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1 Introduction

The two kinds of Chebyschev polynomials T;;(cos 8) = cosné and U, (cos §) =

s—(——l—"‘s::;l ? are linearly related to each other by the formulae
}

cosnd = l{sm(n +1)6 51n(7:1. —1)6
sin @ sin

Both polynomials satisfy the difference equations

1
TUn = E(un+l + un—l)

This is a simplest case of LR-transforms associated with difference operators
for orthogonal functions.

A system of orthogonal functions are intimately related with eigenfunc-
tions for a self-adjoint operator through density matrices. Once a family
of self-adjoint operators are given, we can discuss the interplay among LR-
transforms of self-adjoint operators, linear transforms of density matrices
and connection relations between two system of eigen-functions for the oper-
ators. This mechanism enables us to give a new orthogonal system from the
previous one, and so on.

Let A be an infinite real tri-diagonal matrix (a,, m)mom=—0o Which defines
a bounded self-adjoint operator on [?(Z). There exist the spectral kernels
dO(n, m|\) which are the Stieltjes measures on R such that



15

S = /_ * d6(n,m; A) | (1.1)
= f_ * AdO(n, m; \) - (1.2)

The eigenfunction expansion for A is an expression of dO(n,m; ), by
using generalized eigenfunctions 1(9(n;A) (e = £) of A satisfying

AP (n; ) = MO (n; A) | (1.3)

and Stieltjes measures called density matrices dpec (), as

dO(n,m;A) = > %9 (n; APl (m; A)dpe.e (A) (1.4)
e=%,e/'=
Let f()) be a positive continuous function such that f(A) defines a pos-
itive definite operator on {?(Z).
Assume that there exists a Gauss decomposmon of f (A) of the following

type

f(A)=B_-By (1)

where B, (or B_ = !B, the transpose of B,) denotes an upper triangular
(or lower triangular) matrix such that the inverses By’ are also well-defined.
Then the LR transform of A can be defined as follows.

A—»A’ B! A-B_.=B,-A-B}! - (1.6)

In this note we show that this transform is equivalent to a certain linear or
projective transform of the density matrlceb dpe(A) and evaluate it explicitly
in the following four cases

(1) Orthogonal polynomials in a smgle variable

(2) Inverse scattering case

(3) Periodic case

(4) Orthogonal polynomials in multi-variables

respectively.

This note has been written in collaboration with Dr.Masahiko Ito. Espe-
cially the computations for proving Proposition 8 are mostly due to him.
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2 Orthogonal polynomials in a single variable

We consider a Stieltjes measure dp()\) with infinite increments and whose
support is contained in the finite interval [a, b] (a < b) in R. There exist the
unique orthonormal polynomials in A '

pO()‘), pl(/\), pz()\),... ,
(we put p_;(A) = 0) such that they satisfy

Pn(A) = kp A" + (lower degree terms) k, >0 (2.1)
b ]
[ PaXpm(Ndp(A) = 8 (2.2)

The three term recurrence equations hold

3u() = brospocs (V) + 2D + bapuis (V) (20)  (23)

. Let A denote the corresponding tri-diagonal matrix (@nm)3m=_o Stch
that

an'n - an, an’n+1 = aln+1‘n = bn n Z O (2-4)

The matrix A defines a self-adjoint operator on [?(Z>g). A has the spectral
decomposition (1.1), (1.2) where d®(n,m; ) is represented simply by

dO(n, m; A) = pn(A)Pm(A)dp(A) | (2.5)

Let f(z) be a positive continuous function on [a,b]. Then f(A) and
f(A)~! define bounded self-adjoint operators. There exist the unique upper
triangular and lower triangular matrices By and B_ with positive diagonal
elements satisfying (1.5). All By and B! are bounded operators.

The LR transform of A associated with the function f()) is defined by
the correspondence (1.6). A’ is again a tri-diagonal self-adjoint operator on
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Y.Nakamura and Y.Kodama, and also V.Spiridonov and A.Zhedanov
have investigated LR-transforms associated with finite matrices and orthog-
onal polynomials (see [23],[24],[30]). Here we want to relate them to linear
(or projective) transforms of density matrices dp()).

In section 7-8 we extend LR-transforms to the case of orthogonal polyno-
mials in multi-variables. In the final section we shall obtain explicit formulae
for LR-transforms associated with Koornwinder polynomials.

Proposition 1 Let dp/(\) be the density corresponding to the operator A’
The LR transform (1.6) is equivalent to the linear correpondence

dp'(X) = f(A)dp(}) (2.6)

If dp(X\) and dp’(\) are normalized such that

[ ao = [[apy=1 2.7
then (2.6) shoud be modified as |
()
) = AN = T o) 2)
In fact, (2.6) implies the formulae
(FADnm = [ u(Wpm(Ndp'(3) (2.9

Let {p/,(\)} be the orthonormal polynomials with respect to the density
dp'(A). pn(A) can be expressed uniquely as a linear combination of pf, ()

n

Pr(A) = D bnabm(A) (2.10)

m=0

Let By be the upper triangular matrix (bpm )3 m=o- Then (1.5) holds from
(2.9). On the other hand
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(Anm = [ WL NPm(Ndo () (2.11)
From (2.9)-(2.11), we deduce (1.6).

In particular, if A is itself positive definite and f(A) = A, (1.6) reduces to
the original Rutishauser’s LR algorithm.

Examples 1. Jacobi polynomials.
Let dp(A) = (1 — A)*(1 + A)PdA on [~1,1], for a, 3 > —1. The Jacobi
polynomials P{*#)()) are defined by the equations

1 =22+ 2PPER) = C (D ynia e apiny (212)

2nn!
Then
pyga,ﬁ)( A) = lff"m A" ..
[(@B) _ g=n I'Cn+a+p8+1)
n Fn+1)I(n+a+p4+1)
and

1
/ 1(1 — A1+ A)PPEAN)PEAUNIN =0, n#m
1
[0 =220+ XPLPEO ) = e
ped) _ 2P Tn+ta+1)I(n+F+1)
" 2n4a+f+1T(n+1)(n+a+B+1)

The reccurence equations for P*#(z) are as follows.

2(n+1)(n+1+a+B)2n+a+ BPSA(N)
= 2n+a+8+1){2n+a+B8+2)2n+a+ B\ +a® - ()PP ()
—2n+a+1)(n+B+1)2n+a+B8+2) PP (2.13)
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pr(A) = {AEP} 2 PLF)())
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then pn () is the orthonormal polynomials with respect to dp()). We denote

by A the tri-diagonal operator on [?(Z)>o derived from (2.13).
The shift @ — a + 1 induces the transform of the densities

dp(A) — dp'(A) = (1 — A)dp(})

Since 1 — A is positive definite, the Gauss decomposition

1 - A = B_ . B+
is uniquely determined. Likewise we have

]-+ A = B_ '.B+

These are Christoffel-Darboux tranforms of contiguity relation.

In fact, if we put

1

a, n n(a - ,B)
Yn(a, B) = l%a,g) Pr(; ﬁ)(/\) = A"+

2nta+p

then

Iljn(a’ﬁ) = 1pn(O‘ + 1’:8) + 'Unw'n—l(a + laﬁ)
2n(n + B)

T @n+oa+pB)(2n+a+B+1)

Un =

AL

(2.14)

(2.15)

(2.16)

(2.17)

More exactly saying, B! are not bounded on l2(Z): although By are

bounded. We must modify the operators By as follows.

We denote by H the Hilbert space 1?(Z5o) consisting of sequences u =
(1n)g, v = (V)% etc with the inner product (u,v) = Y72 unTrn. We define
another Hilbert space Ho, the closed linear subspace spanned by Biu' (u' €
12(Zg). Hy is isomorphic to the Hilbert space consisting of the sequences
% = (n)n>o Such that ((1—A)~'u,u) < co. B}! is a bounded operator from
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Ho to H, so that BLABL ! is bounded as a linear mapplng from H, to H
which is extendable to a bounded operator on H.

Example 2. Askey-Wilson polynomials (see [5]).

Let g be the real modulus such that 0 < ¢ < 1, and ¢, ¢p, 3, ¢4 be real
numbers. Askey-Wilson polynomials are defined by using the basic hyperge-
ometric series of order m

-

ay, -, Qm e (a1;9)y - - - (am; Q). ,
- TA) = A 2.18
mom=( by -y bmo1 ) ,,S;; (b1;9) -+ (bin-139)u(2;9)» (2.18)

Pn(A; €1, €2, €3, C4)

- -1 i0 —i6

q ", q" " "c1cac3cq, C1€¥, Cre . 0)
C1C2, C3C4, C1Cq ’

= [,A"+-.. (In = 2™(c1C203€40™;@)n) (2.19)

= cl_n(clc2; Q)n : (clc3;Q)n : (0104; q)n . 4803(

where A = cosf. The weight function w(\) (dp(A) = ml-},d)\) is given by

MR2o(1 = 2(22% — 1)g* + ¢*)

W) = 50 e hOh RO e RO o) (2:20)
where
AMa) = [1(1 - 200" +¢%0%) = (ae®; q)ucloe ™ 0)e  (2.21)
k=0

Then the orthogonality relations are

1 1
27rf Pa(X; €1, €2, €3, C0)Pm(N; cl,Cz,03,C4)\;f(_:\—)/\2dz\ Onmhn  (2.22)
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p o~ {c1cacseaq™; qlos(Cr02€5a9™ Y D)oo(@™H 9)0 (C1020™; 0)x) (2.23)
(€163™; @)oo (€1€49™; @)oo (C2€30™; @)oo (€2€49™; @)oo (€3€4™; @)oo

The three term recurrence relations for p,(A;ci,co, c3,c¢4) are expressed
as ’

22pn(A) = bp_1Pn-1(A) + anpn(X) + b, Ppi1(N) (2.24)

b1 = (1—¢")(1 — c1e2¢™ 1) (1 — c1e3¢™ )(1 — c1e4g™ 1)
y (1 —cocaq™ 1)(1 — eacag™ ' )(1 — c3cag™?)
(= (1 — e ’
B - 1 — g1
" (=g (1 —cg?)’
" (1 + cg® 1) (sq + s'c) — ¢* (1 + q)(s + s'q)c]
0~ e 2)(T — e

(s=c1+c+estey, 8 =ci' +ce5t +c3t + 7t C = C1C2C3C4).
dp()\) depends on ¢y, cg, c3, c4. In fact each shift

anp =

Ti:ci—agq Toico—caq; Ta:c3—c3q; Ty:cqg — caq | (2.25)
multiplies w(A) by
14+¢f —2ch ,1+c2—2c) ,1+¢2 =203\ ,14c2 — 2c\ (2.26)

times respectively.
The corresponding LR transforms of A are defined as the Gauss decom-
positions of each positive operator
1+A2-2c14 > 0, 1+A2-2c,A > 0, 1+A%— 2c3A >0, 1442-2¢c,A> 0
Put

Yn(A;c1,02,C3,04) = i—p‘n()\;cl, C2, C3,Cq) (2.27)

n
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then, as for T} for example, the transform B is equivalent to the following
contiguity relation

".bn(ﬂ?, ¢, C2, C3, C4) = '¢n($, 14, C2, Cs, C4) +"Un¢n-l(m; 14, C2, C3, C4)
2(1 - q)a
(1 — ag?*=2)(1 — ag?1)(1 — cac3q™1)(1 — cacaq™ 1)(1 — c3cag™!

likewise for T3, T3, Ty.

vn='—

3 Inverse scattering, Application of H.Flaschka
theory |

A be a tri-diagonal matrix which defines a bounded self-adjoint operator on
H =13(Z).

We put a,, = a, and Gp 1 = Gpy1,n = bp for —0o < n < 0o and assume
the following condition

o0 [o o]

© 3 lanllnl <00, 3 Jtw = 5llnl < oo (3.1

n=-—00 n=-—oo

The inverse scattering theory for the difference operator A was developed
by H.Flaschka (see [10],[32]). We put the spectral parameter z = 3(¢ + (™).

If |¢| < 1, then the Jost solutions 1* (n; z)(minimal solutions in the sense
of S.Elaydi [9]) are uniquely determined as the eigenfunctions (1.3) with the
asymptotic behaviours

YE(n;z) < (' n— *oo (3.2)

The connection relations between ¥*(n; 2) are

¥ (m32) = (2P (m; 2) + AW (n; 2) (33)

where 9*(n; z) are defined to be the conjugates of ¥*(n;z) when ¢ ([¢] =
1) is replaced by (1. a(z), B(z) can be holomorphically extended to the
domain |(] < 1.
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The Wronskian and the reflection coefficients are expressed as

_B)
R(z) = a(2) (3.4)
Wi 9-) = 57 = Qal2) (55)

respectively.
For X € [-1,1], ¥¥(n; A +40), a(X+10), B(A+1:0) do exist. Moreover,
a(z) has a finite number of simple poles A¢, k=1,2,3,..., s such that [Az| >

1.
Under this circumstance, it holds the following two expansion formulae
which are equivalent to each other.

Proposition 2 (1)

A)dA
d6(n,m;A) = 27r\/1i—il)\_;]|£x())\ + 20)|? 197 s A - d0)gHmi A + )
+ P~ (n; A +140)1p=(m; A + i0)}
+ 3t (15 M)Wt (m; M) c28(A — A)dA (3.6)
k=1 .

where c} = —,—(—A—% and x[-1,1)(A) denotes the indicator function of [-1, 1].
o (A o
(2) |

dO(n,m;A) = );[Wi/l% {wt(n; A+ 20)¢+(m A +i0)

Pt (n; A —i0)yt(m; A —40)
R(A + i0)w* (n; A + i0)§ (m; A — 70)
R(X\ —i0)y*(n; A — i0)yp+(m; A +40)}

St APt m A - A)dA  (3.7)
k=1

+ + + +
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For the proof see [3],[6].
We can rewrite (3.6),(3.7) by using the Fourier expnasions of ¢*(n; z)

Ypt(n;2z)= > K(n,m)(™ K(n,n)>0 (3.8)
F(m) = F,(m) + Fp(m), (3.9)
Fim)=5n [ R (3.10)
Fp(m) = Z ceCi’ (3.11)

We denote by ', K the operators defined by the kernel functions { F(n+
m)}ee and {K (nym) } o= — oo F is of Fredholm type and of Hankel

n,m=-00
type. K has a bounded inverse.

Then (3.7) imply the following Gelfand-Levitan-Marchenko decomposi-
tion (abreviated by GLM decomposition)

Proposition 3 (1.1), (1.2) can be expressed in operator form as
1=K(1+F)K (3.12)
A=KA(1+ F)!K = KA K™! (3.13)

where 'K denotes the transpose of K. We denote by Ao the symmetric tri-
diagonal matriz such that b, 2, ap, =0.

1+ Fis positive definite so that K is uniquely determined by (3.12).
Ap has the unique decomposition
Ao=Ap++4A0- (3.14)

where A4 and Ag _ are upper triangular and lower triangular matrices re-
spectively. 2Ap 4 are unitary operators which shift the indices by +1 respec-
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Now let us discuss how the LR transform of A can be expressed in terms
of F.

Since A, Ap are bounded, there exists a positive number c such that all 4
operators A(c) = A+c¢, Ao(c) = Ap+cand A(c)~!, Ag(c)™! > 0 are positive
definite. , ,

We want to find the upper triangular bi-diagonal matrix Ay (c), with
(n,n)th entries &, and (n,n + 1)th entries 7, such that § > 0, and its
transpose A_(c) = *A,(c), such that the following Gauss decompositon holds.

A(e) = A_(c) - A (c) (3.15)

ie.,

6721 + 713_1' =an+¢ &nlln =bn (3.16)

The equations (3.16) have the unique solution such that £} equals the
convergent continued fraction

P*(1;—c)

O [a4c [mie (05— '
because, if z ¢ 0(A), we have
. b2 .b2
by LLLi2) 0| T (3.18)

(0z) [z-a [z2—as
We shall call the Gauss decomposition (3.15) thus obtained canonical.
The LR-transform is then defined as

Ao A=A (c) A(c)=Ap(c) - A-A_(c)} " (3.19)

A’ is also tri-diagonal.
We can now state
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Theorem 1 Let the GLM decompositon of A’ be

1=K (1+F)-tK' (3.20)
A=K A-(1+F) 'K (3.21)

then A’ is the LR-transform of A if and only if

F'=F-Aop-(c) Aos+(c) = Aot () - F- Aoy ()™ (3.22)

(Remark that F'- Ag +(c) = Ao =(c)- F.)

If we put
ve+1l—-+/c—-1 ve+l+4c—-1
9(¢) = 5 C+—
i.e.,
z2+c=9(¢)g(¢™)
then (3.22) can be restated as
R'(2) = R(2)9(¢)'9(¢™) (3.23)

which is nothing else than dressing transformation in the sense of Zakhalov-
Shabat. (This fact has been pointed out to the author by S.Kakei.)

Proof 1 First we show that (8.22) implies (3.19). From (8.20),(3.22) and
because of the uniqueness of Gauss decomposition, we have

K'=Ay(c) K- g(240,4) (3.24)
Hence, from (3.21)

A=K Ay-(1+F) K = A, (c)Kg(240,+)Acg(2A0 ) ' KA, (c)™!
= A, ()KAK'AL(c) ' = Ay (c) - A- Ay(c)!
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(3.19) has thus been obtained.

Next we show the converse. We remark first that any bounded upper
triangular operator which commutes Ag + is a holomorphic function of 2Ag 4.
As is seen from (8.12)and (8.19), there ezists a holomorphic function §(()
of ¢ (|¢| < 1) such that

K'=A.(0) K-§(2404) (3.25)

Hence from (8.13),(3.20) and (3.21)

§(240,4)5(2A0-) + §(240,4)*F" = Ao(c) 7} (1 + F) (3.26)
By uniquness of this matriz expression, we have

3(240,4)3(2A40,-) = Ao(c)™} (3.27)

§(2A0,+)2F’ = Ao(C)_IF (3.28)
which imply
9(240,4) = Ao+(c)”" (3.29)
and
Ao+ (c)2F" = Ag(c) ' F (3.30)

which are nothing else than (3.22).

4 Periodic Toda lattice

Let A be a periodic tri-diagonal matrix with period N,

AntN = O, bppN = b ; (4-1)

We assume that it is positive definite on [2(Z). Let h be the Floquet

multiplier and A, = (&n,m)f;{ ~1 ., be the N x N matrix defined by
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Gnm = hby_1 (n,m)=(N-1,0),
= h—le_l (n, m) = (0, N - 1),
= Qnm, Otherwise

The determinant of z — A, can be written as

det[z — Ap] = —boby - -by-_1(h+ A1 = A) (4.2)

where A denotes the polynomial of degree N such that

b0b1°°°bN_1A=ZN— (ao+a1 + "‘+aN_1)ZN-1 + -

The function h annhilating (4.2) is obtained by the equation

A—-+A%2—-4
2

which defines the hyperelliptic curve X of genus N — 1.
Let Aj, ..., Aan be the roots of the equation A2 — 4 = 0, such that

h= (4.3)

0< A <A<+ < dane1 < Ao

|h] = 11i.e., |A| < 4 holds if and only if

AE [/\1, )\2] U [A3, )\4] U.-.--u [)\21\[_1, /\QN] (4.4)
In other words, the spectra o(A) are continuous and given by the bands (4.4).

When A ¢ 0(A), we have |h| < 1.
Let 9% (n; z) be the Bloch solutions to (1.3) satisfying

YE(n + N;2) = h¥lyt(n; 2) (4.5)
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which are obtained by solving the finite equations

(z—Ap)yp =0 (4.6)

Let K*(n; z) be the normalized Bloch solutions such that K*(0;z) = 1.

We denote by D(i, ) the subdeterminant corresponding to the (n,m)th
entries (1 <n,m <j) of z — A.

Then K*(n;z) can be expressed in terms of D(¢, ), in particular

(—1)th1 ceobyoy + boD(Q, N — 1)

K*(1;2) = — DAN=1) (4.7)
K'(l;z) _ _(—I)Nh-lbl D(I]T‘:Vgrljlb;D(Q’N — 1) (48)

Proposition 4 We have

K~ (mA+1i0) = K*(n; A —i0) = K*(n; A +140) for A€ o(A4) (4.9)

Put

1 |D(1, N — 1)
dp+(N) =dp_(A\) = — ' ,
p+( ) p ( ) 27r|b0b1"'b1\’—1| /._l__A?

Then the spectral kernels of A can be expressed as

reo(4)  (4.10)

dO(n,m; ) = 2R{K T (n; A\ + 10)K*(m; A +10) }dp, (N) (4.11)

We may put D(1,N - 1) = ;;_V;f(z — 1) where py, ga, ..., un—1 denote
the auxiliary spectra such that

Ay < Jia < A3 < A< < N1 <Aoo < )\QN (—112)

We want to find the Gauss decompositon of A as in (3.15) (we put ¢ = 0).

A=A_-A,, A ='4, (4.13)
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such that &y n = &n, Mnyn = 7 hold.
We can find uniquely &,, 7, such that (3.16), (3.17) hold with ¢ = 0, i.e.,

& = —boK*(1;0) (4.14)

Remark that (3.17) is a periodic continued fraction in this case.
The LR-transform is now defined by

A=A_'A+—‘)A’=A+'A_=A+°A'A;1 _ (415)
The following Propsition 5 is most fundamental.

Proposition 5 Let {u}, py, ..., ty_1} be the auziliary spectra for A’. Then
A' is the LR-transform of A if and only if

H 1 (2 — )

1(Z— H)

The matrices A’ i.e., &n,Nny K7, - Wy—y can be uniquely obtained by solving

(4.16).

Proof 2 The Bloch solutions for A’ are given by

= (§o+ MK ™" (1;2))(& + m0K~(1;2)) (4.16)

EnKt(n;2) + Kt (n 4 1;2)
K' (n;2) = -
+(7:2) o +mK(1;2)

We want to show first that (4.16) implies (4.15).
At z = 00, K*(n; z) are meromorphic and satisfy

(4.17)

K*(n;2) =0(z™), K'*(n;2z) = O(z™)

There exists the unique upper triangular real matriz = = (€nm)oom=—co
such that

K'*(n;2) = Z EnmKT(m;2) (4.18)

m=n
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From (4.16),(1.1) and (1.2) we have the relations of operators

;cv=—11(A - “;c) L=

l==. == = (4.19)
;cv=11(A — k)
N-1 —
A=E-A. ’;,=_11(A M) vz _g. 4. (4.20)
k=1 (A — k)
Moreover,there ezists an upper triangular matricY = (nn,m);',"’m=_;° such that
’ o)
(o + oK+ (L;2))K*(n;2) = 3 NamKF(m; 2) (4.21)
m=n

which is equivalent to the relations

Tnym = 2 /_o:o R{ (€0 + MK (1; X+ 40)) K (n; A + 90) K +(m; A + i0) }dp..(A)
(4.22)

in view of (1.1) and (4.11). Therefore by substitution of A into K*(1,;z2), we
have

Eo+nK(1;4) =Y o (4.23)

In the same way,

b0+ MK~ (L;A) =Y (4.24)

From (4.16), these two equalities imply

N-1 !
Al A=) _y oy vy y (4.25)
k=1 (A — 1)

Since Y and 'Y commute each other,
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A (A — )
et (A = )

which is nothing else than the Gauss decomposition of A, i.e.,

A=tY' -Y:ty-tE.E.

A_='Y'Z, A, =Z.Y (4.26)

From (4.20)

A=A, Y1 AY A]'=A, -A- A7

which leads to (4.15).
Nezt we show that (4.15) implies (4.16).
Put '

Y =A,(K") (4.27)

and normalize it such that K'7(0;2) = 1 as follows.

K't(n;z2) = %%)l (4.28)

which gives (4.17) for A’. Then there exists the unique upper triangular ma-
triz = satisfying (4.18). Hence,

{Af(K+)}(n; 2) = {(§ + mK T (1;2))2(K7)}(n; 2) = {E Y (KF)}(n;2)

In other words,

P
+

I
(1
=
N
o
N

As a consequence,
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{Al}n.m = {A+ ) A—}n,m ={E-Y. Y- tE}n,m
=2 [ R{(6o+ oK *(1, A +10)) € + MoK *(1, A — 10))
K" (n, A+ 40)K'* (m, A — i0) }dp, (N) (4.30)

On the other hand, by definition

(A} om =2 /oo TARIAK (m; A + i0) K" (m; A — i0)}dp, (A)

Therefore by uniqueness of expression

Adpl(A) = (o +moK (1, A +140)) (&0 + K (1, A — i0))dp, (A)

Seeing that

’ HkN=—ll()"_Hlk)
dp, (\) = dps (A
P+( ) H;cvz-ll()\_“k) p+( )
we have (4.16).

The hyperelliptic curve X defined by (4.3) has two sheets, physical and
unphysical, which correspond to |k| < 1 (> 1) respectively, for A ¢ g(A).

Since K*(n;z) are meromorphic functions on X , We can represent the
functions K*(n; z) by using divisors in X. Since z = 0, oo are not branch
points of X, there are two points in X in each case, lying over z = 0, and
z = 00 (0),(c0) in the physical sheet, (0*),(co*) in the unphysical sheet
respectively. X has the canonical involution

¢ th—ht » | (4.31)

Obviously ¢((0)) = (0*) and ¢({o0)) = (00*). We denote by D* the conjugate
(D) of a divisor D. Then -

Lemma 1 Fizn > 0. K*(n;z) has simple poles at the physical points in
X, lying over z = py, po, ..., un—_1 which do not depend on n. We denote the
corresponding positive divisor of degree N — 1 by Dy. It has also a pole of
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order n at (co*). Similarly it has simple zeros at the unphysical points lying
over z = iy, Mo, ..., un—1 (its divisor of degree N — 1 is denoted by D,) and
a zero of order n at (o).

In other words, in terms of divisors,

(K*(n;2)) = n{o0) —n{oo*) — Do+ D, (4.32)
(K~ (n; z)) = n{(o0*) — n{oo) — Dy + Dy, (4.33)
Furthermore
N-1
(kl:[ (z = ) = —(N = 1){{00) + (00")} + Do + Dj (4.34)
(h) = N((o0) — (00™)) (4.35)

As for the zeros and poles of & + oK *+(1; z), we have

Theorem 2 There exist a positive divisor of degree N — 1, Dy and its con-
jugate Dy*, such that

(&0 +moK*(1;2)) = (0) — (00") — Do + Dy (4.36)
(&0 + 0K~ (1;2)) = (0*) = (00) — Dg + Dy’ (4.37)

Hence, there exists a positive divisor of degree N — 1, D} such that
(K" (1;2)) = (00) — (00") — D + D} (4.38)

The set of divisor classes of degree N — 1 in X makes the Jacobi variety
of X denoted by Jac(X). As is seen from (4.36), we have the equality as a
point of Jac(X)

D)) — Dy = —{0) + {00") (4.39)

The new tri-diagonal operator A’ has the same spectra as A and therefore
we can take the LR-transform of A’ again. By repeating this procedure, we
get a sequence of tri-diagonal operators
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A-A A —... -~ (4.40)

and a sequence of corresponding divisor classes

Dy — Dy — Dy — - (4.41)

such that
Dy~ Dy=Dy—Dy=---=—(0) + (00*) (4.42)

As a conclusion,

Theorem 3 The sequence of LR-tranforms (4.40) is realized in Jac(X), by
the discrete paralell displacement of p,, by the constant divisor class —{0) +
(00*), starting from po = Dy such that

Pm = Po+m{—(0) + (00")}, m=0,1,2,3,.. (4.43)

Corollary 1 The sequence of LR-transforms is periodic with period M > 0
if and only if

M{—(0) + (c0")} =0 (4.44)

Remark 1 When A is finite or semi-infinite, the sequence (4.40) never be-
come periodic. In fact, in a finite case, A tends to a diagonal matriz, so that
the eigenvalues of A are approzimated by these procedure({25],(26],[27]). I do
not know how they behave, when A is semi-finite.

Remark 2 f(z) is a polynomial of degree r, it is possible to extend (4.16)
to a more general transform (1.6). In this situation (4.16) must be replaced
by the equation

N-1 / T

f(2) 11%:_11(2 M) _ o+ D moxK*(k;2)) (€ + i ok K~ (k; 2))
| P (2 - Nk) k=1 k=1
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Since f(A) is no more tri-diagonal, we cannot find tri-diagonal matrices By
satisfying (1.5). |

Suppose that f(A) is positive definite and multiple- diagonal of width 2m+
1. Then f(A) is a tri-diagonal matriz in block form, consisting of matrices
An,m (An,n = tAn,n > 0) An,n+laAn+1,n = tA'n,'n+1 Of size m + 1. One can
find an upper block bi-triangular matriz B, consisting of triangular matrices
B and B, 41 of size m + 1 such that

t t t
An,n = Bn,n : Bn,n + Bn—l,n : Bn—l,m An.n+1 = Bn,n . Bn,n+1
If we put Z, = 'Bpy - Bpn, then we have the reccurence relations
-1 t
Zn = An,n+1 : (An+l,n+1 - Zn.+1) * An,n+1

which give the matriz version of the convergent continued fraction (3.17) such
that

-1 t
Zn S An,n+l * An+1,n+1 : An+1,n

Bnn can be solved uniquely from Z such that all the diagonal elements are
positive. '

In the next section, in case of N = 2, we shall give explicit computation
in terms of the sigma functions on the elliptic curve X.

5 Case of period N =2

It is sufficient to give {ao, a;, by, b1} to define the operator A.
We put W(z) = b2b?(A? — 4), then

W(Z) = (Z — )\1)(2 - /\2)(z - )\3)(2 - /\4), O0< A <A< A3< )\ (51)

Moreover
1 |/\—a1|
dpy = ——=—=, M2 <a; <A 5.2
amfwoy T 2
-1
KH(lyz) = EORpeo(qpy = ot T (5:3)

zZ—Qa Z—m



(4.16) reduces to

z——a

z
Z—

Put

z  dz .
U—A4,/W(z ’v_/«v ,/W /M,/W(z
’U—C=~/)’\4 ~W’ ’U>§RC>0,S‘C<O
A4

Az dz ) dz
Sl Sy =R /W)

E iR>0

then, 2wy, 2w, are double periods, and (0), (0*), (00), (0o*) correspond to

respectively. Furthermore,

qv=2w; =0

le.,

Dy — Dy ~0
o(u) has the zero u = 0, and quasi-periodic
a(u"-+- vp) = —eXmutwr) g (q)
o(u+ 2wp) = —e2mutwa) 5 (y)

(where 7y, 72 denote constants). We have

= (o + oK1 (1;2)) (&0 + oK™ (1;2)) (5.

37
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o(u+ w)o(u — w)o(2v)
o(u—v)o(u+v)o(v+w)o(v—w

= )
L )
h=0C )

)

or(u vjo(utv+ec
“ourvou-v+o
+(1. ) — o(u—v)o(ut+v+d)
K™(1;2) Csa(u+v)0(“—v+c’)

K*(1;2) =

If we put
© dz

c’—c=v+w=/‘ \/_MT::)

then the LR-transform represents the paralell displacement on the 1 dimen-
sional complex trorus C/(Z2w, + Z2ws)

c—oc+v+w—oc+2v+w) —

In order that it is periodic, there exists a positive integer M such that
Muv+w)=0 (2w, 2w,)

6 Multi-Index Hankel Matrices and Orthog-
onal Polynomials in Multi-Variables

In the next three sections we shall make a multi-dimensional extension of
L R—transforms developed in the previous sections . Multi-dimensional
LR—transforms are related with eigenfunction expansions for commuting
self-adjoint operators.

We restrict ourselves to orthogonal polynomials case. The problem of
finding LR-transforms reduces to obtaining the connection formula between
two systems of orthogonal polynomials. Our main result in this section is
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Theorem 4. In the course of proof, we shall give a formula for the connection
matrix which is a lower triangular matrix, in terms of determinants of the
associated muti-dimensional Hankel matrix.

Let dp = dp(z), x = (z1,---,Z,) be a Radon measure on the n dimen-
sional Euclidean space R™ whose support is a bounded closed set D. We
assume that all multi-index moments

Covgoin = [, 82 dp(a) (6.1)

are finite.
Let 'H, be the Hilbert space completed by the inner product (f, g),

(£.9) = [ f(z)g(x)dp(x) 6

for real continuous functions f(z), g(z) on R™.

For two sequences of indices I = (%1, --,i,) and J = (j1,* -+, Jn), We
define the sum I 4+ J by the sequence of indices (i1 + j1,-*,%n + Jn)-

We define the lexicographic ordering © for the set of multi-indices as
follows. : ’

(21, ,1n) is greater than (4, -, j,) if and only if there exists a number
r (1 <r <n)suchthat i, =71, - ,%-1 = Jr_1,%r > Jr. In this case, we also
say the monomial zi! - - - zi» is greater than the monomial zJ' - - - i,

Thus we have the sequence of monomials in increasing order

1<z < < T <TE< Ty <--- <zl <rd<..

Let N be the unique bijective mapping from the set of positive integers
onto the set of multi-indices such that N(I;) < N(ly) for two positive integers
[y < .

We have N(1) = (0,---,0),N(2) =(1,---,0),N(3) = (0,1,0,---,0),
~++,N(n+1)=(0,---,0,1), and N(n+2) = (2,0,---,0) etc.

We assume that dp(x) is non-degenerate in the sense that

| f@)dp(z) > 0

for any polynomial f(x) which is not identically zero on D.
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Let C be the generalized Hankel matrix with the N(l), N(m)th entries
CN@y+N(m) for I,m =1,2,3,.... It is a positive definite matrix , so that all
the determinants

DN(,.) = det((CN(l)+N(m))zr.m=1) >0

for (0 < r < c0). Here we put Dy(q) = 1.
Gram-Schmit orthonormalization with respect to the lexicographic order-
ing gives the orthonormalized polynomials {p;,,..i, }i,,i.>0 Such that

Diy,oin = Eiyin Ty - Ti0 + (lower order terms) (6.3)

where §;, ... i, denote normalizing positive constants. Hence we have the or-
thonormality

(Pisyoosins Pirroin)o = Girgr =+ * O jm (6.4)

Let N(l) denote the multi-index (y,---,%,). We denote the monomial
gV =z} ...zl Then the polynomials 5, ...;, () defined by the determi-
nant

CN(1) CN(2) T CN(l)
1 CN(2) CN()+N(2) °° CN(@Q)+N()
ﬁ,‘l’...Jn(JJ) = Dovr v | F7rrrrr e (65)
N(-1) CN(I-1) CN(-1)4+N(2) "°° CN(-1)+N(l)
V1) N2 e N

are monic orthogonal polynomials such that the following equations hold.

(ﬁih'“,in (x)iﬁjl,'“,jn (1')) =0 for (il’ tre ’in) 5& (jl) te ,j'n) (66)
- _ D : : .
Bisoin (@), Bir (@) = o= for N() = (i,-,8)  (6.7)
N(l-1)

so that we have the orthonormalized polynomials

’D -1) ~
pre(z) = ng:(z)l)p v (z) (6.8)
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(The above computation can be done in the same way as in [31].)
We have

pny(z) = Do itz ... xi + (lower order terms)
Dy
Let Ay, As,- -, A, be the bounded linear operators on H, defined by
Ajp(z) = jp(z)  w(z) €H, (6.9)

They can be expressible in matrix form a%%”’ N(m) in terms of the basis

N 1=1,23,-..

ove(T) = Y afnePNm(T) (1<i<n)  (6.10)

m>1 (finite sum)

We have
Ay ) = (TN (2), P (2), (6.11)
A; are self-adjoint bounded operators and commute each other.
Let L?(Z%,) denote the Hilbert space consisiting of real sequences u =
(Wiy o in )ig, - in>0 With the inner product

(W, v) = D Uiy inVig,emsin u, v € L*( 20)

'i'l y"'xinzo

The correspondence from the set of real sequences (i, i - i )iy, in>0 tO
continuous functions ()

(Uiriz,minJivorin20 = P(E) = D Uiy iy inDig, i (T) (6.12)
il‘...,inzo
give rise to the isomorphism between the space L*(Z%,) and H,,.
Consider the shifts 7, for the sequences i; >, --,%, > 0 as

iy |

TE (i, i) = (G101 e dy) (6.13)

For N(I) = (i1,--+,i,), we denote by 7El the number !* such that
N(I*) = t2N(l) by abuse of notation (Remark that !~ does not exist when
i, =0.) |

From the relations (6.5),(6.8) and (6.10) the following Proposition holds.
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Proposition 6 Assume 1 < m < I. We can represent explicitly the matriz
elements agf,)(,),N(m) as

4 l4mtr 1
aryNm = 2 (=1) —
(BN Gm) me<r<l \/ DnuwyDn-1)DNm)DNn-1)
CN(1) CN(2) te CN(m)
CN(2) CN(1)+N(2) tet CN(2)+N(m)
CN(m-1) CN(m-1)+N(2) °°° CN(m-1)+N(m)
CN(r) CN(r)+N(2) Tt CN(r)+N(m)
CN(1) CN(2) T CN(l1-1)
CN(2) CN(1)4+N@2) "  CN@+N(-1)
......................................... 6.14
)CTJ.- N(r) Cri N(r)+N(2) Cr. N(r)+N(l-1) ( (6.14)
CN() CN()+N(2) ' CN()+N(1-1)

(The symbol ) - - - ( denotes the deletion of a line )
Let f(x) be a continuous function on R" which is non-negative on D.
Consider the new density dp’(z) on R" with the same support as D.

dp'(z) = f(z)dp(z) (6.15)

Then we can define the multiplication operators
 &i@) o) Q<i<n) (6.16)
on the new Hilbert space H, = L*(R"; dp) with the inner product (---,---),.

Let (c}, ..., )i1,in>0 be the moments of the density dp’ and C’ be the corre-
sponding generalized Hankel matrix with the N(l), N(m)th entries cy (., n(m)-

Then f(A,,---,A,) is a self-adjoint operator on H, , which is positive
definite, because

(F(Ar,-- Andola), o)y = [ (@) f(@)dolz) > 0

for a continuous function ¢(z) which does not. vanish identically in D.
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Let (p;, ..;. ()i, in>0 be the Gram-Schmidt orthonormalization accord-
ing to the lexicographic ordering O.

(Bi, ....i, (T))iz, - in>0 are defined similarly to (1.5), replacing ¢, .., by
/
il,...,in°

The operator f(A;,---,A,) can be represented by the matrix with the
N(l), N(m)th elements (f(A;,.- -, An)PN@) (Z), PN (Z)),-

We are interested in the connection relations between the two set of or-
thogonal polynomials (p;,...i, )is,in 80d (D}, .5 iz nsin-

Di, i, can be represented as a linear combination of p}l,,__,jn

pnvw(E) = D RNny/NmPim () (6.17)

1<m<l ‘

We put further By nm) to be 0 for I < m, so that R = (Rn()/N(m))im>0
defines an invertible lower triangular matrix with respect to the lexicogrphic
ordering. In particular the diagonal elements are expressed as

DywyDng-1
Rnayne = J DNL; D > (6.18)

and p;, . ; , we have similarly

in

As for the relations between p;, ... ;

Pvoy = 3 Rnaynem)Pim (6.19)

1<m<l

for an invertible lower triangular matrix R = (RN(” IN(m)) 1<t m <oo: Remark

that Ry = 1. In view of (6.8),(6.17) and (6.19), the following identities
hold.

Dna-n Dy -
e (6.20)

Rn,N(m) =
" D?vu—nDN(l)

Theorem 4 As a matriz expression, we have

f(Al)""An)zR'tR (621)



44

The matriz R is uniquely determined by (1.21).
For every j, we have the following LR—transforms

Aj=R-A;- R (6.22)
In particular,
f(A,, -, A)=R" f(A, -, A.) -R='R-R

which is just the interchange of R and *R. R is an invertible matriz so that
R™! is well-defined.

For u = (Ui, )irin € L*(Z3,), (6.10) and (6.12) give the matrix
expression

(A.‘iu)il,---.in = z a’gl),c--,i,,),(jl,---,j")ujh'--,jn (6.23)

jl»"',jnZO

Let H, be the Hilbert space spanned by the sequences *Ru. H, is iso-
morphic to the space of sequences v = (Vi,,...in )iy, in i L*(Z%,) such that
(f(A;, - -+, An)"'v,v) < co. Then the inverse R™! is well-defined as a bounded
operator from Ho to L*(Z3).

The matrix elements RN(I), N(m) can be expressed by using the following
system of determinants v, ..., for different positive integers ly,---,lr, - -,

from each other.

CN(h) CN(l2)

= C y . =
Yo = ONw» Ve = | oo vy CN@eNGn)

CN(l) CN(l2) CN(lr)
__ | CN@)+N() CN(2)+N(2) " CN(@2)+N(lr)
Vi o,y = -
CN()4N() CN(+N(2) “*° CN(r)+N()

(Remark that N(1) = (0,0,---,0).)
In the same way we define the determinants 1, .., associated with the
moments Cy;
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Nn) CN(ta)

’(p, =C’ 9w’l =
b= N Pl T | v CN@NG)

N ) Ny NGy
¥ _ | Iveeve) N@+NG) T CN@+NG)
ll,la,--.,lr— ........................... e
CNN) CNM+NG) " CNE+N(L)
Then we have
Proposition 7
) 1

Rno,nem) =
" Nem) " Dva—yDne-1)

/ /!
Z €¢1,21"',7n"1aan1,1n 'lplazy"'vm_lram+1,1'nyam+l,m+1

/
d’l»z,"'am_l)al—l,mv"',al— l,l—l‘¢1127"'1m-l!al,m:"')al,l—l (6'24)

where Gm my Ami1,m, * - - Mmove over the set of finite sequences of integers such
that the following identities hold as sets

{am,m, am+l,m} = {m, m + 1}1
{am+1,m+1, am+2,m> am+2,m+l} = {ma m + 11 m + 2}a
{al—2,1—27a1—1,1n7' ' '7al—1,l—2} = {m:m+ 1?"')l - 1}1
{al—l,l—lyal,m)'"1al,l—l} = {Tn,m+ la' 1l}

and that

Om+2,m < Am+2.m+1,

Q_im < Q-1me1 < 00 < Qg-1,1-2,
apm < Q) m+1 <0< Qapi-1

€ denotes the suitably chosen sign + depending on the choices of a’s.
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This Proposition follows by solving (6.19) term by term in view of(6.5).
For example,

RN(!),N(I) = 1,
1
vaa-nDN(l—l)

(wi'2,---,1—2'l'¢'l,2,”',1—2,1—1 - zp; ,2,"',1_2,1—11p1|21"'|l_2vl)
1

D-,’V(I—I)D;V(l—z)DN(l—l)

(¢;,2,---,l—2'¢;,2,...,1_11111,2‘...'1_3"_1,1
= Pio.g-zi1¥ 2, p-00¥1,2,- 01
+ %»‘2,---,1—21/)'1.2,---,1—3,1-1,z'¢’1,2,---,t—1

/
- Yo g-zi-1¥i2,i-1¥1.2,1-2)

RN(I),N(!—I) =

RN(!),N(I—2) =

and so on.
Example. (Appell’s Polynomials) Suppose the density
do(z) =z - 28 (1 — 2y — -+ - — 2,)"*dzy A - - Adzp (6.25)

be defined on the simplexD: z; >0,-+-,2, >0, ;+ -+ z, < 1. We have
11,00 F(a1+"‘+an+1+il+"'+in+n+1)

The ratio D(N(1))/D(N(1)) and the monic polynomial y() for every !
are rational functions of a;, - -+, any1. Whence every element Ry, N@m) is a
rational function of ay,- -, an41.

7 Matrix Form of LR-Transforms and Proof
of Theorem 4

Assume that the orthonormal polynomials pyg) and piyy = 1,2,3,- - are
expressed as linear combinations of monomials V™ m =1,2.3,--- as

l
pvey = . Envpnmz ™

m=1
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- N
Py = 2 EvpNemE
m=1

We put {nqy,v(m) and 5-,’\/(1), N(m) to be 0 for | < m. Let Z, Z’ be the lower
triangular matrices with the N (1), N(m)th elements &ngy n(m)s Enyy N(m) T€
spectively. Then the orthonormality and the spectral representations for A;
and Aj imply the matrix relations

=.C-'2=1 (7.1)
=.0.tE =1 (7.2)
and
Aj ==- TJ?FC . tE (73)
_= t=
A, =2".7C-'E (7.4)
respectively.

Lemma 2 Let M,, 1 < v < n be the operator defined by the matrix whose
(i1, ,in; 1, - Jn) th elements are equal to 1 if (51, -+, Jn) = (41, 1 by-1, %t
1,441, *,i,) and equal to 0 otherwise. Then we have

F(C)=M,-C (7.5)

v

This lemma shows that (7.3) and (7.4) are equivalent to the followings

Aj=Z-M;-Z7} (7.6)
A== M;-Z7 (7.7)

respectively. We have further

R=z.27} | (7.8)

(1
(1]

(7.6)-(7.8) imply that

A;=R':A;-R - (1.9)

This proves the Theorem.
This is a discrete analog of the argument done in [34].
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8 Symmetric Polynomials Case

L R-transforms can also be applied to symmetric orthogonal polynomials with
respect to a non-degenerate symmetric Radon measure dp(z) on R™ with
support D which is a bounded closed set.

Let Ay, -+, An be a partition, namely a sequence of non-increasing integers
A1 > A2 22 20. |
Assume that Al —_— e = Arl > AT1+1 = = Arz > M > Arm_]+1 - Arm

for an incresing sequence 0 < 71 < 73 < - -+ < Tp,. Let my(z) be the symmetric
polynomials defined by the symmetrization

m 1 \ \
A 0’1:1...$ﬂ
71!(1‘2 — rrl)!.. . (7- -7 l)l aezn ( 1 n )

under the permutation group Sy, of degree n.

The symmetric lexicographic ordering O can be introduced for the par-
titions as follows. The partition A = (A1, -+, A,) is greater than the part-
tion pu = (w1, -, un) if there exists a positive integer r such that )\, =
Bl Apoy = Hr-1 and A, > K.

The symmetric moments are defined as

b= [ ma@)da(z). 61)

Let ’I:{p be the Hilbert space consisting of symmetric functions on R" with

the inner product (f, g), and the norm ||f]|, = \/(f, f)ps

(F.9) = = [ f(@)o(z)dn(a) (52

for functions f(z), g(x) on D.

Let N be the bijective mapping from the set of positive integers onto the
set of all partitions such that N(@) > N(m) for I > m. Hence N(1) =
(0,---,0), N(2) = (1,0,---,0), N(3) = (1,1,0,--+,0)--,N(n + 1) =
(1’1" ' "1)’ N(n+2) = (2’01"'a0)a N(n+3) = (2a1)0" ")O), N(n+4) =
(2,1,1,0--+,0), N2n+1) = (2,1,1,---,1),---, so that we have

My ) (@) = 1, My () = T+ +Tn, My)(2) = Ticicjcn TiTir My
Ty Tny My (ne9)(T) = Xjoy 23, etc.
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The generalized Hankel matrix C are defined with the N (1), N(m)th ele-

ments Cg )4 K (m)- )
We denote the determinants for each N(l) = A,

f)N(l) = det((éﬂl(r)+1\7(s))£,s=l) (83)

The symmetric orthogonal polynomials ﬁ,\(m) parametrized by the parti-
tions N(I) = A are given by the formulae

é1\7(1) é1&7(2) e éN(l)
. 1 e CN+RE T CR@+NQ)
Dy(z) = B | RREEEIRTEIPRRPRRS RaE e (8.4)
N(-1) CN(-1) CNu-1D+N@) " CNU-1)+N(@)
mN(l)(x) mN(2)(x) T mN(z)(m) |
= Mg () + (lower order symmetric polynomials) (8.5)
The orthogonality and the norms are given by
(Br(2),u(2)p = O X#p - (396)
D-
= M N=y - (8.7)
DN(I—])
so that
(8.8)
are the orthonormal polynomials having the properties
(r(2).5u(@)), = 0 A#p |

and

Prw(E) = M) (z) 4+ lower order symmetric polynomials (8.10)

N(@)



Let e, (1 < r < n) be the elementary symmetric polynomials e, =

> o1<iy<-<ip<n Li Tip * + * Ti.. We define the bounded linear operators A, (Pieri

operators) on H,

~

A : f(z) e H, - e (x)f(z) €H, (8.11)
They can be expressed in matrix form as
er(z)pa(z) — Za;\ ubu(T (8.12)

Let f(z) be a symmetric polynomial in z, such that f(z) can be expressed
as a polynomial F in ey,---, e, f(z) = (el, ey en)
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The multiplication operator by f(z) on ’H can be expressed as F(A,, - - -, A,).

We assume that f(z) is positive in D so that F(A;,---,Ay,) is a positive
definite operator on H,.

Let dp'(z) = f(z)dp(z) be another positive Radon measure on R" with
the same support D as dp(z).

We denote by D, w() the determinant det((¢ R+ N(s)), s=1)- We can define

the orthogonal polynomials 131\ (z) and p)(z) in the same way as (3.4), (3.7)
respectively. :

)/

N(-1) 3/

= b (z) (8.13)
N(D)

Py (z) =

and

B\(z), () = 0 A#p
=1 A=yp (8.14)

We have the connection relations between {py, () }:1>1 and {p' # (@) hizt
in the following form

!
pN(l) Z N(z)/N(m)ﬁ;v(m) (z) (8.15)
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[ ,

X - o ~!
PR (z) = Z Ry M (m)P R (m) () (8.16)

m=1
where
Dol -
: -1 Nm) £ ,

Ry, mm) = \l Do D = R w8 (m) (8.17)

N~ N(m-1)

In particular,

A D'. Dy |
Ryw.na = vy M S0 (8.18)
’ Dy Dy

because R ro.na = 1 Let R and R be the corressponding lower triangular
operators which are both invertible.

Theorem 5 We have the LR transforms
F(Ay, -, A,) =

A~

A =R

a>, ;:@
oo :E>
®
o

Example 2. (Koornwinder polynomials , Heckman-Opdam BC)-type
Polynomials) (see [12],[18].)

Let dp(z) = (1 — 21)%(1 — 22)*(1 4+ 1) (1 + z2)P (21 — 22)>"*! defined on
D: —1<z9 <z <1 in the 2-dimensional Euclidean space.

For a partition A\; > Ay > 0

By = /D (@ +adz)dp(z) A > Ao (8.21)

= /D(aslxz)’\‘dp(a:) Al = Az (8.22)

One can consider the symmetric orthogonal polynomials 1~3 N(,)(:c) as func-
tions of u = z, + T4, v = 1,z (We also denote them by ﬁ‘f\;g’)"(u, v) or simply
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by By (u v), Py (4, v), P (u,v) ete according as we are interested in
dependence on a,( or 7.)
D is defined by the inequalities

l—u+4+v>0, 1+u+v>0, u?2—-4v>0

The symmetric lexicographic ordering O with respect to z;, zo coincides
with the lexicographic ordering O with respect to u, v.
Let ‘

2 uv, v, ud, ulu, wot Wl - (8.23)

1,u,v,u
be the sequence of monomials in the lexicographic order.
PR (u,v) = w2202 4 (lower order terms)

are the monic orthogonal polynomials in u,v, obtained by Gram-Schmidt
orthogonalization with respect to the inner product

(f0) 6 0)y = [ fluv)g(w, ) (w, v)dudy  (8.29)

where 4*A7(u, v) denotes the density
PP (u,v) = 22231 _ oy 4 0)*(1 +u+0)P(u — dv)T  (8.25)

The first moment can be evaluated by using the 2 dimensional Selberg
integral formula :

— A — 920+20+4+2v42
Cop = Ggp = 2%t +™

Fla+v+3)L(B+v+3)M(a+1)I(B+1)T(2y+2)
T(a+B+2y+3)T(a+B+v+ (v +3)

(8.26)

The moments ¢; ; = f, u'v/u*P7dudv can be expressed explicitly as fol-
lows (see [1].)
Weput U=1-u+vand V =1+ u+v. Remark first that

| (et v+ B+ 2)(a+1).(8 + 1)
Urvs a,ﬁ,'yd dv = (Cl! 2 2
/p pmauar = coo (@+B+27+3)rpa(@+ B+ 7+ Drre

(8.27)
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where (), denotes the product a(a+1)-:- (a4 7 —1). Hence

G = / 2= I(U = VYU + V — 2)/u*+P* " dudv
D
— 2-i-jCO 0 Z (_1)j+V1-V2—U3
" 20207204
(@ +v+ %)UHW(B +9+ ’g')i—u1+u:x(a + Dyt (B + Dicvy 4o
(@+ B+ 27+ 3)isvptry (@ + B +7+ Ditvatus

The norm (55%7, 5%%7), has been evaluated by Heckman-Opdam in the
form of a product of Gamma functions. The following expression is given by
van Diejen (see [8]).

(B0, B35y = 2P IBHRANDDIBA (0, 8,7)A_(2,8,7)  (8.28)

where

A+(Ol,,3,")’)
Fla+B+v+M+ 3T (a+v+ M+ 3)T(a+ B+ d+ 1 (a+ A+ 1)
Fla+B+2v+20 +2)T(a+ 8 +2X +1)
Tla+08+27v+ M+ X+ 2Ty + A1 — X+ 1)
Tla+B+7+ M+ A+ )T+ A — X +3)

A_(a,8,7)
T+ M+ HTB+v+ M+ 3T+ DB+ A + 1)
Fla+B8+2y+2\ +3)(a+F+2X+2)
I‘(a+,3+)\1+/\2+2)I‘()\1—/\2+1)
Tla+B+7+A+d+ )0y +A— X+

From (6.7), D) is evaluated by the identities

l
~a, 3, ~a, 3.7
Dnw = T1 Gy Bt

m=1
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The operators A; ,A; and B = A2 — 4A, are defined by

f(u,v) = uf(u,v) (8.29)
f(u,v) = vf(u,v) (8.30)
f(u,v) = (u? — 4v) f(u,v) (8.31)

respectively.
They can be expressed in recurrence form by the use of orthogonal poly-
nomials as follows (see [9] ,[29] for explicit forms .)

A1 : uﬁ,\l,,\z(x)

(1) ~ (1) ~
az\],)\Q;Al-}-?,/\gp/\h/\ﬁ'\l+11)\2 (x) + a’/\1,/\2;1\1+2./\2pA1+2,'\2 (Z‘)

+ af\ll),,\z,,\l+1,A2—113A1+1,A2—1(-”3) + af\ll),,\z;)q'—l,,\g-ﬂsa\l—i,Az—l(x)

+ af\ll),,\z;,\l+1,A2+15,\1+1,»\z+1(x) + af\];),)\g;/\l—l,z\zﬁl\l—l,l\Z (z)

+ a’&ll).z\z;z\n-—Zz\zﬁ/\l—?,/\z (.’E) + a’f\ll),)\g;)u-l,z\2+1ﬁz\1—1.,\2+1 (1') (832)
A2 : 'vﬁ,\l_,\z(:z:)

= ‘15\21),,\2;)\1+2,,\213»\1.Az;A1+1,Az (z) + 05\21),,\2;,\ 202 PA1 42,22 ()

+ 0&21),,\2.,\1+1,,\2—1ﬁz\1 +120-1(T) + 0&21).,\2;,\1—1,,\2-1I3A1—1,A2—1($)

+ af\zl),,\z;,\1+1,,\2+13h+1,Az+1(m) + af\z:),z\z;/\l—l,z\zﬁ)\l—l,/\z (z)

+ A -2 PM-20a() F Gorga-1ag P11 (8)  (8.33)
B : (u® — 4v)py, 0, (T)

= barazid 42200020 +22 (T) + Oaidaini+1,20PA0 41,02 (Z)

+  ba a1 he-100+1,22-1() + 0o —120—1P2—1,00-1(2)

O+ 118 +1,02+1(Z) + 0ag a0 1,300 -1,22 (Z)

4+ baiaadi—220P0-2,22 (T) + Day deidi—1ae 192 —1,00+1 () (8.34)

where the matrices (a&ll) Az pa)? (af\?’,\wlm), and (bx, azu,u.) define the

bounded self-adjoint operators Ay, A;, B on L*(Z3,) respectively.



We have the connection formulae between the ﬁgfg(x) = P, .x,(T) and

ﬁf\';[,j,’\zﬂ(m) = P73, (x) as follows.

~ ~v+1 -t ~v+1
p}w\z ((L‘) = PZ:r,,\z (CE) + Rz\l,)\2//\1—1«\2-—119}:-—1,/\2—1 (IL')

» ~y+1
+ Rz\l,)\z//\l =1224+1P); -1, 22+1 (T)

= 41 = ~y+1 '
+  Raa/a—1aaPrio1a(T) + Ry pa/n—22aP00 202, (Z) (8.35)

We put Ry, ap/um . to be 0 for (A1, A2) < (11, t2). We denote by R the
lower triangular matrix {R, , Ju1.p2 } ArAe/pn.ue thus obtained.

The matrix R is then defined by (6.19).

Let the operators A}, A5, B’ be the corresponding operators for v + 1

in place of 7. Then the following formulae of LR-transforms similar to (6.19)
and (6.20) hold.

B=R-'R (8.36)
Al=R1'- AR - (8.37)
A,=R1' A, R : (8.38)

These are equivalent to the idetities (8.18),(8.19) and (8.20) respectively.
The elements of R can be evaluated in a remarkable way.

Proposition 8

R)\l,)\z//\l—l,/\2+1
(A1 =2 = 1)(A1 = \2)
Y+ —-—-O+M =+ 3)

Rz\l,)\z//\l—l,z\z

4()\1 - )\2)(0( - ,3)(0 + ,B)(CY + ,8 + )\1 + )\2 + 1)

i

(a+B8+2X)(a+B+2x+2)(a+B+2v+ 20+ 1)(a+ B+ 27+ 2\ + 1)

Ry aa/A-120-1
4)\2(C¥ + /\2)(,8 + )\2)(& + 6+ )\2)
(a+B+v+M+d+)a+B+r+ M+ A +3)
(a+ﬂ+)\1+)\2)(a+ﬂ+)\1 +/\2+1)
@+ B+2%—1atft2a)atBt2at])
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Ry a2/ -2 ' :
4()\1—/\2—1)()\1—Ag)(a+ﬂ+)\1+)\2)(a+ﬁ+)\1+/\2+1)
(Y+M—X-DEa+M=—X+)la+B8+r+M+d+(a+B+7+)
(@+r+M+PDB+r+M+ DO+ M +3)(@+B+7+ M +3)
(@+B+27y+20)(a+B8+2y+ 20 + 1)2(a+ B+ 27+ 20 + 2)

The operator By = 1 — A; + A; corresponding to the shift a = a+ 1 is
defined by

By : p(u,v) = (1 — u+ v)o(u,v)

Its connection formula, for p‘;lﬂ ,\Z( ) = P}, 2, () and p,\:' if z) = p‘,’\‘;",{n( )
is given by
PY, 2 (2) = B3, (2) + Ry pa/anpa- 150 ag-1(2)

> », ~a+1
+  Rosa/m-10085100, () + Bagde/ai-10a-1851 21 20 -1 (Z)

where

Ry pa/dg-1 = XalB + 2g)
' ' (a+ﬂ+2/\2)(a+ﬂ+2)\2+1)
Ry da/n—1.0041
_ (/\1 - /\2)(27 + /\1 - )\2)
(Y +M=da+3)(r+ = —3)
(Y+M+3)B+r+M+3)
(@+B+27+2M + 1)(a+B+27+ 2\ +2)

Rz\l,Az/a\l—l,z\z--l

/\2(:3+/\2)(7+ 2)
(a+,3+2)\2)(a+,6+2/\2+1)(a+ﬁ+2'7+2/\1+1)
B+ry+M+de+B+2y+ M+ X +1)(a+B+M+ A +1)
(@+B+2v+2M+2)(@+B+7+M+ X+ 3 a+B+7+ A+ +3)

One can obtain a similar formula for the operator B = 1 + A; + A,
induced by the shift 8 — 8+ 1, seeing that 535 (z) = (=1)+2250%7 (~z).
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We have the corresponding L R-transforms

l:FAl-l-AQ:R'tR,
A’1=R_1'A1'R
Ay=R1' AR

respectively.
Details of these formulae will be discussed later.

Remark 3 It seems interesting to generalize our observations to more gen-
eral case. For example, Koornwinder polynbomials have been generalized to
BC-type orthogonal polynomials by Heckman-Opdam. Prof. K.Kadell has
discussed the connection relations (8.15)-(8.16) in the case of Selberg-Jack
polynomials. One may ask if simple product formulae like in Proposition 8
will be given in these cases.
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