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1 Introduction

In the recent development of white noise theory the framework proposed by Cochran-
Kuo-Sengupta [4] has become more important for their characterization theorems, see
also [1]. In fact, much attention has been paid to characterization theorems for the test
functions W, for the generalized functions W*, for white noise operators £(W, W*) and
for L(W,W). As was pointed out first by Chung—Chung-Ji [2], those characterization
theorems are related each other, however, the statements are not unified because their
objects are different so far as we are concerned with a single CKS-space over a particular
underlying Gelfand triple. In this paper, using the standard setup of white noise calculus
proposed by Hida—Obata—Sait6 [6] and by Obata [12], we unify those characterization
theorems into a single statement.

Let S4(U) and Sp(V) be countable Hilbert nuclear spaces constructed from L?*(U)
and L?(V) in the standard manner, respectively, see §2. Then, for two weight sequences
a = {a(n)}2, and B = {B(n)}3, we consider CKS-spaces of test white noise functions

defined by
U= FQ(SA(U)), V= Fﬂ(SB(V))

We assume condition (H1) for both S4(U) and Sg(V) and conditions (A1)-(A4) for «
and (3. These conditions are described in §§2-3. Then the main result is stated in the
following

Theorem 1.1 For a continuous operator = € L(U,V) put
O, n) = (Ede, d)),  E € Sall), neSp(V), (1)

where ¢¢ and ¢, are ezponential vectors in U and V, respectively. Then, © satisfies the
following two conditions:

(O1) © is a Géteauz-entire function on S4(U) x Sp(V);
(02) for any p > 0 there exist ¢ > 0 and C > 0 such that
0,2 < CGa(I€2,)Cys(In12,),  €€8aU), n€Sp(V),

where G, and Gy are ezponential generating functions of the weight sequences o
and 1/, respectively.
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Conversely, if a C-valued function © defined on S4(U) x Sg(V) fulfills conditions (O1)
and (02), there ezists a unique continuous operator = € L(U, V) satisfying (1).

Specializing the underlying spaces S4(U) and Sg(V'), we obtain the characterization
theorems mentioned at the beginning as corollaries of our main theorem. Moreover,
our theorem yields characterization theorems for multi-variable white noise functions in
a highly general form. It is noteworthy that multi-variable white noise functions have
become more important in applications [13]. Further development is expected together
with another type of characterization theorems based on Bargmann—Segal spaces, which
has been also extensively studied along with complex white noise [7].

2 Standard Construction of an Underlying Gelfand Triple

We assemble some notions and results in [12]. Let U be a topological space equipped
with a o-finite Borel measure v and consider the complex Hilbert space L*>(U) = L*(U, v).
Let A be a selfadjoint operator in L?(U) such that inf Spec (4) > 0. With each p € R
we associate a Hilbert space E,(U) with a norm defined by

|€Ip:|AP§IL2(U)’ peR.

More precisely, for p > 0, E,(U) consists of £ € L2(U) satisfying | £ |, < oo and E_,(U)
is the completion of L?(U) with respect to the norm | - |_,- Thus we come to a countable
Hilbert space:

Sa(U) = projlim E,(U).

p—00
The strong dual space of S4(U) is identical to the inductive limit:
S3(U) =indlim E_,(U)

p—00
and we come to a rigging:
Sa(U) c L*(U) c 84(U). (2)

The canonical C-bilinear form on 8} (U) x S4(U) is denoted by (-, -). Then by definition
the norm of L2(U) is given by | & |5 = (€, &).

Lemma 2.1 A countable Hilbert space S4(U) defined as above is nuclear if and only if
there exists r > 0 such that A" is of Hilbert-Schmidt type.

As for a spectral property of A we consider
(H1) inf Spec (A) > 1 and A™" is of Hilbert-Schmidt type for some r > 0.

The first condition is taken into account beforehand. It follows from (H1) that

A lop <1, lim [| A7 [|las = 0. (3)

Definition A countable Hilbert nuclear space S4(U) constructed from L?(U) by means
of a selfadjoint operator A satisfying (H1) is called standard.
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As is suggested by (2), it is natural to consider S4(U) and 8% (U) are spaces of test
functions and generalized functions (or distributions) on U, respectively. However, it is
not clear at all whether the delta function (evaluation map) is a member of S%(U). On
the contrary, continuity of a test function does not follow automatically. By construction
each element of S4(U) is merely a function on U which is determined up to v-null
functions. We thus come to:

(H2) for each function § € S4(U) there exists a unique continuous function £ on U such
that £(u) = €(u) for v-a.e. u € U.

Once this condition is satisfied, we consider S4(U) always as a space of continuous
functions on U and we do not use the exclusive symbol . Under (H2) we put two more
hypotheses to keep a delta function in & (U):

(H3) for each u € U the evaluation map 6, : & — &(u), £ € S4(U), is a continuous linear
functional, i.e., 8, € S3(U);

(H4) the map u — 6, € S3(U), u € U, is continuous with respect to the strong dual
topology of S5(U).

Conditions similar to (H1)-(H4) were also discussed by Kubo-Takenaka [11]. These
hypotheses are essential for topological arguments of S4(U). Here we recall the following

Proposition 2.2 Let S4(U) be a standard countable Hilbert space and let &, € S,4(U),
n=1,2,---, be a sequence converging to 0 in S4(U). If (H2) and (H3) are satisfied, then
the sequence converges pointwisely, i.e., limy,_,o &, (u) = €(u) for any u € U. Moreover,
if (H4) is satisfied in addition, the pointwise convergence is uniform on every compact
subset of U.

Proposition 2.3 Let S4(U) be a standard countable Hilbert space satisfying conditions
(H2) and (H3). Then,

00
| A7 “%IS = Z} | 0 |2—r v(du) = Z,\j‘z" < 00,
s

where 1 < A\ < Ay < --- are the eigenvalues of A.

Recall that for two selfadjoint operators A; in a Hilbert space H; (i = 1,2) their
tensor product A; ® A, becomes a selfadjoint operator in H; ® H; in a canonical way.
Moreover, if inf Spec (A;) > 0 for i = 1,2, then inf Spec (A; ® A2) > 0 as well.

Proposition 2.4 Let S4(U) and Sg(V) be standard countable Hilbert nuclear spaces.
Then the canonical isomorphism L?(U x V) = L2(U) ® L%*(V) induces a topological
tsomorphism:

SA@,B(U X V) & SA(U) ® SB(V) (4)
Moreover, if both S4(U) and Sg(V') satisfy hypotheses (H2)-(H4), so does Sagp(U x V).

Useful sufficient conditions for (H2)-(H4) are known, see [12, §1.4]. In fact, these
conditions are essential to formulate quantum white noise {a,,al; u € U}, however, in
this paper we do not go into this subject.
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3 Conditions for Weight Sequences

After Asai-Kubo-Kuo [1] we introduce some general notion for positive sequences.
A sequence o = {a(n)}32, of positive numbers is called log-concave if

a(n)a(n +2) < a(n+1)?, n=0,1,2,....

Two positive sequences a = {a(n)}32, and G = {B(n)}2, are called equivalent if there
exist positive constants K;, Ky, My, My > 0 such that

KiMPa(n) < B(n) < KaMja(n), n=0,1,2,....
For a positive sequence o = {a(n)}22, we consider the following conditions:

(A1) «(0) =1 and igg o"a(n) > 0 for some o > 1;

(A2) lim {@}W = 0;

n—»o0 n!

v(n)

(A3) «is equivalent to a positive sequence v = {y(n)} such that { —'} is log-concave;
n!

. " 1
(A4) « is equivalent to another positive sequence v = {y(n)} such that {'—(—)} is
nly(n
log-concave.
For example, (n!)? with 0 < 8 < 1 and the Bell numbers of order k satisfy the above
conditions [4].
The exponential generating functions of o and 1/« are defined by

G =Y e G =3

respectively. Both are entire holomorphic functions by (A1) and (A2). We next define
~ &, nm . o Ga(T)
Galt) = ;t nla(n) {l&f) ™ }’

Glyalt) = it"m {infGlL(T)}.b

n! >0 T"
n=0

It is known [1] that (A3) and (A4) are necessary and sufficient conditions respectively
for G, and for Gy, to have positive radiai of convergence. These functions will play a
crucial role in norm estimates. Moreover, the next fact is known [1].

Lemma 3.1 Assume that o = {a(n)} satisfies (A1)-(A4).
(1) There ezists a constant Co1 > 0 such that

a(n)a(m) < C:™a(n + m), nm=20,1,2,....
(2) There ezists a constant Coy > 0 such that

a(n +m) < Ci™a(n)a(m), n,m=0,1,2,....
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(3) There ezists a constant Ca3 > 0 such that
a(n) < Chiya(m), 0<n<m.
Then, by a simple calculation we have

Proposition 3.2 Let a = {a(n)} be as above and G,(t) the exponential generating
function. Then, for s,t > 0 we have:

(1) G4(0) =1 and Go(s) < Guft) for s < t.

(2) Ga(s)Ga(t) < Ga(Car(s +1)).

(3) Gals+1) < Ga(Ca25)Ga(Cast).

(4) e°Gq4(t) < Go(Cas(s +1)), in particular, € < Go(Cast).

4 Standard CKS-Space

Suppose we are given a standard, countable Hilbert nuclear space:

S4(U) = projlim E,(U)

p—o0

and a positive sequence o = {a(n)} satisfying (A1)-(A4). We first form a weighted
Fock space:

Lo(Ep(U)) = {¢ = (fa)20; fa € B, 10122 nlan)| fol% < oo} ,
n=0

where E,(U )é’" stands for the n-fold symmetric tensor power, and then take its projective
limit:

U =To(S4(U)) = proj im ', (E,(U)).

p—00

Since U becomes a countable Hilbert nuclear space, we obtain a Gelfand triple:
U =To(Sa(U)) C T(L*(U)) C Ta(Sa(U))* =U", (5)

where the middle space is the usual Boson Fock space, i.e., a weighted Fock space with
weight sequence a(n) = 1. We may consider (5) as a variant of “second quantization”
of an underlying Gelfand triple:

S4(U) c L*(U) c S4(U).

We call (5) a standard CKS-space after [4].
The topology of U is defined by the family of norms:

“¢”;2;,+ Zn' |fn p? ¢=(fn) €U, p=0.
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The canonical C-bilinear form on U* x U is denoted by (-, -). Then

o0

(@, 0) = nl(Fa, fu), ®=(F)eU, ¢=(f)el,
n=0
and it holds that
| (@, ¢)>'l < 1®ll-p,-ll#llp,+
where
= nl
|®l1%, = ; a(n) Ful,, = (F,) €U

We also note that

La(Sa(V))" 2 ind im Ty o (B_p (),

where I'4(Sa(U))* carries the strong dual topology and 2 stands for a topological linear
isomorphism.

Conditions (A1)—(A4) are sorted out by Asai-Kubo—Kuo [1] from many similar ones
that have been introduced to keep “nice” properties of a CKS-space. On the other hand,
it is also possible to start with a generating function G, or another function controlling
growth rate. This reversed approach is concise and useful for some questions [1], [5], [8],
however, we prefer to the explicit description for our later calculation. '

By the Wiener-It6—Segal isomorphism the Boson Fock space I'(L2(U)) is realized
as an L%-space over a Gaussian space. In that sense I',(S4(U)) is a space of functions
on the Gaussian space. By a parallel argument with [12, §3.2] one can show easily
that ', (S4(U)) satisfies conditions (H2)—(H4). Thus, for example, white noise delta
functions are defined as white noise distributions.

5 Proof of Main Theorem

First we recall some notation used in the statement of Theorem 1.1. For each £ €

Sa(U) we put
£ &% £en
¢€:(1,ﬂ,7,..., )

n!’

Then ¢¢ € U and is called an ezponential vector or a coherent vector. Let X, ..., X, be
complex topological vector spaces in general. Then a C-valued function F' defined on
X, x -+ x X, is called Gdteauz-entire if the function

2 F(&, .. &+ 28,...,&)

is entire holomorphic in z € C for any choice of & € Xi,...,&, € X, and £ € X4,
1<k <n.
Now we start with the following
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Lemma 5.1 Let F : Sx(U) — C be a Gdteauz-entire function. Assume that there ezist
an entire function G on C and p € R such that

IFEP <GUEL), €€ 8aU).
Then for any n > 0 the Gateauz derivative
1

becomes a continuous n-linear form on Sa(U) satisfying
2
n"\" [, . G(7) s 20
AP < () {ig S b na- i )

PROOF. 1°. It is a standard result that F}, is a (not necessarily continuous) n-linear
form on S4(U).
2°. The Taylor expansion of an entire function z — F'(2€) is given by

F(2£) =Y Fu(6,...,8)2",  £€8aU).

n=0
3°. By Cauchy’s integral formula we obtain
- G(T) 1/2
n
|Fn(s,...,£)|s|f|p{¢r;g—;r} -

4°. By the polarization formula we have

n 1/2
sup{|Fa(é1,- -, &n)l; |gl|pg1,...,|§n|p§1}5% {infG(T)} _

™0 77
5°. Let 1 < A\g < A; < ... be the eigenvalues of A and {ej}?io the corresponding
eigenvectors which form a complete orthonormal basis of L?(U). Then

o0

2 —2(+ —-2( +s
FuPiey = 3o [Flenseres) AT 35207

J1seesJn=0
[0 0}

= 3 IROTen - AT ) PAE A

T1yeeyJn=0

2
n" : G(T) -5 (||2n
(%) {in SR 1

This completes the proof. |

(A

Lemma 5.2 Let F : S4(U) — C be a Giteauz-entire function. Assume that there exist
constants C > 0 and p € R such that

IF)? < CGa(I€2), €€ 8al).

For each n > 0 denote by F, the n-th Géteauz derivative defined by (6). Then & =
(F,) € T4(Sa(U))* and we have

1@ 117 ey < CGalll A~ |Ifis)-
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PROOF. By the definition of norms and (7) we have

(o, ¢]
2 N n! 2
I® “—(p+s),— - Z o(n) | Fn |—(p+s)

n—O
CGy(7) _
< s
<> 5 (% ) {ing 0
= CGa(l A~* |I}s),
as desired. [ |

Recall that G, has a positive radius of convergence. Then G(]| A~* 125) < oo for
all sufficiently large s > 0 because lim;_,o || A™* ||us = 0 by (3). In a similar manner we
have

Lemma 5.3 Let F': S4(U) = C be a Gdteauz-entire function. Assume that there exist
constants C > 0 and p € R such that

IFO) < CGua(I€f), €€ 8aU).

For each n > 0 let F, be the n-th Gateauz derivative defined by (6). Then ® = (F,,) €
Lo(Sa(U))* and we have

112 s < CCrralll A~ Ilis)-

Remark Lemma 5.2 is the so-called characterization theorem for white noise distribu-
tions first shown by Potthoff-Streit [15] for a particular CKS-space called the Hida—
Kubo—Takenaka space. The essence of their proof, however, remains invariable though
a few variants have been discussed during the recent development of white noise theory.
Lemma 5.3 implies immediately characterization theorem for white noise test functions
[o(S4(U)). In this connection see also Theorem 6.1. '

PROOF OF THEOREM 1.1. Fix n € Sp(V) and we consider

Fy(§) =0 mn), {esal).

Then by Lemma 5.2 there exists ®, € U* such that

Fy(8) = (@n, #c)), 1, O(6m) = (g, P,
and

120 1% gy - < CGalll A Iis)Guss(lnl,)-
Next, for a fixed ¢ € U we consider

Hy(n) = (®y, &),  n€Ss(V)

Obviously,

Ha )P < 180 1 gy 16121 grars
< CGalll A= Ias)Gya (11 P ) 116 s -
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Moreover, Hy(n+ 27') is a compact uniform limit of a sequence of entire functions which
are linear combinations of

H¢5 (77 + 277,) = «‘I)n+zn” ¢€>> = e(fa n+ an),

where £ runs over S4(U), and hence Hy is Gateaux-entire. Applying Lemma 5.3 to H,
we find ¥y € V* such that

H¢(77) = ((‘I’¢, ¢17» ) ne SB(V)

and

12612 prs < CGalll A~ IEs)Crys(ll A Iis) | @131 gs - (8)

Define a linear map = : U — V by Z¢ = ¥4. Then (8) implies that

12612, , < COalll A Ias)Gisa(l A Ias) 11 $1%, g1

which proves that = is continuous. Since

(Ede, ¢n)) = Hye(n) = (P, ¢e)) = O, m),

this = € L(U, V) is what we searched for. [

In fact, as the above proof is a simple combination of [12, §3.6] and [2], nothing
new is required essentially. A few variants of the proof are easily obtained following the
arguments (1], [3], [4], [5], [9], [10].

6 Unification of Traditional Characterization Theorems

Since the exponential vectors {@¢; £ € Ec} are linearly independent and span a
dense subspace of U, they play a fundamental role in specifying white noise functions
and white noise operators. In practice, the most important are the S-transform of
® € U* defined by

S(I)(f) = «(I)) ¢€>>’ § € SA(U)a
and the symbol of = € L(U,U*) defined by
(e, = (o, dn),  Eme Sall).

The traditional characterization theorems are mentioned as follows.

Theorem 6.1 A C-valued function F defined on S4(U) is the S-transform of some
® € U* if and only if

(F1) F is Gateauz-entire;
(F2) there exist C > 0 and p > 0 such that

IF(E)]? < CG.(I€L2), €€ Ec.
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Moreover, ® € U if and only if (F1) and
(F3) for any p > 0 there exist C > 0 such that

IFE)? < CGyallEl2,), €€ Ec.

Theorem 6.2 A C-valued function © defined on S4(U) x S4(U) is the symbol of an
operator = € L(U,U*) if and only if

(O1) © is Gateauz-entire;
(02) there exist constant numbers C > 0 and p > 0 such that

0 n)* < CGL(ER)GLIn),  &neSa).

Moreover, 2 € L(U,U) if and only if (O1) and

(O3) for any p > 0 there exist constant numbers C > 0 and q¢ > 0 such that
06, < CGall€l7,)Grallnl?,),  &n € SaU).

We may regard the zero space {0} also as a standard countable Hilbert space though
there is no underlying topological space U or rather we may understand that S(@) = {0}.
Then ', (S(@)) is one-dimensional space consisting only scalar multiples of the vacuum
vector ¢g. As for Theorem 6.1, if we set Sp(V) = {0} in Theorem 1.1, the statement
is characterization of S4(U)*. If we set S4(U) = {0}, the statement is characterization
of Sg(V). The second part of Theorem 6.2 is immediate from Theorem 1.1 by setting
S4(U) = Sp(V). We need some discussion to derive the first part of Theorem 6.2.

Lemma 6.3 If S4(U) and Sg(V') are standard countable Hilbert nuclear spaces, so is
SA@B(U U V) and SA@B(U U V) = SA(U) @SB(V).

Lemma 6.4 If S4(U) is a standard countable Hilbert nuclear space, so is Sagr(U x T)
for any finite discrete space T equipped with counting measure. Moreover, Spg(UXT) =
S4(U) ® C*, where |T| = n.

The above results are straightforward. In general, for two Hilbert spaces H; and Ho
there is a canonical unitary isomorphism

specified by the correspondence of exponential vectors 7 (¢ ® ¢n) = deay. In fact, for

d)& .... gJ:(O’”"O,é.lé".@éj’o"")’ wm,-.-,nk:(Oa--~,O,ﬂ1®...®77k,07...),
T(¢€1 ,,,,, &; ® "pm,...,nk) is given as
T(er,t; ® Yryrome) = (0, -, 0, By, 0,..),

where

hivk=(E00)®...8(& 0080 M)®...8(0 & ).
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For arbitrary ¢ = (0,...,0, f;,0,...) € F(Hl) and ¥ = (0,...,0,0¢,0,...) € ['(Hy),
T (¢ ® ) is given by a b111near map hjy H‘Z’J x HS* — (H, @ H,)®U*» in such a way
that

T(¢®9) =(0,..,0,hjx(f;, 9), 0, ... ). (9)
For this h;; we have by Fourier expansion
Jk!
| Ry (f5 98) [y mayou o = G+ h) | fj ﬁq?i | 9x |§{£®k - (10)

Lemma 6.5 The canonical isomorphism T'(L*(U) & L*(V)) = ['(L?(U)) ® T(L*(V))
induces a topological isomorphism:

Fa(Sa(U) ® Sp(V)) = Ta(Sa(U)) @ Ta(Sa(V)).

PRrROOF. Let 7 be the canonical isomorphism from ['(L?(U)) ® I'(L%(V)) onto
['(L?(U) @ L*(V)) described above. For ¢ = (f;) € ['(L*(U)) and o = (gx) € T(L*(V)),
we set T (¢ ® ¥) = (h,) € T(L2(U) & L?(V)). Then by (9) we have

hn=Y_ hix(fi e).

j+k=n

Since the right hand side is an orthogonal sum, using (10) we come to

Bl = D Thsulfioe) =D GrR +k), | £ 121 ge I3

j+k=n J+k=n
Hence
IT(®v) 2, = Zn' )| hn I2 —-Zy'k' G+EI S0 lZ (1)
3,k=0

Then by Lemma 3.1 (2),
IT(6®v) I, < Zy'a (7)Cl | f31; Ykl a(k)Cos | 9k, - (12)
k=0
Choose g > 0 such that Caal| A7 ||2% < 1 and Caz|| B™! |35 < 1. Then (12) becomes

IT(@®9) 5. <Zf'a )| s p+qZk'a )19k g = 11810 0q 191101 gs

that is,

IT(@@Y) lpe < N D llpigr 1% lpsgs- (13)
In a similar manner, applying Lemma 3.1 (1) to (11), we obtain

N1 T(@®Y) s 2 NS llpera I llper s s (14)

where r > 0 is taken in such a way that Ca || A1 ||%p < 1 and Coai|| B! ||5p < 1. The
assertion then follows from (13) and (14).

Remark For Hilbert spaces H; and H, there is no isomorphism between I'o(H; © H3)
and ['q(H;) ® ['4(H,) for a general a.
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Lemma 6.6 Let S4(U) be a standard countable Hilbert nuclear space and let T be a
discrete space of n points with counting measure. Then the isomorphism

T(L*(U xT)) 2T(L*U))®--- @ T(LA(U)) (n times)
induces a topological isomorphism

Lo(Sapr(U X T)) 2 To(Sa(U)) ®--- @T(Sa(U)) (n times).
ProoF. Note first that
L*(T) = §;(T) = C".
It then follows from Proposition 2.4 that the canonical isomorphism
PUxT)2L*U)LX(T) X L*(U)®---® LXU) (n times) (15)
induces a topological isomorphism:
Sagi(UXT)ZSa(U)QS(T) ZS4(U)® - ® Sa(U) (n times).
On the other hand, from (15) we see that
NLAU xT)) 2T(L*U)) ® --- @ T(LA(U)) (n times)

and from Lemma 6.5

Fo(Sagi(U X T)) ZTe(Sa(U)) @ --- @L(Sa(U)) - (n times).

The assertion is then clear. ’ |

We go back to Theorem 1.1. By Lemma 6.6 the statement of Theorem 1.1 remains
valid if U is replaced with U x {1,2} and V with . Moreover,

L(Ca(Saer (U x {1,2),€) = £{a(S4(1)) @ Ta(S4(1)), C)
> (T4 (S4(U)) ® Ta(Sa(U))}
2 L(Ca(S4(V)), Ta(Sa(U))").

Thus, in this case, Theorem 1.1 is reduced to characterizaion of white noise operators
L(Ta(Sa(U)), Ta(Sa(U))").

In order to complete the reduction we need to discuss conditions (O1) and (O2), see
Theorem 6.2. Let T = {1,2,...,n}. By the isomorphism Ssg(U x T) = S4(U) @ C*
described in Lemma 6.4 we come to

Sagi(UXT) =2 8S4(U)® - ®Sa(U) (ntimes).

For (&1,...,&n) € SA(U) @ --- ® Sa(U) the corresponding element & € Sagr(U x T) is
given by

€(u, §) = &(u)

Then, there is a one-to-one correspondence between functions on Sagr(U x T') and on
Sa(U) x -+ x 8§4(U) (n times) given by

@(‘f) = F(§17~ .. 75”)'
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Lemma 6.7 Notations bez:ng as above, © is Gateauz-entire on Sy (U x T') if and only
if sois F on Sa(U) x -+ x S4(U) (n times).

PROOF. We need only to recall Hartogs’ theorem of holomorphy. |

Lemma 6.8 Notations being as above, if there exist C > 0 and p € R such that
O(€) < CGa(l€]), &€ Saai(UxT),

then there exists ¢ > 0 such that

n

FE,- &) <CIIGa(61,,), &b € Sa(U).

J=1

Conversely, if there exist C > 0 and p € R such that
IF(&,. . &) <CI[Ga(I&G ), &,....& € Sa(U),
. j=1

then there exists ¢ > 0 such that
0€)* < CGa(1€l5,,), €€ Saai(UxT).

p+q
Proor. This is a simple consequence of Proposition 3.2 (2) and (3). |

With the help of Lemmas 6.7 and 6.8 we see immediately that conditions (O1) and
(O2) in Theorem 1.1 in the case where U and V are replaced with U x {1,2} and 0,
respectively, coincide with the usual ones in Theorem 6.2.

7 Characterization Theorems for Multi-Variable Case
Let us start with a single CKS-space:
U =To(Sa(V)) C T(LA(U)) C Ta(Sa(U)) =U". (16)

We are interested in multi-variable functions defined on S4(U) x - - - x S4(U) (n-times),
in particular, of the forms:

F(gla“-’fm):«@a ¢El®"'®¢£m»v (17)
G(fla- .. agmvnl,- .. an’n) = «E(¢§1 Q- ®¢Em)1 ¢171 ® - ¢"7n>> ) (18)

where &,...,&m, My -+ » T € Sa(U), and ® € (UE™)*, E € L(U®™, (U®")*). Tt is clear
that the functions defined in (17) and (18) are Gateaux-entire.
The following results are immediate corollaries of Theorem 1.1 with the help of

Lemmas 6.7 and 6.8.

Theorem 7.1 A Gaéteauz-entire function F' : S4(U)™ — C is expressed in the form
(17) with ® € (U®™)* if and only if there exist constant numbers C > 0 and p > 0 such
that

F(&,. . &) <CI G161, &, . 6m € Sall).
Jj=1
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Theorem 7.2 A Gateauz-entire function F : S4(U)™ — C is expressed in the form
(17) with ® € UP™ if and only if for any p > 0 there ezists C > 0 such that

Fr o &) < CT[ Gurall& ), €nreerbm € SalU).
Jj=1

Theorem 7.3 A Gateauz-entire function G : S4(U)™™ — C 1is ezpressed in the form
(18) with = € LU®™, (UP™)*) if and only if there exist C > 0 and p > 0 such that

n

G(&n - oy -1 S CT] Gall& D) ] Gallme 12,

7j=1 k=1
for &, €My - -y € Sa(U).

In that case, since L(U®™, (U®")*) = (UB(™+™)* we may choose an operator E from
LU®™ , (U®™)*) whenever m' +n' = m + n.

Theorem 7.4 A Gateauz-entire function G : S4(U)™"™ — C 1is expressed in the form
(18) with = € L(U®™,U®™) if and only if for any p > 0 there exist C > 0 and ¢ > 0
such that

!G(‘fla e 7§m,n17 e 777n)l2 S CHGa(l §] |z+q) HGI/Q(l T’k '2—;;)7
J=1 k=1

fO'}" 617"' agmanla"'7’r’n S SA(U)
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