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Abstract

We prove regularity of weak solutions of the Navier-Stokes equa-
tions for compressible, isentropic flow in three space dimension. We
allow the presence of vacuum region for the initial data. The pressure
law satisfies the general relation P(p) = ap”,y > 1. As was found by
Hoff[2], Lions[7] and Desjardins(1], the effective viscosity G plays an
important role.
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1 Introduction

The isothermal gases are governed by isentropic compressible Navier-Stokes
equations. Although there are many important results, the existence of so-
lutions under general condition remains still open. When the initial velocity
has small norm in sufficiently regular space, say H*, and the initial density
is near constant, the global existence of classical solution was obtained by
Matsumura and Nishida[9]. Then, Hoff{2] extended the global existence of
small solutions to more weaker spaces which allow discontinuity of the initial



For the weak solutions, Lions[7] obtained the global existence when the
pressure law satisfies P(p) = ap”,y > 9/5 for three space dimension, v > 3/2
for two space dimension and v > N/2 for N-space dimension with N >
4. Now, the remaining question will be the extension of the range of the
parameter .

On the contrary, Solonnikov([13] showed the local existence of strong so-
lutions if there is no vacuum region for the initial density in the context of
classical. Also, Desjardins[1] proved local regularity for the weak solutions
when 7 > 1 for two space dimension and « > 3 for three space dimension.

In this paper, we prove the a priori regularity of weak solutions under
the general law P(p) = ap?,y > 1 for three space dimension. We allow
vacuum region and do not assume any smallness for the initial data. The
compactness and local existence of strong solutlon will be discussed in a
forthcoming paper.

First, we consider the isentropic compressible Navier-Stokes equations in
periodic domain T? with periodicity one to each coordinate direction:

pt +div(pu) =0 in (0,T) x T3
(pu)i+div(pu@u) — pAu— (A+ p)Vdiv(u) + VP(p) = pf in (0,T) x T3,

where the pressure satisfies for a positive constant a

P(p) =ap", v2>1.

The viscosity constants satisfy 4 > 0 and A + u > 0 and the external force
f belongs to L((0,T) x T?). We need to find the unknown velocity u € R3
and the unknown density p € R. The velocity and pressure are to satisfy the
initial condition
p(O,J’J) - po(.'L'),U(O,.’L') = UO(:E)

Although we do not know yet the global existence of weak solution under
the general pressure law, we introduce definition of a weak solution. In
fact the estimates of local smoothness of the weak solution will lead to the
existence of strong solution and we will discuss the existence in different
places. (p,u) € L'((0,T,) x T?) is a weak solution if it satisfies

/poz/J(O, x)dzr + /OTO /p@/}t + pu - Vypdzdt =

To
/ pototy(z,0)dzr + /0 / pu @ uVu + Pdiviypdzdt



To To
=A /mmvw+@+umwmwwmm+ﬂ /mwmﬁ
for all ¥ € C°[0, Ty : C®(T?)) which is periodic. Moreover (p,u) satisfies
0

To
sup |pl,(t) + |v/pul2(t) +/ |Vuldt < C.
0<t<To 0

We denote |ul, = (f |u|”d:c)1/ P and c is constant depending only exterior
data.

Theorem 1.1 Suppose that py € L® and ug € H'. Then, there 1s T such
that the weak solution (p,u) satisfies p € L*([0,T) x T%) and u € L=(0,T :
H(T3)). Furthermore we have

- 1/2
Og%muﬁy+wmxw+(érﬂm@wa) <e

For our simplicity of presentation, we assume zero external force.

2 Estimate of integral norm of density

We define our objective function h by

h(t) = 1ploo(t) + [Vula(2).

For computational convenience we introduce two universal Lipschitz function
® and U which could be different in each appearance. ®(h(s)) depends
only on h(s) and ¥ (¢ ®ds) depends only on [ ®(h(s))ds But, after overall
computations, they will be decided in natural way.

First, we estimate the Averages. We denote % = [wudz. The initial mass
is positive so that

/mm=M>m

otherwise the problem is trivial. From mass conservation and momentum
conservation,

p(t) =M and pu(t) = / PolodT

for all t. From Poincaré inequality we have

[ o= )da(t)] < ko ([ 1u— )"



< clploo| Vul2(2)

and hence we obtain

60) < o7 | [ ude )] + 22D 19u1,0) < aue)

for some Lipschitz function ®. We also have

|/ pluPde(t) - MIuF@)| < [ plluf? - TuPlds()

< o) 1l Valda(t) < M) +4 (L20) gy

and hence it follows that
= 2 Iploo(t) 2
2 < — 2 _— 2 < .
ul?(t) < 7 /p|u| +6( M |Vul3(t) < ®(h(t))

Now we estimate the integral norms of density. We apply p*~! as a test
function to mass conservation. Then, we obtain

(0°)s + div(p*u) + (k — 1)pFdiv(u) = 0

for any positive constant £ and hence integrating in time and space
/pkd.'z: /p'gdx —(k-1) / /p (s, z)div(u(s, z))dzds

< [ dhdz+ [ [Vuli(s)ds + (k) 2 (s)ds

<c+ / (s))ds.
Therefore we conclude
¢
Iole(®) < ¥ ([ @(h(5))ds)

for all fixed positive constant and for some Lipschitz functions ® and ¥. We
decide appropriate k later.



3 Estimate of velocity

To handle the nonlinear convection term pu - Vu, we first estimate

t
sup /p|ul4dx(s) +/0 /|u|2|Vu|2d:vds.

0<s<t

For our convenience we define effective pressure @ and effective viscosity flux
G by
Q = — (A + p)div(u) + P(p)

G = (A +2p)div(u) — P(p) = pdiv(u) — Q.

Taking |u|?u as test function for momentum conservation equation, we have

1 4 l . 4 2 2
1 [ oul)de + 5 [ pu- V(ul)da + [ 1wl Vultde

+£ [1V(uP)fde = [ Qaiv(lulu)ds.

We note that

[ oty + [ ou- (it = 5 [ plul‘da.

Hence, integrating in time, we have
t
/ olul*dz(t) + p / / u?|Vu|2dzds
0

< /p0|u0|4d:c+c/0t/|Q||u||uVu|d:cds.

It is important to find right exponent to derive closed estimates. From Hoélder
inequality and Sobolev inequality, we have

/:/|Q||u||uVu|dxds < /Ot [/ lQ|12/5d:1:r/12 [/(IulQ)ﬁdx} e [/ |u|2|Vu|2dx]1/2 ds

< [[[ 1] [fup - WR)Pac] " [ wvupad] " as
-+-/Ot(_|u_|2)1/2 [/ |Q|l2/"’da:]5/12 [/ |u|2|Vu|2da:] v ds



< c/ot [/IQIIQ/sd:B] [/ lul? |Vu|2d:vJ3 4ds
+/:(W)1/2 [/ lQIlz/sde [/|u|2|Vu|2da:] /2ds
< c/Ot U |Q|l2/5dx]5/3 + [ul? U |Q|12/5da:]5/6 ds

ot 2 2
+= |ul*|Vul|*dzds.
4 Jo

The estimates for generalized pressure @ can be replaced by effective viscosity
flux G so that

/ 1Q(s, 2)['*dz < / G(s, z)|"**dz + B(h(s)).
From the definition of control variable h and G, we also have

IG(s)| < @(h(s))-

Thus from Sobolev inequality and, we find that

( / IG(s,x)|12/5dx) ( / IG(s, z) )|12/5d:1:) 7 an(s)

( [16(s,2) - Gls) |2d:v) ( [16(s,2) )|18/5dx)5/12 + ®(h(s))
< e ( [16(s,2) - G(s) |18/5dx) te ( / G (s, z) — 6(s)|2dx) P ran(s)

We note that
¢ ( [16(s,2) - @(s)lzdw) " < AVall®(s) + P(o) < B(h(s))

and

1/2
(f166,2) - GE*ra) " < dveis,

Here important fact is the exponent 9/5 is less than 2 and 15/8 is less also
less than 2. Therefore combining all the previous estimates, we conclude

t
sup p|7.t|4d:1:(s)—i—/0 /|u|2|Vu|2dxds

0<s<t



<< (/ |VG|15/8(3 ds) e +/

We let P be the projection operator to divergence free vector space. Then,
from the definition of G and Pu, we have

AG = div(pu;) + div(pu - Vu)

APu = P(pus + pu - Vu).

For a given nonnegative constant ¢ € [0, 1), we have

[VGl5_s + [APul3_s < ¢ (|Put|§—6 + |pu - VU|§—5)

< c(|pf2, +1) (Jy/puel} + [uVul3)

for some m depends only on § and integrating with respect to time we obtain

t
| IVGE_s+|APul}_sds
0

t
< ¢ sup (|p|Z, + 1)/0 /plut|2 + [uVu|*dzds

0<s<t

< \Il(/ot (I)(h(s))ds) /Ot /plut|2 + |uVu|®dzds.

Moreover, the Sobolev inequality implies that
IVU|5 < CIVG'15/8 + ClAPU|15/8 + (D(h(S))

Finally we estimate |Vu|2(t). We multiply u; to our momentum conser-
vation equation and integrate. Consequently, we have

¢ 2 2 12
/0 /p|ut| d:cds+u/|Vu| dx(t) + ()\+,u)/|d1vu| dz(t)

< ,u/qu0|2da:+(/\+u)/|divu0|2dx+/0t/pIuVu|2da:ds—/0t/Vp-utd:vds.

Again from Holder inequality, for a given constant 0 < € < 1, we have

/Ot/pluVu|2dxds < (/Ot/IUVudeds)l—e (/Ot/,ol/5|uVu|2dxds>€



t ¢ 1/10 1/2 2/5
1/¢ 2 < ( 10/e—5 ) ( 4 ) ( 5 )
/0 /p |[uVul|*dzds _/0 /p dx /plul dx /|Vu| dz
1/e—1/2 V2
< £— 4 2
< sup loligji 4" (s) (a“;izt [ el dx(s)) | 19uli(s)ds
t 9/20
< W( [ ®(h(s))ds) (( [ 1961 0ds) +w)

([ IVGRys + 16Pultyads + [ @(h(s))ds)

where ¥, is a LlpSChltZ function depending on £ and we choose € = ll From
the estimate for f§ [ |uVu|®dzds, we have

[ [ owvu < we( [ u(s))as) ([ (96 s+ |aPultyds) ™

([ @ (h(s))ds)
+ /0 s))as).
Now if we choose € = 55, then

10 20 20

and

, 19/20
[ [ otuul? < w( [ @(h(s))ds) ( [ 196G Rye + |APuLy gds)

w([ “®(h(s))ds).

From integration by parts,
' d
—/VP-usda: = /Pdivusdx = £/Pdivudx+/Psdivudx.
Integrating in time, we have

t
- / / VP - u,dzds = — / Pdivudz(t) + / Pydivugda
0



t /
+/ /P psdivudads.
0
We find that

‘/P (p)divudz t)’ 'u/|Vu|2dx /Pzda:
<t / (Vulda(t) + /0 d(h(s))ds).
Since p; = —div(pu), we find that
t / t ’
/ /P psdivudzds = —/ /P divu(pdivu + u - Vp)dzds
0 0 .
t o, t -
—/ /P p|divu|*dzds —/ /VP-udivud:cds
0 0

t , t
/ / (P — P'p)|divu|2dzds + / / Pu - Vdivudads.
0 0
Clearly we have

t 7
‘/ [ P p)ldival*dads
0

< [[1P = P plo(s)| Vuli(s)ds

t
g/@@@
0
Since ,
we have
)dxds
)\ +

t t
gc/O /P2ldivu|da:ds+c/ /P|u||VG|dxds
0

: , 19/20 .
< (/0 |VG|15/8ds) +\1/(/0 Bds).

Therefore combining all the estimates, we have

/Ot/plut|2dwds+/IVulzdx(t)



t 19/20

t 19/20
< 2 2 )
<V (/0 /plut| da:d3+/|Vu| dz(t) + Vv

t
< %/0 /plutlzdxds+/|Vu|2dx(t)+\Il

and we conclude that

/Ot/p|ut|2dxds+/|Vu|2dx'(t) <V

4 L°-bound of density

From the mass conservation law, we have

| (logp): +u - V(log p) + divu =0
and from momentum conservation law,

(A~ div(pu)) + u - V(A div(pu))

+[uj, RiR;](pu;) — (A + 2u)divu + P = 0.
Thus, if we define F' = (XA + 2u)log p + A~tdiv(pu), F satisfies

Fi+u-VF + P = [u,, R;R;](pu;).
Next we define the Lagrange flow X of u so that
(X(t,s,2)); =u(t,X(¢,s,7), X(s,8,7)=zx
and derive |

F(t,X(t,0,2)) = Fo— | *P(o(s, X (5,0, 7)))ds

+ /Ot[u’ , RiR;)(pu;) (s, X (s, 0, z))ds.

Using the fact that p, is nonnegative, we have

F(LX(,0,2)) < Fo+ [ [u,, BeR(pu)(5, X (s,0,))

10
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log p(t, z) < log(|poleo) + c|A™ div(pouo)loo
+el A div(pu)solt) + | “Il, , RiBy)(0us) oo (5)ds.
In view of Sobolev embedding, we have
|A™div(poto)|oo < |pool7/2
and
2/7
A div(pw)les(t) < lpulre < o3 (0) + ([ lultdo(®) < v.

Again, from Sobolev embedding, we obtain

I[u, , RiR;) (o) loo(8) < |lu,, RiRs)(pus)lwrrre

1/40
< elValslpulan < el Vulloy/ Wi ([ pluldz)
we know that
|t]oo(5) < [t — Tloo(8) + [Tloo(s) < [Vuls(s) + @(h(s))

lao(s) < W( [ B(h(s))ds)

sup [ plultdz(s) < ¥(| @(h(s))ds).

0<s<t
Hence, we get

/ot [u, , RiR;](pui)|oo(s)ds < /0 “|Vul2(s)ds + T

t
< C/O |VG|%5/8 + ‘APUI%S/SdS +¥ <V
~and this implies |
p(t,z) <.
With the estimate of |Vul|z(t), we conclude that

(o) < W( [ 2(h(s))ds)

for some Lipschitz functions ¥ and ®. Since ¥ and @ are Lipschitz, there is
To such that
h(t) < C forall 0<Lt<Th.
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