $\Sigma_{k}$ of $\Sigma$ , we use cylindrical coordinates,

$(r,\theta, z)$ . Then the hyperbolic metric on $U_{k}$ is $dr^{2}+\sinh^{2}rffl^{2}+\cosh^{2}rdz^{2}$ . We will use the

orthonormal frame $\{e_{1}, e_{2}, e_{3}\}$ of $TM$ adapted to this coordinate system:

$e_{1}:= \frac{\partial}{\partial r},$ $e_{2}:= \frac{1}{\sinh r}\frac{\partial}{\partial\theta},$ $e_{3}:= \frac{1}{\cosh r}\frac{\partial}{\partial z}$ .

Then the dual $\mathrm{c}\mathrm{o}$-ffame $\{\omega^{1},\omega^{2},\omega^{3}\}$ is

$\omega^{1}=dr,$ $\omega^{2}=\sinh rd\theta,$ $\omega^{3}=\cosh rdz$ .

An $E$-valued1-form can be interpretted as acomplex-valued section of $\mathcal{P}\otimes T^{*}M\cong TM\otimes$

$T^{*}M\cong Horn(TM, TM)$ . Then an $E$-valued1-form can be described as amatrix in $M_{3}(\mathrm{C})$

whose $(i,j)$ entry is the coefficient of $e_{1}$
. $\otimes\omega^{j}$ .

The form in (1) below is aclosed and $\mathrm{c}\mathrm{o}$-closed form which represents an infinitesimal

deformation which does not change the real part of the complex length of an element of
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the fundamental group of $U_{k}$ which is so called the meridian of $U_{k}$ . The meridian is the

class of the fundamental group which wraps around $\Sigma_{k}$ once and bounds asingular disk

with cone angle equal to that of $\Sigma_{k}$ . The infinitesimal deformation preserves the property

that the meridian is elliptic. Then it gives asmall deformation of the cone-manifold $U_{k}$

to acone-manifold. The infinitesimal deformation also has the remarkable property that it

decreases the cone angle.

$\overline{\omega}_{(1)}=(\begin{array}{lll}\frac{-1}{\omega \mathrm{s}\mathrm{h}^{2}r\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}^{2}r} 0 00 \frac{1}{\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}^{2}r} \frac{-i}{\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}r\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}r}0 \frac{-i}{\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}r\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{h}r} \frac{-1}{\mathrm{c}\mathrm{o}\mathrm{s}\mathrm{h}^{2}\mathrm{r}}\end{array})$ (1)

The form in (2) below is aclosed and $\mathrm{c}\mathrm{o}$-closed form which represents an infinitesimal

deformation which leaves the holonomy of the meridian (hence the cone angle) unchanged.

If $\Sigma_{k}$ is homeomorphic to $S^{1}$ , this deformation stretches the length of $\Sigma_{k}$ .

$\overline{\omega}_{(2)}=\{$

$\backslash$

$\frac{-1}{\cosh^{2}r,0}$

0 0

0
$\frac{-i\sinh r-\mathrm{l}}{\cosh r}$

$\frac{\frac{-i\sinh r}{\cosh^{2}r+1\cosh r}}{\cosh^{2}r}/$

(2)

Definition (in standard form). Let $\overline{\omega}$ be asmooth, closed, $E$-valued1-form on $M$ such

that $\delta\overline{\omega},$ $d(\delta\overline{\omega}),\delta d(\delta\overline{\omega})$ are $L^{2}$ . We say that the 1-form $\overline{\omega}$ is in standard form if the following

conditions are satisfied:

$\bullet$ The associated local section $\int_{x}\overline{\omega}$ is the canonical lift of its real part:

$\int_{x}\overline{\omega}=(\int_{x}\overline{\omega})_{real}-i$ curl $( \int_{x}\overline{\omega})_{\mathrm{r}eal}$ , for any $x\in M$ .

$\bullet$ In atubular neighborhood $U_{k}$ of acomponent $\Sigma_{k}$ of the singular locus $\Sigma$ ,

$\overline{\omega}=h_{1}\overline{\omega}_{(1)}+h_{2}\overline{\omega}_{(2)}$ for some $h_{1},$ $h_{2}\in \mathrm{C}$ .

Theorem 3(Hodge theorem for hyperbolic 3-c0ne-manif0lds). Let $C$ be a hyperbolic

3-c0ne-manif0ld utith singular locus C. Let $M:=C-\Sigma$ be the smooth, incomplete hyperbolic

3-manifold. Assume that Iis a disjoint union of smooth 1-manifolds; $\Sigma\approx \mathrm{R}\mathrm{u}\ldots \mathrm{u}$RUS $\mathrm{u}$

. . . $\mathrm{u}S^{1}$ . Let $\tilde{\omega}\in\Omega^{1}(M;E)$ be a smooth, $E$-valted1-form uthich is in standard $fom$. Then

there exists a smooth, closed and $co$-closed $E$-valued1-form $\omega$ , which is cohomologous to $\overline{\omega}$

and whose associated local section $\int_{x}\omega$ is the canonical lift of a divergence-free, harmonic

vector field. Moreover, there is a unique such form $satisfy\acute{\iota}ng$ the conxlition that $\tilde{\omega}-\omega=ds$

where $s$ is a globally defined $L^{2}$ section of $E$ .
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Outline of the proof. We want to solve the equation $\Delta s=\delta\overline{\omega}$ for aglobally defined section
$s$ of $E$ . Since the associated local section $\int_{x}\overline{\omega}$ is the canonical lift of its real part, $\delta\overline{\omega}$ is

also the canonical lift of its real part. Thus, it suffices to solve $\Delta v=(\delta\overline{\omega})_{real}$ for aglobally

defined vector field $v$ on $M$ . Let $\zeta\in\Omega^{1}(M)$ be asmooth, real-valued 1-form which is the

dual to the vector field $(\delta\overline{\omega})_{real}$ . Then, by using aWeitzenbik formula, we can see that it

suffices to solve
$(\hat{\Delta}+4)\tau=\zeta$ ,

for asmooth, real-valued 1-form $\tau\in\Omega^{1}(M)$ . Now we apply the self-adjointness of the closure
$-\hat{\Delta}$ of the Laplacian $\hat{\Delta}$ on $\Omega^{*}(M)$ . Since (is in the domain of $\overline{\hat{\Delta}+4}$, then by Theorem 2,

there is aunique solution $\tau\in \mathrm{t}\mathrm{h}\mathrm{e}$ domain of $\overline{\hat{\Delta}+4}$ . Since $\langle$ is smooth, then, by the usually

regularity theory for elliptic operators, $\tau$ is also smooth. Therefore, we can find aglobally

defined smooth section $s$ of $E$ which satisfies $\Delta s=\delta\tilde{\omega}$ . Then put $\omega:=\overline{\omega}-ds$ . It is easy to

see that $\omega$ and $s$ satisfy the condition described in the theorem. $\square$

If each component $\Sigma_{k}$ of the singular locus $\Sigma$ is homeomorphic to $S^{1}$ and $M-\mathrm{U}_{k}U_{k}$ is

compact, each cohomology class has arepresentative in standard form (see Lemma 3.3 in

[5] $)$ .
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