Regularity of Weak Solutions of the Compressible Navier-Stokes Equations

Hi Jun Choe

August 28, 2000

Department of Mathematics KAIST, Taejon Republic of Korea

Abstract

We prove regularity of weak solutions of the Navier-Stokes equations for compressible, isentropic flow in three space dimension. We allow the presence of vacuum region for the initial data. The pressure law satisfies the general relation $P(\rho) = a\rho^{\gamma}, \gamma \geq 1$. As was found by Hoff[2], Lions[7] and Desjardins[1], the effective viscosity G plays an important role.

keywords: Navier-Stokes equations, isentropic, weak solution, regularity

1 Introduction

The isothermal gases are governed by isentropic compressible Navier-Stokes equations. Although there are many important results, the existence of solutions under general condition remains still open. When the initial velocity has small norm in sufficiently regular space, say H^3 , and the initial density is near constant, the global existence of classical solution was obtained by Matsumura and Nishida[9]. Then, Hoff[2] extended the global existence of small solutions to more weaker spaces which allow discontinuity of the initial

For the weak solutions, Lions[7] obtained the global existence when the pressure law satisfies $P(\rho) = a\rho^{\gamma}$, $\gamma \geq 9/5$ for three space dimension, $\gamma \geq 3/2$ for two space dimension and $\gamma > N/2$ for N-space dimension with $N \geq 4$. Now, the remaining question will be the extension of the range of the parameter γ .

On the contrary, Solonnikov[13] showed the local existence of strong solutions if there is no vacuum region for the initial density in the context of classical. Also, Desjardins[1] proved local regularity for the weak solutions when $\gamma \geq 1$ for two space dimension and $\gamma > 3$ for three space dimension.

In this paper, we prove the a priori regularity of weak solutions under the general law $P(\rho) = a\rho^{\gamma}, \gamma \geq 1$ for three space dimension. We allow vacuum region and do not assume any smallness for the initial data. The compactness and local existence of strong solution will be discussed in a forthcoming paper.

First, we consider the isentropic compressible Navier-Stokes equations in periodic domain \mathbf{T}^3 with periodicity one to each coordinate direction:

$$\rho_t + \operatorname{div}(\rho u) = 0 \quad \text{in} \quad (0, T) \times \mathbf{T}^3$$

 $(\rho u)_t + \operatorname{div}(\rho u \otimes u) - \mu \Delta u - (\lambda + \mu) \nabla \operatorname{div}(u) + \nabla P(\rho) = \rho f$ in $(0, T) \times \mathbf{T}^3$, where the pressure satisfies for a positive constant a

$$P(\rho) = a\rho^{\gamma}, \quad \gamma \ge 1.$$

The viscosity constants satisfy $\mu > 0$ and $\lambda + \mu \ge 0$ and the external force f belongs to $L^2((0,T)\times \mathbf{T}^3)$. We need to find the unknown velocity $u\in \mathbf{R}^3$ and the unknown density $\rho\in \mathbf{R}$. The velocity and pressure are to satisfy the initial condition

$$\rho(0,x) = \rho_0(x), u(0,x) = u_0(x).$$

Although we do not know yet the global existence of weak solution under the general pressure law, we introduce definition of a weak solution. In fact the estimates of local smoothness of the weak solution will lead to the existence of strong solution and we will discuss the existence in different places. $(\rho, u) \in L^1((0, T_0) \times \mathbf{T}^3)$ is a weak solution if it satisfies

$$\int \rho_0 \psi(0, x) dx + \int_0^{T_0} \int \rho \psi_t + \rho u \cdot \nabla \psi dx dt = 0$$

$$\int \rho_0 u_0 \psi(x, 0) dx + \int_0^{T_0} \int \rho u \otimes u \nabla u + P \operatorname{div} \psi dx dt$$

$$= \int_0^{T_0} \int \mu \nabla u \nabla \psi + (\lambda + \mu) \operatorname{div} u \operatorname{div} \psi dx dt + \int_0^{T_0} \int \rho f \psi dx dt$$

for all $\psi \in C_0^{\infty}[0, T_0 : C^{\infty}(\mathbf{T}^3))$ which is periodic. Moreover (ρ, u) satisfies

$$\sup_{0 \le t \le T_0} |\rho|_{\gamma}(t) + |\sqrt{\rho}u|_2(t) + \int_0^{T_0} |\nabla u|_2 dt \le C.$$

We denote $|u|_p = (\int |u|^p dx)^{1/p}$ and c is constant depending only exterior data.

Theorem 1.1 Suppose that $\rho_0 \in L^{\infty}$ and $u_0 \in H^1$. Then, there is T such that the weak solution (ρ, u) satisfies $\rho \in L^{\infty}([0, T) \times \mathbf{T}^3)$ and $u \in L^{\infty}(0, T) \in H^1(\mathbf{T}^3)$. Furthermore we have

$$\sup_{0 < t < T} |\rho|_{\infty}(t) + |\nabla u|_{2}(t) + \left(\int_{0}^{T} |\sqrt{\rho} u_{t}|_{2}^{2}(t) dt \right)^{1/2} \le c.$$

For our simplicity of presentation, we assume zero external force.

2 Estimate of integral norm of density

We define our objective function h by

$$h(t) = |\rho|_{\infty}(t) + |\nabla u|_2(t).$$

For computational convenience we introduce two universal Lipschitz function Φ and Ψ which could be different in each appearance. $\Phi(h(s))$ depends only on h(s) and $\Psi(\int_0^t \Phi ds)$ depends only on $\int_0^t \Phi(h(s))ds$ But, after overall computations, they will be decided in natural way.

First, we estimate the Averages. We denote $\overline{u} = \int u dx$. The initial mass is positive so that

$$\int \rho_0 dx = M > 0,$$

otherwise the problem is trivial. From mass conservation and momentum conservation,

$$\overline{
ho}(t) = M$$
 and $\overline{
ho u}(t) = \int
ho_0 u_0 dx$

for all t. From Poincaré inequality we have

$$|\int \rho(u-\overline{u})dx(t)| \le |\rho|_{\infty} \left(\int |u-\overline{u}|^2 dx\right)^{1/2}$$

$$\leq c|\rho|_{\infty}|\nabla u|_2(t)$$

and hence we obtain

$$|\overline{u}|(t) \leq \frac{1}{M} \left| \int
ho u dx(t) \right| + \frac{|
ho|_{\infty}(t)}{M} |\nabla u|_2(t) \leq \Phi(h(t))$$

for some Lipschitz function Φ . We also have

$$\left|\int
ho |u|^2 dx(t) - M \overline{|u|^2}(t)
ight| \leq \int
ho ||u|^2 - \overline{|u|^2} |dx(t)|$$

$$\leq |\rho|_{\infty}(t) \int |u| |\nabla u| dx(t) \leq \frac{1}{4} M \overline{|u|^2}(t) + 4 \left(\frac{|\rho|_{\infty}(t)}{M}\right)^2 |\nabla u|_2^2(t)$$

and hence it follows that

$$\overline{|u|^2}(t) \le \frac{2}{M} \int \rho |u|^2 + 6 \left(\frac{|\rho|_{\infty}(t)}{M}\right)^2 |\nabla u|_2^2(t) \le \Phi(h(t)).$$

Now we estimate the integral norms of density. We apply ρ^{k-1} as a test function to mass conservation. Then, we obtain

$$(\rho^k)_t + \operatorname{div}(\rho^k u) + (k-1)\rho^k \operatorname{div}(u) = 0$$

for any positive constant k and hence integrating in time and space

$$\int \rho^k dx(t) = \int \rho_0^k dx - (k-1) \int_0^t \int \rho^k(s, x) \operatorname{div}(u(s, x)) dx ds$$

$$\leq \int \rho_0^k dx + \int_0^t |\nabla u|_2^2(s) ds + c(k) |\rho|_{\infty}^{2k}(s) ds$$

$$\leq c + \int_0^t \Phi(h(s)) ds.$$

Therefore we conclude

$$|\rho|_k(t) \leq \Psi(\int_0^t \Phi(h(s))ds)$$

for all fixed positive constant and for some Lipschitz functions Φ and Ψ . We decide appropriate k later.

3 Estimate of velocity

To handle the nonlinear convection term $\rho u \cdot \nabla u$, we first estimate

$$\sup_{0 \le s \le t} \int \rho |u|^4 dx(s) + \int_0^t \int |u|^2 |\nabla u|^2 dx ds.$$

For our convenience we define effective pressure Q and effective viscosity flux G by

$$Q = -(\lambda + \mu)\operatorname{div}(u) + P(\rho)$$
$$G = (\lambda + 2\mu)\operatorname{div}(u) - P(\rho) = \mu\operatorname{div}(u) - Q.$$

Taking $|u|^2u$ as test function for momentum conservation equation, we have

$$\frac{1}{4} \int \rho(|u|^4)_t dx + \frac{1}{4} \int \rho u \cdot \nabla(|u|^4) dx + \mu \int |u|^2 |\nabla u|^2 dx + \frac{\mu}{8} \int |\nabla(|u|^2)|^2 dx = \int Q \operatorname{div}(|u|^2 u) dx.$$

We note that

$$\int \rho(|u|^4)_t dx + \int \rho u \cdot \nabla(|u|^4) dx = \frac{d}{dt} \int \rho |u|^4 dx.$$

Hence, integrating in time, we have

$$\int \rho |u|^4 dx(t) + \mu \int_0^t \int |u|^2 |\nabla u|^2 dx ds$$

$$\leq \int \rho_0 |u_0|^4 dx + c \int_0^t \int |Q||u| |u\nabla u| dx ds.$$

It is important to find right exponent to derive closed estimates. From Hölder inequality and Sobolev inequality, we have

$$\begin{split} \int_0^t \int |Q| |u| |u \nabla u| dx ds &\leq \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int (|u|^2)^6 dx \right]^{1/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds \\ &\leq \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int (|u|^2 - \overline{|u|^2}(s))^6 dx \right]^{1/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds \\ &+ \int_0^t (\overline{|u|^2})^{1/2} \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds \end{split}$$

$$\leq c \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{3/4} ds$$

$$+ \int_0^t (\overline{|u|^2})^{1/2} \left[\int |Q|^{12/5} dx \right]^{5/12} \left[\int |u|^2 |\nabla u|^2 dx \right]^{1/2} ds$$

$$\leq c \int_0^t \left[\int |Q|^{12/5} dx \right]^{5/3} + \overline{|u|^2} \left[\int |Q|^{12/5} dx \right]^{5/6} ds$$

$$+ \frac{\mu}{4} \int_0^t \int |u|^2 |\nabla u|^2 dx ds.$$

The estimates for generalized pressure Q can be replaced by effective viscosity flux G so that

$$\int |Q(s,x)|^{12/5} dx \le c \int |G(s,x)|^{12/5} dx + \Phi(h(s)).$$

From the definition of control variable h and G, we also have

$$|\overline{G}(s)| \le \Phi(h(s)).$$

Thus from Sobolev inequality and, we find that

$$\left(\int |G(s,x)|^{12/5} dx\right)^{5/3} \leq \left(\int |G(s,x) - \overline{G}(s)|^{12/5} dx\right)^{5/3} + \Phi(h(s))$$

$$\leq \left(\int |G(s,x) - \overline{G}(s)|^{2} dx\right)^{5/4} \left(\int |G(s,x) - \overline{G}(s)|^{18/5} dx\right)^{5/12} + \Phi(h(s))$$

$$\leq \varepsilon_{0} \left(\int |G(s,x) - \overline{G}(s)|^{18/5} dx\right)^{1/2} + c \left(\int |G(s,x) - \overline{G}(s)|^{2} dx\right)^{15/2} + \Phi(h(s)).$$

We note that

$$c\left(\int |G(s,x) - \overline{G}(s)|^2 dx\right)^{15/2} \le c|\nabla u|_2^{15}(s) + |P(\rho)|_2^{15} \le \Phi(h(s))$$

and

$$\left(\int |G(s,x) - \overline{G}(s)|^{18/5} dx\right)^{1/2} \le c|\nabla G|_{15/8}^{9/5}.$$

Here important fact is the exponent 9/5 is less than 2 and 15/8 is less also less than 2. Therefore combining all the previous estimates, we conclude

$$\sup_{0 < s < t} \int \rho |u|^4 dx(s) + \int_0^t \int |u|^2 |\nabla u|^2 dx ds$$

$$\leq \leq \left(\int_0^t |\nabla G|_{15/8}^2(s)ds\right)^{9/10} + \int_0^t \Phi(h(s))ds.$$

We let \mathbf{P} be the projection operator to divergence free vector space. Then, from the definition of G and $\mathbf{P}u$, we have

$$\Delta G = \operatorname{div}(\rho u_t) + \operatorname{div}(\rho u \cdot \nabla u)$$

$$\Delta \mathbf{P} u = \mathbf{P}(\rho u_t + \rho u \cdot \nabla u).$$

For a given nonnegative constant $\delta \in [0, 1)$, we have

$$|\nabla G|_{2-\delta}^2 + |\Delta \mathbf{P}u|_{2-\delta}^2 \le c \left(|\rho u_t|_{2-\delta}^2 + |\rho u \cdot \nabla u|_{2-\delta}^2 \right)$$

$$\leq c(|\rho|_m^2 + 1) \left(|\sqrt{\rho}u_t|_2^2 + |u\nabla u|_2^2 \right)$$

for some m depends only on δ and integrating with respect to time we obtain

$$\int_0^t |\nabla G|_{2-\delta}^2 + |\Delta \mathbf{P}u|_{2-\delta}^2 ds$$

$$\leq c \sup_{0 \leq s \leq t} (|\rho|_m^2 + 1) \int_0^t \int \rho |u_t|^2 + |u\nabla u|^2 dx ds$$

$$\leq \Psi(\int_0^t \Phi(h(s)) ds) \int_0^t \int \rho |u_t|^2 + |u\nabla u|^2 dx ds.$$

Moreover, the Sobolev inequality implies that

$$|\nabla u|_5 \le c|\nabla G|_{15/8} + c|\Delta \mathbf{P}u|_{15/8} + \Phi(h(s)).$$

Finally we estimate $|\nabla u|_2(t)$. We multiply u_t to our momentum conservation equation and integrate. Consequently, we have

$$\int_0^t \int \rho |u_t|^2 dx ds + \mu \int |\nabla u|^2 dx(t) + (\lambda + \mu) \int |\operatorname{div} u|^2 dx(t)$$

$$\leq \mu \int |\nabla u_0|^2 dx + (\lambda + \mu) \int |\operatorname{div} u_0|^2 dx + \int_0^t \int \rho |u \nabla u|^2 dx ds - \int_0^t \int \nabla p \cdot u_t dx ds.$$

Again from Hölder inequality, for a given constant $0 < \varepsilon < 1$, we have

$$\int_0^t \int \rho |u\nabla u|^2 dx ds \leq \left(\int_0^t \int |u\nabla u|^2 dx ds\right)^{1-\varepsilon} \left(\int_0^t \int \rho^{1/\varepsilon} |u\nabla u|^2 dx ds\right)^{\varepsilon}$$

$$\begin{split} \int_{0}^{t} \int \rho^{1/\varepsilon} |u\nabla u|^{2} dx ds &\leq \int_{0}^{t} \left(\int \rho^{10/\varepsilon - 5} dx \right)^{1/10} \left(\int \rho |u|^{4} dx \right)^{1/2} \left(\int |\nabla u|^{5} dx \right)^{2/5} \\ &\leq \sup_{0 \leq s \leq t} |\rho|_{10/\varepsilon - 5}^{1/\varepsilon - 1/2}(s) \left(\sup_{0 \leq s \leq t} \int \rho |u|^{4} dx(s) \right)^{1/2} \int_{0}^{t} |\nabla u|_{5}^{2}(s) ds \\ &\leq \Psi_{\varepsilon} \left(\int_{0}^{t} \Phi(h(s)) ds \right) \left(\left(\int_{0}^{t} |\nabla G|_{15/8}^{2} ds \right)^{9/20} + \Psi \right) \\ &\left(\int_{0}^{t} |\nabla G|_{15/8}^{2} + |\Delta \mathbf{P} u|_{15/8}^{2} ds + \int_{0}^{t} \Phi(h(s)) ds \right), \end{split}$$

where Ψ_{ε} is a Lipschitz function depending on ε and we choose $\varepsilon = \frac{1}{11}$. From the estimate for $\int_0^t \int |u\nabla u|^2 dx ds$, we have

$$\int_{0}^{t} \int \rho |u\nabla u|^{2} \leq \Psi_{\varepsilon} \left(\int_{0}^{t} \Phi(h(s))ds \right) \left(\int_{0}^{t} |\nabla G|_{15/8}^{2} + |\Delta \mathbf{P}u|_{15/8}^{2}ds \right)^{\frac{9}{10} + \frac{11\varepsilon}{20}} + \Psi \left(\int_{0}^{t} \Phi(h(s))ds \right).$$

Now if we choose $\varepsilon = \frac{1}{11}$, then

$$\frac{9}{10} + \frac{11\varepsilon}{20} = \frac{19}{20} < 1$$

and

$$\int_{0}^{t} \int \rho |u\nabla u|^{2} \leq \Psi(\int_{0}^{t} \Phi(h(s))ds) \left(\int_{0}^{t} |\nabla G|_{15/8}^{2} + |\Delta \mathbf{P}u|_{15/8}^{2} ds\right)^{19/20} + \Psi(\int_{0}^{t} \Phi(h(s))ds).$$

From integration by parts,

$$-\int \nabla P \cdot u_s dx = \int P \operatorname{div} u_s dx = \frac{d}{ds} \int P \operatorname{div} u dx + \int P_s \operatorname{div} u dx.$$

Integrating in time, we have

$$-\int_0^t \int \nabla P \cdot u_s dx ds = -\int P \operatorname{div} u dx(t) + \int P_0 \operatorname{div} u_0 dx$$

$$+\int_0^t\int P^{'}
ho_s{
m div} udxds.$$

We find that

$$\left| \int P(\rho) \operatorname{div} u dx(t) \right| \le \frac{\mu}{4} \int |\nabla u|^2 dx(t) + \frac{4}{\mu} \int P^2 dx$$
$$\le \frac{\mu}{4} \int |\nabla u|^2 dx(t) + \Psi(\int_0^t \Phi(h(s)) ds).$$

Since $\rho_t = -\text{div}(\rho u)$, we find that

$$\int_0^t \int P' \rho_s \operatorname{div} u dx ds = -\int_0^t \int P' \operatorname{div} u (\rho \operatorname{div} u + u \cdot \nabla \rho) dx ds$$
$$-\int_0^t \int P' \rho |\operatorname{div} u|^2 dx ds - \int_0^t \int \nabla P \cdot u \operatorname{div} u dx ds$$
$$\int_0^t \int (P - P' \rho) |\operatorname{div} u|^2 dx ds + \int_0^t \int P u \cdot \nabla \operatorname{div} u dx ds.$$

Clearly we have

$$\left| \int_0^t \int (P - P'\rho) |\operatorname{div} u|^2 dx ds \right|$$

$$\leq \int_0^t |P - P'\rho|_{\infty}(s) |\nabla u|_2^2(s) ds$$

$$\leq \int_0^t \Phi(h) ds.$$

Since

$$\operatorname{div} u = \frac{1}{\lambda + \mu} (G + P),$$

we have

$$\left| \int_0^t \int \nabla P \cdot u \operatorname{div} u dx ds \right| = \frac{1}{\lambda + \mu} \left| \int_0^t \int P u \nabla (G + P) dx ds \right|$$

$$\leq c \int_0^t \int P^2 |\operatorname{div} u| dx ds + c \int_0^t \int P |u| |\nabla G| dx ds$$

$$\leq \left(\int_0^t |\nabla G|_{15/8}^2 ds \right)^{19/20} + \Psi \left(\int_0^t \Phi ds \right).$$

Therefore combining all the estimates, we have

$$\int_0^t \int \rho |u_t|^2 dx ds + \int |\nabla u|^2 dx(t)$$

$$\leq \Psi \left(\int_{0}^{t} |\nabla G|_{15/8}^{2} + |\Delta \mathbf{P}u|_{15/8}^{2} ds \right)^{19/20} + \Psi$$

$$\leq \Psi \left(\int_{0}^{t} \int \rho |u_{t}|^{2} dx ds + \int |\nabla u|^{2} dx(t) \right)^{19/20} + \Psi$$

$$\leq \frac{1}{2} \int_{0}^{t} \int \rho |u_{t}|^{2} dx ds + \int |\nabla u|^{2} dx(t) + \Psi$$

and we conclude that

$$\int_0^t \int \rho |u_t|^2 dx ds + \int |\nabla u|^2 dx (t) \le \Psi.$$

4 L^{∞} -bound of density

From the mass conservation law, we have

$$(\log \rho)_t + u \cdot \nabla(\log \rho) + \operatorname{div} u = 0$$

and from momentum conservation law,

$$(\Delta^{-1}\operatorname{div}(\rho u)) + u \cdot \nabla(\Delta^{-1}\operatorname{div}(\rho u))$$
$$+[u_j, R_i R_j](\rho u_i) - (\lambda + 2\mu)\operatorname{div}u + P = 0.$$

Thus, if we define $F = (\lambda + 2\mu) \log \rho + \Delta^{-1} \operatorname{div}(\rho u)$, F satisfies

$$F_t + u \cdot \nabla F + P = [u, R_i R_i](\rho u_i).$$

Next we define the Lagrange flow X of u so that

$$(X(t, s, x))_t = u(t, X(t, s, x)), \quad X(s, s, x) = x$$

and derive

$$F(t, X(t, 0, x)) = F_0 - \int_0^t P(\rho(s, X(s, 0, x))) ds$$
$$+ \int_0^t [u, R_i R_j](\rho u_i)(s, X(s, 0, x)) ds.$$

Using the fact that ρ_0 is nonnegative, we have

$$F(t, X(t, 0, x)) \leq F_0 + \int_0^t [u, R_i R_j] (\rho u_i) (s, X(s, 0, x)) ds$$

$$\log \rho(t,x) \le \log(|\rho_0|_{\infty}) + c|\Delta^{-1}\operatorname{div}(\rho_0 u_0)|_{\infty}$$
$$+c|\Delta^{-1}\operatorname{div}(\rho u)|_{\infty}(t) + c\int_0^t |[u, R_i R_j](\rho u_i)|_{\infty}(s)ds.$$

In view of Sobolev embedding, we have

$$|\Delta^{-1}\operatorname{div}(\rho_0 u_0)|_{\infty} \le |\rho_0 u_0|_{7/2}$$

and

$$|\Delta^{-1}\operatorname{div}(\rho u)|_{\infty}(t) \le c|\rho u|_{7/2} \le |\rho|_{21}^{6}(t) + \left(\int \rho|u|^{4}dx(t)\right)^{2/7} \le \Psi.$$

Again, from Sobolev embedding, we obtain

$$|[u, R_i R_j](\rho u_i)|_{\infty}(s) \le |[u, R_i R_j](\rho u_i)|_{W^{1,7/2}}$$

$$\le c|\nabla u|_5|\rho u|_{20} \le c|\nabla u|_5|\rho|_{39}^{39/40}|u|_{\infty}^{9/10} \left(\int \rho|u|^4 dx\right)^{1/40}.$$

we know that

$$|u|_{\infty}(s) \leq |u - \overline{u}|_{\infty}(s) + |\overline{u}|_{\infty}(s) \leq |\nabla u|_{5}(s) + \Phi(h(s))$$
$$|\rho|_{39}(s) \leq \Psi(\int_{0}^{t} \Phi(h(s))ds)$$
$$\sup_{0 \leq s \leq t} \int \rho |u|^{4} dx(s) \leq \Psi(\int_{0}^{t} \Phi(h(s))ds).$$

Hence, we get

$$\int_{0}^{t} |[u, R_{i}R_{j}](\rho u_{i})|_{\infty}(s)ds \leq \int_{0}^{t} |\nabla u|_{5}^{2}(s)ds + \Psi$$

$$\leq c \int_{0}^{t} |\nabla G|_{15/8}^{2} + |\Delta \mathbf{P}u|_{15/8}^{2}ds + \Psi \leq \Psi$$

and this implies

$$\rho(t,x) \leq \Psi.$$

With the estimate of $|\nabla u|_2(t)$, we conclude that

$$h(t) \le \Psi(\int_0^t \Phi(h(s))ds)$$

for some Lipschitz functions Ψ and Φ . Since Ψ and Φ are Lipschitz, there is T_0 such that

$$h(t) \leq C$$
 for all $0 \leq t \leq T_0$.

Acknowledgement. The author expresses his sincere gratitude for the wonderful hospitality of Mathematical Institute of Tohoku University.

References

- [1] B. Desjardins, Regularity of weak solutions of the compressible isentropic Navier-Stokes equations, Comm. PDE, Vol. 22, 977-1008(1997).
- [2] D. Hoff, Global solutions of the Navier-Stokes equations for multidimensional compressible flow with discontinuous initial data, J. Diff. Eqs., vol 120, 215-254(1995).
- [3] N. Itaya, On the Cauchy problem for the system of fundamental equations describing movement of compressible viscous fluids, Kōdai Math. Sem.Rep,23,60-120(1971).
- [4] N. Itaya, On the temporally global problem of the generalized Burgers equation, J. Math. Kyoto Univ., 14, No. 1,129-177(1974).
- [5] A.V. Kazhikhov and V.V. Sheleukhin, Global unique solvability (in time) of initial-boundary value problems for one-dimensional equations of a viscous gas, Prikl. Mat. Mekh., 41, No.2,282-291(1977).
- [6] A.V. Kazhikhov and V.A. Vaigant, On existence of general solutions to the two-dimensional Navier-Stokes equations for a compressible viscous fluid, Siberian Mathematical Journal, vol.36,No.6,1108-1141(1995).
- [7] P.L. Lions, Mathematical Topics in Fluid Mechanics Volume 2, Oxford Lecture Sries in Mathematics and Its Applications 10, 1998.
- [8] A. Matsumura and T. Nishida, The initial value problem for the equations of viscous and heat-conductive fluids, Proc.Jpn.Acad.Ser.A 55, 337-342(1979).
- [9] A. Matsumura and T. Nishida, Initial boundary value problems for the equations of motions of compressible viscous and heat-conductive fluids, Comm. Math. Phys. 89, 445-464(1983).
- [10] A. Matsumura and M. Padula Stability of stationary flow of compressible fluids subject to large extern al potential forces, Stab. Anal. Cont. Media. 2183-202 (1992).
- [11] A. Novotny and M. Padula Existence and uniqueness of statio nary solutions for viscous compressible heat conductive fluid with large potential and small nonpotential external forces,, Sib. Math. J. 34.120-146(1991).

- [12] M. Padula, Existence and uniqueness for viscous steady compressible motions, Arch, Rat. Mech. Anal. 97, 89-102(1987).
- [13] V. A. Solonnikov, Solvability of the initial boundary value problem for the equation of a viscous compressible fluid, J. Sov. Math., 14, 1120-1133(1980).
- [14] A. Tani On the first initial-boundary value problem of compressible viscous fluid motion, Publ. RIMS. Kyoto Univ,13,193-253(1977).