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Introduction

Let Q be an caterior domain in R™(n > 3), i.c.. a domain having a compact complement
R™\ @ with the smooth boundary Q. Consider the initial-boundary value problem of the
Stokes equations in €2 x (0, 00):

%—A1L+Vp=0 mreN0<t<oo,
(S) divu=0 inxred 0<t<oo,

©u=0 on J9, u(a,t) = 0 as |z| — oo,

u|t=0 =a,

where u = u(z,t) = (wi(=,t),---.us(x,t)) and p = p(x.t) denote the unknown velocity
vector and pressure of the fluid at the point (z,t) € Q x (0,00), while a = a(z) =
(a1(x),---.an(x)) is the given initial velocity vector field.

It was shown by Solonnikov [22], [23] that for every a € L1(2) with 1 < ¢ < oo, there
exists a unique solution u of (S) in C([0, 00); L%(82)) with Seu, 82u € C((0, 00); L7(R)) for
all ¢ < 7 < oo. Asfor asymptotic behaviour of u(t) as t — oo, Iwashita [8] proved the
following L7 — L"-estimates

nel 1
(0.1) le(t)lr < ct 2 r)||a||1,q forl1 <qg<r<oo,
(0.2) IVu(t)||r < Ct*%(%—%)_%na“u forl<g<r<n,

where C' = C(n,g¢,) is a constant independent of t > 0 and a € L](f2). See also Chen [3].

The first purpose of this note is to investigate the above LI — L™-estimates for ¢ = 1.
It is an open question whether (S) has a solution when a belongs to L1(Q2). For every
a € L'(Q) with certain regularity, we shall establish (0.1) and (0.2) with some additional
term on the right hand side. In this decade, many authors discussed on the L? decay of
weak solutions to the Navier-Stokes equations in exterior domains([16], [9], [17], [1], [2],
[12]). In particular, they made an effort to get the optimal decay rate in L2 as ¢ — oo. In
exterior domains, the best decay rate up to the present was given by Borchers-Miyakawa
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[2]; if the solution u of (S) satisfies [lu(t)|| 2 = O(t™%) as t — oo, then weak solutions v of
the Navier-Stokes equations with the same initial data a are subordinate to the estimate

o) provided 0 < a < n/4,
(03) le@®)llzz = { O(t™"/%)  provided n/4 < a.

This indicates that the decay order in L? of the Navier-Stokes flows seems to be dominated
by the linear Stokes flow, and their best rate might be t—/4 which is formally obtained by
taking ¢ = 1 and r = 2 in (0.1). Our result may be regarded as concrete characterization
of the initial data a with which the Stokes flow u(t) exhibits this marginal behaviour as
¢ — 0o. Simultaneously, it is an interesting question whether or not [[u(t)l|z = o(t™™4).
Our second purpose is to show that more rapid decay of [u(t)||z- than (0.1) occurs only in

a special situation. Indeed, we shall prove that ||lu(t)||Lr = o(t'%(l—%)) forsome1 <7 <00

if and only if there holds

o0
/ dt/ Tlu, p|(y,t) - vdSy = 0,
0 on

where T[u,p] = {Oui/0x;j + Ou;/dx; — dijp}ij=1,n denotes the stress tensor, and v =
(v1,-++,vn) and dS denote the unit outward normal and the surface element of OS2, re-
spectively.

1 Results

Before stating our results, we first introduce some function spaces. Let C§%, () denote
the set of all C™ vector functions ¢ = (¢1, - - -, ¢n) With compact support in €2, such that
div ¢ = 0. L7(f) is the closure of C§%,(£2) with respect to the L"-norm I-llr =1 lere)s
(-,+) denotes the duality pairing between L"(£2) and L” (), where 1/r +1/7 =1. L"(Q)
stands for the usual (vector-valued) L"-space over 2, 1 < r < oo. It is known that for
1 <r < oo, L(Q) is characterized as

L5 ()
(1.1) ={ueLl"(Q);dive=0 inQ, u-v=0on 0 in the sense W=/ (90)* }

and that there holds the Helmholtz decomposition
L"(Q)=LL(Q) &G (Q) (direct sum),1 <r < oo,

where G"(Q) = {Vp € L"(Q);p € L], .(2)}. We denote by P, the projection operator from
L™ () onto L () along G™(£2). Then the Stokes operator A, is defined by A, = —F A
with the domain D(A4,) = {u € W2"(Q) N L1(Q); u|sq = 0}. It is proved by Giga-Sohr
[6] that —A, generates a uniformly bounded holomorphic semigroup {e"t4r}4>0 of class
Cop in L[ (Q2) for 1 < r < oo. Hence one can define the fractional power AY for 0 < a <1.

There holds an embedding D(A%) C W2*7(Q) with
(1.2) lullw2er@) < Clllulle + [AFully),  u € D(AY),
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where C = C(n.r.a) is independent of .

For a € Ly(Q), u(t) = e~*4a gives a mnique solution of (S) together with a scalar
function p such that
(1.3) Vp € C((0.oc); L"()).

We call such p the pressure associated with «. In particular. if 1 < r < n, by (S) and the
Sobolev embedding([6, Corollary 2.2]). we may take p so that p € C((0, oc); L™/ (*=7)(QQ)).

Throughout this paper, we impose the following assumption on the initial data.

Assumption. For some n/(n —2) < ¢, < oc and ¢ > 0 the initial data a belongs to
LY{Q)n D(A,).

Our first result now reads:

Theorem 1. Let the Assumption hold. Then we have
z(1-1
(1.4) lle=*4all, < Ct=20=7)(|lally + |lall,. + [|4%all,. ), 1 <r < oo,
n_1y_1 c
(1.5) IVe=dall. < Ct=20-D2(|lalls + llally. + | 4%allp.).  1<7<n,

for allt > 2 with C = C(n, gy, ¢,7) independent of a.

Remarks. 1. In (1.4), we do not know whether r = 1 is possible. It is shown by the au-
thor [15] that u € C([0, 00); L1(2)) with its associated pressure p € C((0, 00); L™ (*=1)(Q))
if and only if the net force exerted to 99 by the fluid is equal to zero:

(1.6) / Tlu,pl(y.t) - vdS, = 0 for all 0 < ¢ < 0o,
on

where T[u, p| = {Oui/0zj + Ou;/dx; — 0ijp}ij=1...n denotes the stress tensor, and v =
(v1,+-+,vn) and dS denote the unit outward normal and the surface element of 0, re-
spectively. Hence. it seems to be difficult to take » = 1 in (1.4) for all a satisfying the
Assumption.

2. On the other hand, in (1.5), we may include » = 1. This is closely related to the fact
that VI'; belongs to the Hardy space H!(R” ). where T'y(x) = (4nt)~"/2e~1=I°/4¢ denotes the
Gauss kernel. In the half-space R%, Giga-Matsui-Shimizu [7] obtained a shaper estimate
than (1.5) like H! — L"-type.

We next investigate the more rapid decay than (1.4):
Theorem 2. Let a be as in the Assumption. If
(1.7) le=*4al, = o(t_g(l_%)) for some 1l <r < oo

as t — 0o, then there holds

(1.8) /0 dt /a}z T'lu, pl(y.t) - vdS, = 0.



Conversely, if (1.8) holds, then we have

(1.9) lle"tal|, = o(t“%“'%)), foralll <r <oo
(1.10) Ve t4all, = o(t—%(l_%)—%) foralll<r<mn
ast— 0.

Remarks. 1. Theorem 2 shows a significant difference of asymptotic behaviour of
solutions between the whole space R and exterior domains. In R", the Stokes semi-group
e—t4 is essentially identical with the heat operator so that we have tlim lle~*al| ign) =0

—00

for all @ € L'(R") with diva = 0. Hence both (1.9) and (1.10) are always true in R™.
Furthermore, if we iinpose some momentum condition on a, then the better decay than
(1.9) and (1.10) can be obtained. See Miyakawa [18, Lemma 3.3].

2. (1.7) is a condition on the solution u(t) to (S) at ¢ = oo. On the other hand, (1.8) is
restriction on the solution on the whole interval t € (0,00). So, it turns out that the more
rapid decay in L" than +=30-1) as t — oo has a influence even on the global behaviour
on (0, 00) of the solution wu(t).

3. As we have seen in (0.1), for a € L%(§2) with the lower integral exponent g, the
better decay of ||e~'4al|, for ¢ <1 < 00 as t — ¢ is expected. Theorem 2 states that, in
general situations in exterior domains, we cannot realize the better decay than Theorem
1, and that the condition on the net force exerted dQ such as (1.6) and (1.8) controls the
asymptotic behaviour of the solutions u(x.t) as |z| —» oo, t — oo. As for the influence
of the net force on the solutions of the stationary problems, see e.g., Finn [4], [5] and
Kozono-Sohr[13]. See also [14].

2 Representation formula

In this section. we shall establish a representation formula of the solution to (S) for the
initial data a satisfying the Assumption. To this end, we need to investigate behaviour
of the boundary integral [y, T'[u,p](y.t) - v(y)dS, as t — 0. We observe also its be-
haviour as t — oo. In what follows we shall denote by C' various constants. In particular,
C = C(*,++-,*) denotes constants depending only on the quantities appearing in the
parenthesis.

Lemma 2.1 Let n/(n —2) < g« < 00 and let q be as 1/¢ — 1/n = 1/g«, e, ¢ =
ng«/(n + qi). For every 1 <1 < gq, there is a constant C' = C(n,gx,l) such that

nel L
@1 /‘)Q(IVu(y’t)leIp(y‘t)!)db‘ySC‘f 2073 (lfally + Nlallg.)

for all1 <t < oc and all a € L'(2) N LY (). where u(t) = ¢ t4a with its associated
pressure p. If, in addition, a satisfies the Assumption. then there holds

(2.2) /_m(IV“(y, £+ Ip(y. t))dSy < Ct~ ' (llall + llally. + 1 A%allg:)

37



with a = (i—:}%)g for all 0 <t < 1, where (' = C{n.q,,¢).

Let us recall the fundamental tensor {E;;(.v.t)},i,j=1,---,n to (S) detined by

P? A ..
Eij(x,t) =TI(x, t)6ij + ()J’l().l'] (T(-.t) *G)(x). 4,5=1,---, n,
where
[(z,t) = —1—,;6-%‘;, G(z) = —lﬁ-l;rlz_" (wn: area of the unit sphere in R™).
(4mt)z2 (n— 2w,

Our representation formula now reads:

Theorem 2.1 (Representation formula) Let a be as in the Assumption. The solution
u(t) = e~'4a to (S) can be represented as

u(z,t) = /Q [z -y, t)ai(y)dy
t n
+/ dT/ Z Ei]'(a' -V t— T)T}‘k[’lt, p](y’ T)Vk(y)dsya 1= 17 e, n,
0 O j k=1

for all (z,t) € 2x (0,00), where Tjy[u, p|(y, 7) = %u )+ ;‘;’J—‘(u T) = 65p(y, 7), J, k =
k j

L---.n and v(y) = (v1(y), - . vn(y)) is the unit outward normal to y € 0N.

Knightly [10, (6)] gave the representation formula to solutions of the Navier-Stokes equa-
tions by assuming u(z,t) = o(1), Vu(x,t), p(x.t) = o(|z|) as || — oo locally uniformly in
¢. Mizumachi [19, Proposition 1] also showed under the stronger hypothesis than ours on
the boundary integral in Lemma 2.1 which is due to Solonnikov [22].

3 L!- L" estimates; Proof of Theorem 1

To prove (1.4). we shall first restrict ourself to the case

(3.1) l<r<n/(n-2).

By Theorem 2.1. u(t) = e *4a can be expressed as

(3.2) u(x,t) = v(r,t) + w(z,t) for all (x,t) € Q x (0,00),

where v(z,t) = (v)(x,t),---,va(x,t)) and w(x.t) = (w (z. 1), -, wy (x.t)) with

’Ui(;L', t) = / Ii(a: - Y, t)al(y)dyv 1= L. ',
JQ

t n
wi(z, t) = /0 dT/an Z Eij(z — y,t — 7)Tji[w. pl(y, )i (y)dSy, i=1,---,n.
jk=1
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By the Hausdorff-Young inequality, we have
(3.3) lo®lls < G &)l llall < Ce#0-Dlafly for all ¢ > 0

with C = C(n,r) independent of a. As for the estimate of ||w(t)||r, we notice that the
fundamental tensor {E;;}; j=1....n can be expressed as

(34) El](3t) = (61_7 + RlR])F( t)a I,J =1,---,n,

where R; = —(,;%(—A)‘%, i =1,---,n denote the Riesz transforms. Since R; is bounded

€Ly
from L"(R"™) into itself, we have

1

(35)  [[OMOFE;( el < CtT2TITE R m bk =0,1,-- forallt >0,

which yields

n t
@l < 3 / dr / 1Ess (- = 9, = 7)Tjulus P15 7 (w) 1S,y
isre10 o0
n t .
< ¥ / dr / (Tl 21 (9, Tk @B (- = 92t — 7) 1Sy
ig k=1 0 o
t
(3.6) < ¢ [@-ns0od ( [ (vat i+ lp(y,ﬂi)dsy) dr
By (2.2) there holds

1 w1
/ (t —7)" 2% (/ (IVu(y, )| + IP(%T)DdSy) dr
Jo a0 .

1
_nep_41 c -
ct-1)"z¢ r)(lla||1+||al|q*+IIA“a|Iq*)/O T ldr

IA

—n_1
3.7) Ct™2U " (Jlalls + llallq. + 1 A%allq.)
for all t > 2. Next, we take 1 < < q = ng./(n + ¢«) so that

INA

For such [, there holds

n {1 1

By (2.1) and (3.8) we have
t/2 n 1
[ e-naed ( [ (vatwm+ |p<y,r>|)dsy) dr

C(llally + llallq.) (t — T)—%(l-%)T_g -1,
1

IN

L1 _nel 1
< Cllall + flallg )t 2073 (1= (¢/2) 8720+

1

< C(lally + llaflg. )t~ 507

~—~
w
©o

~—
A
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for all ¢ > 2. It follows from (3.1) that —3(1 — 1) > —1, and hence again by (2.1) and
(3.8) we have

t 1
(t —7)-30-1 (/ (IVu(y, 7)| + |p(y. T)I)dSy) dr
t/2 N

‘-E(l—'l—) t n(1 1
< Clllall + llall )24 [ (¢ )~ 30-ar
t/2

< C(lalls + llallg.))t~ -2+ 1-50-D)
(3.10) < Clllall + llallg. )0
for all ¢t > 2. Gathering (3.7), (3.9) and (3.10). we obtain from (3.6)

n 1 ‘

(3.11) lw@®)ll, < Ct=20-D(lally + llall,. + [|4%all,.), ¢>2

provided 1 < r < n/(n —2). Now it follows from (3.2), (3.3) and (3.11) that

n-_1 =z
(3.12) le*4all, < Ct=2" =) (|lall + llallq. + | 4%allq.), t>2

provided 1 < r < n/(n —2). In case n/(n — 2) < r < oo, we may take 7 so that
1 <7< n/(n—2). Then by (0.1) and (3.12)

le™*all, = [le"2%e%al,
< CrEtRjeital;
< Ot 3G 30D |lally + [lalle, + [|4%ll,.)
(3.13) < et D (ol + fallg; + [ A%all,.)

for all ¢ > 4. From (3.12) and (3.13) we obtain (1.4).
Next, we shall prove (1.5). In case 1 < » < n, we have by (0.2) and (1.4) just proved
that

IVe~24e~4q),
Ct_%”e_éA(l”r
_n-iy_1
Ct=30-H-4(Jally + flall,. + 14all,.),

IVe~*all,

IA A

(3.14)

for all ¢ > 4. which yields (1.5) except for r = 1.

Finally, it remains to prove (1.5) for » = 1. Similarly to (3.3) , we can show easily that
IVv(@®)lli < Ct~'/?|ja||; for all t > 0 with C = C(n) independent of a. Hence it suffices to
prove

_1 -
(3.15) IVw@®)ll < Ct™2((lally + llally, + |A%allq.) for all ¢t > 2.

It is well-known that VI'(-,¢) € H! with ||[VI(-,t)fip2 < Ct‘%, where H! denotes the
Hardy space on R™. Since the Riesz transform R;, i = 1.---,n is bounded from H! into
itself, we have by (3.4)

IVE;(, ) < CIVL(,t)|lan < Ct7 %, i,j=1,---,n forallt>O0.



See e.g., Stein [24, Chapter III, 1.2.4]. Hence, as we have derived (3.6) from (3.5), we
obtain

(3.16) Hunmlﬁ(?/(t—TY%(/;UVM%TN+WM%THM%JdT

Now it is easy to see that the same procedure as in (3.7), (3.9) and (3.10) works to the
estimate of the right hand side of (3.16). and we get (3.15). This completes the proof of
Theorem 1.

4 More rapid decay; Outline of the proof of Theorem 2
Without loss of generality, we may assume
(4.1) le~*all, = o(t_%(l'%)) for some 1 <r <n/(n—1)ast— oo.

Indeed, if (1.7) holds for some n/(n—1) < r < oo, then by (hoosmg 1<ro<r <n/(n-1)
and 0 < 0 < 1 with 1/ry = (1 — 6)/ro + 0/r. we have

- Ly— n _n-_L
e~ all, < lle~Aalll; e Aall) = O - o(e D) = o7 HOT)

as t — 0o, which yields (4.1). By Theorem 2.1, we have similarly to (3.2) that

ui(z,t) = vi(z, t)+wi(z, t)+ Z E;j(x, t)/ (17'/ Ti[u. p)(y, )k (y)dSy, i=1,---,n,
s FI9)
(4.2)
for all (z,t) € Q x (0,00), where v = (vy.:--.vp) is the same as in (3.2) and w =
(@, -+, Wy) is defined by

(z.1) Z / dr / {Bis(@ — yot — 7) = Eyj(e, )} Tyl pl (g Tva(9)dSy,  i= 1,
jh=1
(4.3)
Let us first show that
(4.4) o)l = ot 5177)) for 1 < r < 00 as t — o0,

Indeed, defining a(x) = a(x) for v € Q and = 0 for x € R™ \ 2, we have
o(r.t) = / F(r —y.ta(y)dy = ca(x) = e 2A(G%Ad)(ac)
yeRn

for (z,t) € Q2 x (0,00), where et® denotes the heat semi-group in R™. Hence there holds

45) @)l < et (e32a) || pr@n) < Ct™F D32 gy, 1 <7 < 00,8 > 0.
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Since a € L'() N LE (Q) for ¢, > n/(n — 2). it follows from (15, Lemma 2.2] that

/ fli(y)dy=/ai(y)dy=0, i=1,---,n.
Rn Q

By an elementary argument, we can show that this mean value property yields
l€22a]| 1 gy — 0 as t — oo.

From this and (4.5) we obtain (4.4).
By a slightly technical calculation,we can also show

(4.6) lit)ll, = o(t"2=9), 1<r<n/(n—1) ast— oo.

On the other hand, there holds

n

jz; Ei;(-,t) /0 fi(r)dr

.. ney 1
liminftz(1-7)
t—20

r
1

r v
dy) y it=1,---,n
for all 1 < r < 00, where

fy(r) = /a > Tl (1S, j=10m.
k=1

(4.7) > (/ ] ZEij(yvl)/xfj('T)dT
yeRn )

=1

o0
First, if we take [ as in (3.8), then Lemma 2.1 yields / fi(r)dr < 00, j=1,---,n. Since
0
E;j(x,t) = t~"/2E;j(z/V%,1), we have

i: Eij(-.t) , fi(r)dr
0
i=1

t'g—'(l—%)

r

n ¢
=t ZE,J(/\/I:I)/ fi(r)dr
= 0

r

n ; r
t o </|z|zR ZEU(;I'/\/Z,I)/O fi(r)dr d:z:)

1

v
[

j=1
(by changing variable o — y = x/V/t)

1

n ¥

. T
= ( /Iy SR ;Eu(y,l) /0 fi(r)dr dy)

r

n 20 T
- [ B [ oimar dy|  astoo
vek |55 0
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which implies (4.7).
Now, assume that (1.7) holds. Then it follows from (4.2), (4.4) and (4.6) and (4.7)
that

(4.8) ZE,-j(y, 1) / fi(r)dr=0, i=1,---,n for all y € R™.
i=1 0
.o _ E&\ g2 . .
Since E;(£,1) = | b5 — —EF e ,i,j=1,---,n, we have by (4.8) that

n 00
Z((Si]' —w,:wj)/ fj(T)dT =0, ¢t=1,---,n
j=1 0
for all w = (w1.-*+,wn) € R™ with |w| = 1. Obviously, we conclude that

/000 fi(r)dr=---= > fa(m)dr =0,

Jo
which implies (1.8). _
Conversely. if (1.8) holds, then we have by (4.2). (4.4) and (4.6) that

hu(o)lly < nv<t>nr+nw<t>nr+ZnEijc,t)ur\ | st

ij=1

= o(t_%(l_%))

foralll <r<n/(n—1)ast— oo. By the same technique as in (3.13) and (3.14), we get
(1.8) and (1.9). This proves Theorem 2.
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