Density matrices and LR transforms (Genesis of Orthogonal Functions)

Kazuhiko AOMOTO

(Graduate School of Mathematics, Nagoya University)

April 3, 2001

1 Introduction

The two kinds of Chebyschev polynomials $T_n(\cos \theta) = \cos n\theta$ and $U_n(\cos \theta) = \frac{\sin(n+1)\theta}{\sin \theta}$ are linearly related to each other by the formulae

$$\cos n\theta = \frac{1}{2} \left\{ \frac{\sin(n+1)\theta}{\sin \theta} - \frac{\sin(n-1)\theta}{\sin \theta} \right\}$$

Both polynomials satisfy the difference equations

$$xu_n = \frac{1}{2}(u_{n+1} + u_{n-1})$$

This is a simplest case of LR-transforms associated with difference operators for orthogonal functions.

A system of orthogonal functions are intimately related with eigenfunctions for a self-adjoint operator through density matrices. Once a family of self-adjoint operators are given, we can discuss the interplay among LR-transforms of self-adjoint operators, linear transforms of density matrices and connection relations between two system of eigen-functions for the operators. This mechanism enables us to give a new orthogonal system from the previous one, and so on.

Let A be an infinite real tri-diagonal matrix $(a_{n,m})_{n,m=-\infty}^{\infty}$ which defines a bounded self-adjoint operator on $l^2(\mathbf{Z})$. There exist the spectral kernels $d\Theta(n,m|\lambda)$ which are the Stieltjes measures on \mathbf{R} such that

$$\delta_{n,m} = \int_{-\infty}^{\infty} d\Theta(n, m; \lambda) \tag{1.1}$$

$$a_{n,m} = \int_{-\infty}^{\infty} \lambda d\Theta(n, m; \lambda)$$
 (1.2)

The eigenfunction expansion for A is an expression of $d\Theta(n, m; \lambda)$, by using generalized eigenfunctions $\psi^{(\epsilon)}(n; \lambda)$ ($\epsilon = \pm$) of A satisfying

$$A\psi^{(\epsilon)}(n;\lambda) = \lambda\psi^{(\epsilon)}(n;\lambda) \tag{1.3}$$

and Stieltjes measures called density matrices $d\rho_{\epsilon,\epsilon'}(\lambda)$, as

$$d\Theta(n, m; \lambda) = \sum_{\epsilon = \pm, \epsilon' = \pm} \psi^{(\epsilon)}(n; \lambda) \overline{\psi^{(\epsilon')}(m; \lambda)} d\rho_{\epsilon, \epsilon'}(\lambda)$$
 (1.4)

Let $f(\lambda)$ be a positive continuous function such that f(A) defines a positive definite operator on $l^2(\mathbf{Z})$.

Assume that there exists a Gauss decomposition of f(A) of the following type

$$f(A) = B_{-} \cdot B_{+} \tag{1.5}$$

where B_+ (or $B_- = {}^tB_+$ the transpose of B_+) denotes an upper triangular (or lower triangular) matrix such that the inverses B_{\pm}^{-1} are also well-defined. Then the LR transform of A can be defined as follows.

$$A \to A' = B_{-}^{-1} \cdot A \cdot B_{-} = B_{+} \cdot A \cdot B_{+}^{-1}$$
 (1.6)

In this note we show that this transform is equivalent to a certain linear or projective transform of the density matrices $d\rho_{\epsilon,\epsilon'}(\lambda)$ and evaluate it explicitly in the following four cases

- (1) Orthogonal polynomials in a single variable
- (2) Inverse scattering case
- (3) Periodic case
- (4) Orthogonal polynomials in multi-variables respectively.

This note has been written in collaboration with Dr.Masahiko Ito. Especially the computations for proving Proposition 8 are mostly due to him.

2 Orthogonal polynomials in a single variable

We consider a Stieltjes measure $d\rho(\lambda)$ with infinite increments and whose support is contained in the finite interval [a, b] (a < b) in **R**. There exist the unique orthonormal polynomials in λ

$$p_0(\lambda), p_1(\lambda), p_2(\lambda), \dots$$

(we put $p_{-1}(\lambda) = 0$) such that they satisfy

$$p_n(\lambda) = k_n \lambda^n + \text{(lower degree terms)} \quad k_n > 0 \quad (2.1)$$

$$\int_{a}^{b} p_{n}(\lambda) p_{m}(\lambda) d\rho(\lambda) = \delta_{n,m}$$
 (2.2)

The three term recurrence equations hold

$$\lambda p_n(\lambda) = b_{n-1} p_{n-1}(\lambda) + a_n p_n(\lambda) + b_n p_{n+1}(\lambda) \quad (n \ge 0)$$
(2.3)

Let A denote the corresponding tri-diagonal matrix $(a_{n,m})_{n,m=-\infty}^{\infty}$ such that

$$a_{n,n} = a_n, a_{n,n+1} = a_{n+1,n} = b_n \quad n \ge 0$$
 (2.4)

The matrix A defines a self-adjoint operator on $l^2(\mathbf{Z}_{\geq 0})$. A has the spectral decomposition (1.1), (1.2) where $d\Theta(n, m; \lambda)$ is represented simply by

$$d\Theta(n, m; \lambda) = p_n(\lambda)p_m(\lambda)d\rho(\lambda)$$
(2.5)

Let f(x) be a positive continuous function on [a, b]. Then f(A) and $f(A)^{-1}$ define bounded self-adjoint operators. There exist the unique upper triangular and lower triangular matrices B_+ and B_- with positive diagonal elements satisfying (1.5). All B_{\pm} and B_{\pm}^{-1} are bounded operators.

The LR transform of A associated with the function $f(\lambda)$ is defined by the correspondence (1.6). A' is again a tri-diagonal self-adjoint operator on

Y.Nakamura and Y.Kodama, and also V.Spiridonov and A.Zhedanov have investigated LR-transforms associated with finite matrices and orthogonal polynomials (see [23],[24],[30]). Here we want to relate them to linear (or projective) transforms of density matrices $d\rho(\lambda)$.

In section 7-8 we extend LR-transforms to the case of orthogonal polynomials in multi-variables. In the final section we shall obtain explicit formulae for LR-transforms associated with Koornwinder polynomials.

Proposition 1 Let $d\rho'(\lambda)$ be the density corresponding to the operator A'. The LR transform (1.6) is equivalent to the linear correspondence

$$d\rho'(\lambda) = f(\lambda)d\rho(\lambda) \tag{2.6}$$

If $d\rho(\lambda)$ and $d\rho'(\lambda)$ are normalized such that

$$\int_{a}^{b} d\rho(\lambda) = \int_{a}^{b} d\rho'(\lambda) = 1 \tag{2.7}$$

then (2.6) shoud be modified as

$$d\rho(\lambda) \to d\rho'(\lambda) = \frac{f(\lambda)d\rho(\lambda)}{\int_a^b f(\lambda)d\rho(\lambda)}$$
 (2.8)

In fact, (2.6) implies the formulae

$$(f(A))_{n,m} = \int_{-\infty}^{\infty} p_n(\lambda) p_m(\lambda) d\rho'(\lambda)$$
 (2.9)

Let $\{p'_n(\lambda)\}\$ be the orthonormal polynomials with respect to the density $d\rho'(\lambda)$. $p_n(\lambda)$ can be expressed uniquely as a linear combination of $p'_m(\lambda)$

$$p_n(\lambda) = \sum_{m=0}^n b_{m,n} p'_m(\lambda)$$
 (2.10)

Let B_+ be the upper triangular matrix $(b_{n,m})_{n,m=0}^{\infty}$. Then (1.5) holds from (2.9). On the other hand

$$(A')_{n,m} = \int_{-\infty}^{\infty} \lambda p'_n(\lambda) p'_m(\lambda) d\rho'(\lambda)$$
 (2.11)

From (2.9)-(2.11), we deduce (1.6).

In particular, if A is itself positive definite and $f(\lambda) = \lambda$, (1.6) reduces to the original Rutishauser's LR algorithm.

Examples 1. Jacobi polynomials.

Let $d\rho(\lambda) = (1-\lambda)^{\alpha}(1+\lambda)^{\beta}d\lambda$ on [-1,1], for $\alpha,\beta > -1$. The Jacobi polynomials $P_n^{(\alpha,\beta)}(\lambda)$ are defined by the equations

$$(1-\lambda)^{\alpha}(1+\lambda)^{\beta}P_{n}^{(\alpha,\beta)}(\lambda) = \frac{(-1)^{n}}{2^{n}n!}(\frac{d}{d\lambda})^{n}\{(1-\lambda)^{\alpha+n}(1+\lambda)^{\beta+n}\} \quad (2.12)$$

Then

$$l_n^{(\alpha,\beta)}(\lambda) = l_n^{(\alpha,\beta)} \lambda^n + \cdots$$
$$l_n^{(\alpha,\beta)} = 2^{-n} \frac{\Gamma(2n+\alpha+\beta+1)}{\Gamma(n+1)\Gamma(n+\alpha+\beta+1)}$$

and

$$\int_{-1}^{1} (1-\lambda)^{\alpha} (1+\lambda)^{\beta} P_n^{(\alpha,\beta)}(\lambda) P_m^{(\alpha,\beta)}(\lambda) d\lambda = 0, \quad n \neq m$$

$$\int_{-1}^{1} (1-\lambda)^{\alpha} (1+\lambda)^{\beta} \{ P_n^{(\alpha,\beta)}(\lambda) \}^2 d\lambda = h_n^{(\alpha,\beta)}$$

$$h_n^{(\alpha,\beta)} = \frac{2^{\alpha+\beta+1}}{2n+\alpha+\beta+1} \frac{\Gamma(n+\alpha+1)\Gamma(n+\beta+1)}{\Gamma(n+1)\Gamma(n+\alpha+\beta+1)}$$

The recurence equations for $P_n^{\alpha,\beta}(x)$ are as follows.

$$2(n+1)(n+1+\alpha+\beta)(2n+\alpha+\beta)P_{n+1}^{(\alpha,\beta)}(\lambda)$$
= $(2n+\alpha+\beta+1)\{(2n+\alpha+\beta+2)(2n+\alpha+\beta)\lambda+\alpha^2-\beta^2\}P_n^{(\alpha,\beta)}(\lambda)$
 $-2(n+\alpha+1)(n+\beta+1)(2n+\alpha+\beta+2)P_{n-1}^{(\alpha,\beta)}(\lambda)$ (2.13)

$$p_n(\lambda) = \{h_n^{(\alpha,\beta)}\}^{-\frac{1}{2}} P_n^{(\alpha,\beta)}(\lambda)$$

then $p_n(\lambda)$ is the orthonormal polynomials with respect to $d\rho(\lambda)$. We denote by A the tri-diagonal operator on $l^2(\mathbf{Z})_{\geq 0}$ derived from (2.13).

The shift $\alpha \to \alpha + 1$ induces the transform of the densities

$$d\rho(\lambda) \to d\rho'(\lambda) = (1 - \lambda)d\rho(\lambda)$$
 (2.14)

Since 1 - A is positive definite, the Gauss decomposition

$$1 - A = B_{-} \cdot B_{+} \tag{2.15}$$

is uniquely determined. Likewise we have

$$1 + A = B_{-} \cdot B_{+} \tag{2.16}$$

These are Christoffel-Darboux tranforms of contiguity relation. In fact, if we put

$$\psi_n(\alpha,\beta) = \frac{1}{l_n^{(\alpha,\beta)}} P_n^{(\alpha,\beta)}(\lambda) = \lambda^n + \frac{n(\alpha-\beta)}{2n+\alpha+\beta} \lambda^{n-1} + \cdots$$

then

$$\psi_n(\alpha,\beta) = \psi_n(\alpha+1,\beta) + v_n\psi_{n-1}(\alpha+1,\beta)$$

$$v_n = -\frac{2n(n+\beta)}{(2n+\alpha+\beta)(2n+\alpha+\beta+1)}$$
(2.17)

More exactly saying, B_{\pm}^{-1} are not bounded on $l^2(\mathbf{Z})$, although B_{\pm} are bounded. We must modify the operators B_{\pm} as follows.

We denote by \mathcal{H} the Hilbert space $l^2(\mathbf{Z}_{\geq 0})$ consisting of sequences $u = (u_n)_{n=0}^{\infty}$, $v = (v_n)_{n=0}^{\infty}$ etc with the inner product $(u, v) = \sum_{n=0}^{\infty} u_n \overline{v_n}$. We define another Hilbert space \mathcal{H}_0 , the closed linear subspace spanned by B_+u' ($u' \in l^2(\mathbf{Z}_{\geq 0})$). \mathcal{H}_0 is isomorphic to the Hilbert space consisting of the sequences $u = (u_n)_{n\geq 0}$ such that $((1-A)^{-1}u, u) < \infty$. B_+^{-1} is a bounded operator from

 \mathcal{H}_0 to \mathcal{H} , so that $B_+AB_+^{-1}$ is bounded as a linear mapping from \mathcal{H}_0 to \mathcal{H} which is extendable to a bounded operator on \mathcal{H} .

Example 2. Askey-Wilson polynomials (see [5]).

Let q be the real modulus such that 0 < q < 1, and c_1, c_2, c_3, c_4 be real numbers. Askey-Wilson polynomials are defined by using the basic hypergeometric series of order m

$$_{m}\varphi_{m-1}(\begin{array}{c} a_{1}, \cdots, a_{m} \\ b_{1}, \cdots, b_{m-1} \end{array}; \lambda) = \sum_{\nu=0}^{\infty} \frac{(a_{1}; q)_{\nu} \cdots (a_{m}; q)_{\nu}}{(b_{1}; q)_{\nu} \cdots (b_{m-1}; q)_{\nu} (q; q)_{\nu}} \lambda^{\nu}$$
 (2.18)

as

$$p_{n}(\lambda; c_{1}, c_{2}, c_{3}, c_{4})$$

$$= c_{1}^{-n}(c_{1}c_{2}; q)_{n} \cdot (c_{1}c_{3}; q)_{n} \cdot (c_{1}c_{4}; q)_{n} \cdot {}_{4}\varphi_{3}(\begin{array}{c} q^{-n}, q^{n-1}c_{1}c_{2}c_{3}c_{4}, c_{1}e^{i\theta}, c_{1}e^{-i\theta} \\ c_{1}c_{2}, c_{3}c_{4}, c_{1}c_{4} \end{array}; q)$$

$$= l_{n}\lambda^{n} + \cdots \qquad (l_{n} = 2^{n}(c_{1}c_{2}c_{3}c_{4}q^{n}; q)_{n}) \qquad (2.19)$$

where $\lambda = \cos\theta$. The weight function $w(\lambda)$ $(d\rho(\lambda) = \frac{w(\lambda)}{\sqrt{1-\lambda^2}}d\lambda)$ is given by

$$w(\lambda) = \frac{\prod_{k=0}^{\infty} (1 - 2(2\lambda^2 - 1)q^k + q^{2k})}{h(\lambda, c_1)h(\lambda, c_2)h(\lambda, c_3)h(\lambda, c_4)}$$
(2.20)

where

$$h(\lambda, a) = \prod_{k=0}^{\infty} (1 - 2a\lambda q^k + q^{2k}a^2) = (ae^{i\theta}; q)_{\infty} (ae^{-i\theta}; q)_{\infty}$$
 (2.21)

Then the orthogonality relations are

$$\frac{1}{2\pi} \int_{-1}^{1} p_n(\lambda; c_1, c_2, c_3, c_4) p_m(\lambda; c_1, c_2, c_3, c_4) \frac{w(\lambda)}{\sqrt{1 - \lambda^2}} d\lambda = \delta_{n,m} h_n \quad (2.22)$$

$$h_n = \frac{(c_1 c_2 c_3 c_4 q^{2n}; q)_{\infty} (c_1 c_2 c_3 c_4 q^{n-1}; q)_{\infty} (q^{n+1}; q)_{\infty}^{-1} (c_1 c_2 q^n; q)_{\infty}^{-1}}{(c_1 c_3 q^n; q)_{\infty} (c_1 c_4 q^n; q)_{\infty} (c_2 c_3 q^n; q)_{\infty} (c_2 c_4 q^n; q)_{\infty} (c_3 c_4 q^n; q)_{\infty}}$$
(2.23)

The three term recurrence relations for $p_n(\lambda; c_1, c_2, c_3, c_4)$ are expressed as

$$2\lambda p_n(\lambda) = b_{n-1}p_{n-1}(\lambda) + a_n p_n(\lambda) + b'_n p_{n+1}(\lambda)$$
 (2.24)

$$b_{n-1} = (1 - q^{n})(1 - c_{1}c_{2}q^{n-1})(1 - c_{1}c_{3}q^{n-1})(1 - c_{1}c_{4}q^{n-1})$$

$$\times \frac{(1 - c_{2}c_{3}q^{n-1})(1 - c_{2}c_{4}q^{n-1})(1 - c_{3}c_{4}q^{n-1})}{(1 - cq^{2n-2})(1 - cq^{2n-1})},$$

$$b'_{n} = \frac{1 - cq^{n-1}}{(1 - cq^{2n-1})(1 - cq^{2n})},$$

$$a_{n} = \frac{q^{n-1}[(1 + cq^{2n-1})(sq + s'c) - q^{n-1}(1 + q)(s + s'q)c]}{(1 - cq^{2n-2})(1 - cq^{2n})}$$

 $(s = c_1 + c_2 + c_3 + c_4, s' = c_1^{-1} + c_2^{-1} + c_3^{-1} + c_4^{-1}, c = c_1c_2c_3c_4).$ $d\rho(\lambda)$ depends on c_1, c_2, c_3, c_4 . In fact each shift

$$T_1: c_1 \to c_1 q; \ T_2: c_2 \to c_2 q; \ T_3: c_3 \to c_3 q; \ T_4: c_4 \to c_4 q$$
 (2.25)

multiplies $w(\lambda)$ by

$$1 + c_1^2 - 2c_1\lambda$$
, $1 + c_2^2 - 2c_2\lambda$, $1 + c_3^2 - 2c_3\lambda$, $1 + c_4^2 - 2c_4\lambda$ (2.26)

times respectively.

The corresponding LR transforms of A are defined as the Gauss decompositions of each positive operator

$$1+A^2-2c_1A > 0$$
, $1+A^2-2c_2A > 0$, $1+A^2-2c_3A > 0$, $1+A^2-2c_4A > 0$
Put

$$\psi_n(\lambda; c_1, c_2, c_3, c_4) = \frac{1}{l_n} p_n(\lambda; c_1, c_2, c_3, c_4)$$
(2.27)

then, as for T_1 for example, the transform B_+ is equivalent to the following contiguity relation

$$v_n = -\frac{\psi_n(x; c_1, c_2, c_3, c_4) = \psi_n(x; c_1 q, c_2, c_3, c_4) + v_n \psi_{n-1}(x; c_1 q, c_2, c_3, c_4)}{2(1 - q)c_1}$$
$$\frac{2(1 - q)c_1}{(1 - aq^{2n-2})(1 - aq^{2n-1})(1 - c_2c_3q^{n-1})(1 - c_2c_4q^{n-1})(1 - c_3c_4q^{n-1})}$$

likewise for T_2 , T_3 , T_4 .

3 Inverse scattering, Application of H.Flaschka theory

A be a tri-diagonal matrix which defines a bounded self-adjoint operator on $\mathcal{H} = l^2(\mathbf{Z})$.

We put $a_{n,n} = a_n$ and $a_{n,n+1} = a_{n+1,n} = b_n$ for $-\infty < n < \infty$ and assume the following condition

$$(\mathcal{C})\sum_{n=-\infty}^{\infty}|a_n||n|<\infty,\sum_{n=-\infty}^{\infty}|b_n-\frac{1}{2}||n|<\infty$$
(3.1)

The inverse scattering theory for the difference operator A was developed by H.Flaschka (see [10],[32]). We put the spectral parameter $z = \frac{1}{2}(\zeta + \zeta^{-1})$.

If $|\zeta| \leq 1$, then the Jost solutions $\psi^{\pm}(n;z)$ (minimal solutions in the sense of S.Elaydi [9]) are uniquely determined as the eigenfunctions (1.3) with the asymptotic behaviours

$$\psi^{\pm}(n;z) \simeq \zeta^{\pm n} \quad n \to \pm \infty$$
(3.2)

The connection relations between $\psi^{\pm}(n;z)$ are

$$\psi^{-}(n;z) = \alpha(z)\tilde{\psi}^{\pm}(n;z) + \beta(z)\psi^{\pm}(n;z)$$
 (3.3)

where $\tilde{\psi}^{\pm}(n;z)$ are defined to be the conjugates of $\psi^{\pm}(n;z)$ when ζ ($|\zeta| = 1$) is replaced by ζ^{-1} . $\alpha(z)$, $\beta(z)$ can be holomorphically extended to the domain $|\zeta| \leq 1$.

The Wronskian and the reflection coefficients are expressed as

$$R(z) = \frac{\beta(z)}{\alpha(z)} \tag{3.4}$$

$$W(\psi_{+}, \psi_{-}) = \frac{1}{2}(\zeta^{-1} - \zeta)\alpha(z)$$
(3.5)

respectively.

For $\lambda \in [-1, 1]$, $\psi^{\pm}(n; \lambda + i0)$, $\alpha(\lambda + i0)$, $\beta(\lambda + i0)$ do exist. Moreover, $\alpha(z)$ has a finite number of simple poles λ_k , k = 1, 2, 3, ..., s such that $|\lambda_k| > 1$.

Under this circumstance, it holds the following two expansion formulae which are equivalent to each other.

Proposition 2 (1)

$$d\Theta(n,m;\lambda) = \frac{\chi_{[-1,1]}(\lambda)d\lambda}{2\pi\sqrt{1-\lambda^{2}}|\alpha(\lambda+i0)|^{2}} \{\psi^{+}(n;\lambda+i0)\overline{\psi^{+}(m;\lambda+i0)} + \psi^{-}(n;\lambda+i0)\overline{\psi^{-}(m;\lambda+i0)}\} + \sum_{k=1}^{s} \psi^{+}(n;\lambda_{k})\psi^{+}(m;\lambda_{k})c_{k}^{2}\delta(\lambda-\lambda_{k})d\lambda$$
(3.6)

where $c_k^2 = \frac{\beta(\lambda_k)}{\alpha'(\lambda_k)\sqrt{\lambda_k^2-1}}$ and $\chi_{[-1,1]}(\lambda)$ denotes the indicator function of [-1,1].

$$d\Theta(n,m;\lambda) = \frac{\chi_{[-1,1]}(\lambda)d\lambda}{2\pi\sqrt{1-\lambda^2}} \{\psi^+(n;\lambda+i0)\overline{\psi^+(m;\lambda+i0)} + \psi^+(n;\lambda-i0)\overline{\psi^+(m;\lambda-i0)} + R(\lambda+i0)\psi^+(n;\lambda+i0)\overline{\psi^+(m;\lambda-i0)} + R(\lambda-i0)\psi^+(n;\lambda-i0)\overline{\psi^+(m;\lambda+i0)} \} + \sum_{k=1}^s \psi^+(n;\lambda_k)\psi^+(m;\lambda_k)c_k^2\delta(\lambda-\lambda_k)d\lambda$$
(3.7)

For the proof see [3],[6].

We can rewrite (3.6),(3.7) by using the Fourier expnasions of $\psi^{\pm}(n;z)$

$$\psi^{+}(n;z) = \sum_{m \ge n} K(n,m) \zeta^{m} \quad K(n,n) > 0$$
 (3.8)

$$F(m) = F_c(m) + F_p(m),$$
 (3.9)

$$F_c(m) = \frac{1}{2\pi i} \int_{|\zeta|=1} R(z) \zeta^{m-1} d\zeta$$
 (3.10)

$$F_p(m) = \sum_{k=1}^{s} c_k^2 \zeta_k^m$$
 (3.11)

We denote by \hat{F} , \hat{K} the operators defined by the kernel functions $\{F(n+m)\}_{n,m=-\infty}^{\infty}$ and $\{K(n,m)\}_{n,m=-\infty}^{\infty}$. \hat{F} is of Fredholm type and of Hankel type. \hat{K} has a bounded inverse.

Then (3.7) imply the following Gelfand-Levitan-Marchenko decomposition (abreviated by GLM decomposition)

Proposition 3 (1.1), (1.2) can be expressed in operator form as

$$1 = \hat{K}(1 + \hat{F})^t \hat{K} \tag{3.12}$$

$$A = \hat{K}A_0(1+\hat{F})^t\hat{K} = \hat{K}A_0\hat{K}^{-1}$$
(3.13)

where ${}^{t}\hat{K}$ denotes the transpose of \hat{K} . We denote by A_0 the symmetric tridiagonal matrix such that $b_n = \frac{1}{2}$, $a_n = 0$.

 $1 + \hat{F}$ is positive definite so that \hat{K} is uniquely determined by (3.12). A_0 has the unique decomposition

$$A_0 = A_{0,+} + A_{0,-} \tag{3.14}$$

where $A_{0,+}$ and $A_{0,-}$ are upper triangular and lower triangular matrices respectively. $2A_{0,\pm}$ are unitary operators which shift the indices by ± 1 respec-

Now let us discuss how the LR transform of A can be expressed in terms of \hat{F} .

Since A, A_0 are bounded, there exists a positive number c such that all 4 operators A(c) = A + c, $A_0(c) = A_0 + c$ and $A(c)^{-1}$, $A_0(c)^{-1} > 0$ are positive definite.

We want to find the upper triangular bi-diagonal matrix $A_{+}(c)$, with (n,n)th entries ξ_{n} and (n,n+1)th entries η_{n} such that $\xi_{n} > 0$, and its transpose $A_{-}(c) = {}^{t}A_{+}(c)$, such that the following Gauss decomposition holds.

$$A(c) = A_{-}(c) \cdot A_{+}(c) \tag{3.15}$$

i.e.,

$$\xi_n^2 + \eta_{n-1}^2 = a_n + c, \quad \xi_n \eta_n = b_n \tag{3.16}$$

The equations (3.16) have the unique solution such that ξ_0^2 equals the convergent continued fraction

$$\xi_0^2 = \frac{b_0^2}{|a_1 + c|} - \frac{b_1^2}{|a_2 + c|} - \dots = -b_0 \frac{\psi^+(1; -c)}{\psi^+(0; -c)}$$
(3.17)

because, if $z \notin \sigma(A)$, we have

$$b_0 \frac{\psi(1;z)}{\psi(0;z)} = \frac{b_0^2}{|z-a_1|} - \frac{b_1^2}{|z-a_2|} - \cdots$$
 (3.18)

We shall call the Gauss decomposition (3.15) thus obtained canonical. The LR-transform is then defined as

$$A \to A' = A_{+}(c) \cdot A_{-}(c) = A_{+}(c) \cdot A \cdot A_{-}(c)^{-1}$$
 (3.19)

A' is also tri-diagonal.

We can now state

Theorem 1 Let the GLM decompositon of A' be

$$1 = K' \cdot (1 + \hat{F}') \cdot {}^{t}\hat{K}' \tag{3.20}$$

$$A' = K' \cdot A_0 \cdot (1 + \hat{F}') \cdot {}^t \hat{K}'$$
 (3.21)

then A' is the LR-transform of A if and only if

$$\hat{F}' = \hat{F} \cdot A_{0,-}(c) \cdot A_{0,+}(c)^{-1} = A_{0,+}(c) \cdot \hat{F} \cdot A_{0,+}(c)^{-1}$$
(3.22)

(Remark that $\hat{F} \cdot A_{0,\pm}(c) = A_{0,\mp}(c) \cdot \hat{F}$.)

If we put

$$g(\zeta) = \frac{\sqrt{c+1} - \sqrt{c-1}}{2}\zeta + \frac{\sqrt{c+1} + \sqrt{c-1}}{2}$$

i.e.,

$$z + c = g(\zeta)g(\zeta^{-1})$$

then (3.22) can be restated as

$$R'(z) = R(z)g(\zeta)^{-1}g(\zeta^{-1})$$
(3.23)

which is nothing else than dressing transformation in the sense of Zakhalov-Shabat. (This fact has been pointed out to the author by S.Kakei.)

Proof 1 First we show that (3.22) implies (3.19). From (3.20), (3.22) and because of the uniqueness of Gauss decomposition, we have

$$\hat{K}' = A_{+}(c) \cdot \hat{K} \cdot g(2A_{0,+}) \tag{3.24}$$

Hence, from (3.21)

$$A' = \hat{K}' \cdot A_0 \cdot (1 + \hat{F}') \cdot {}^t K' = A_+(c) \hat{K} g(2A_{0,+}) A_0 g(2A_{0,-})^{-1} \hat{K}^{-1} A_+(c)^{-1}$$
$$= A_+(c) \hat{K} A_0 \hat{K}^{-1} A_+(c)^{-1} = A_+(c) \cdot A \cdot A_+(c)^{-1}$$

(3.19) has thus been obtained.

Next we show the converse. We remark first that any bounded upper triangular operator which commutes $A_{0,+}$ is a holomorphic function of $2A_{0,+}$. As is seen from (3.12)and (3.19), there exists a holomorphic function $\tilde{g}(\zeta)$ of ζ ($|\zeta| < 1$) such that

$$\hat{K}' = A_{+}(c) \cdot \hat{K} \cdot \tilde{g}(2A_{0,+}) \tag{3.25}$$

Hence from (3.13),(3.20) and (3.21)

$$\tilde{g}(2A_{0,+})\tilde{g}(2A_{0,-}) + \tilde{g}(2A_{0,+})^2 \hat{F}' = A_0(c)^{-1}(1+\hat{F})$$
(3.26)

By uniquness of this matrix expression, we have

$$\tilde{g}(2A_{0,+})\tilde{g}(2A_{0,-}) = A_0(c)^{-1} \tag{3.27}$$

$$\tilde{g}(2A_{0,+})^2 \hat{F}' = A_0(c)^{-1} \hat{F} \tag{3.28}$$

which imply

$$\tilde{g}(2A_{0,+}) = A_{0,+}(c)^{-1} \tag{3.29}$$

and

$$A_{0,+}(c)^{-2}\hat{F}' = A_0(c)^{-1}\hat{F}$$
(3.30)

which are nothing else than (3.22).

4 Periodic Toda lattice

Let A be a periodic tri-diagonal matrix with period N,

$$a_{n+N} = a_n, b_{n+N} = b_n (4.1)$$

We assume that it is positive definite on $l^2(\mathbf{Z})$. Let h be the Floquet multiplier and $A_h = (\tilde{a}_{n,m})_{n,m=0}^{N-1}$ be the $N \times N$ matrix defined by

$$\tilde{a}_{n,m} = hb_{N-1} (n, m) = (N-1, 0),$$

$$= h^{-1}b_{N-1} (n, m) = (0, N-1),$$

$$= a_{n,m} \text{ otherwise}$$

The determinant of $z - A_h$ can be written as

$$\det[z - A_h] = -b_0 b_1 \cdots b_{N-1} (h + h^{-1} - \Delta) \tag{4.2}$$

where Δ denotes the polynomial of degree N such that

$$b_0b_1\cdots b_{N-1}\Delta = z^N - (a_0 + a_1 + \cdots + a_{N-1})z^{N-1} + \cdots$$

The function h annhilating (4.2) is obtained by the equation

$$h = \frac{\Delta - \sqrt{\Delta^2 - 4}}{2} \tag{4.3}$$

which defines the hyperelliptic curve X of genus N-1.

Let $\lambda_1, ..., \lambda_{2N}$ be the roots of the equation $\Delta^2 - 4 = 0$, such that

$$0 < \lambda_1 < \lambda_2 < \dots < \lambda_{2N-1} < \lambda_{2N}$$

|h|=1 i.e., $|\Delta|<4$ holds if and only if

$$\lambda \in [\lambda_1, \lambda_2] \cup [\lambda_3, \lambda_4] \cup \dots \cup [\lambda_{2N-1}, \lambda_{2N}] \tag{4.4}$$

In other words, the spectra $\sigma(A)$ are continuous and given by the bands (4.4). When $\lambda \notin \sigma(A)$, we have |h| < 1.

Let $\psi^{\pm}(n;z)$ be the Bloch solutions to (1.3) satisfying

$$\psi^{\pm}(n+N;z) = h^{\pm 1}\psi^{\pm}(n;z) \tag{4.5}$$

which are obtained by solving the finite equations

$$(z - A_h)\tilde{\psi} = 0 \tag{4.6}$$

Let $K^{\pm}(n;z)$ be the normalized Bloch solutions such that $K^{\pm}(0;z)=1$. We denote by D(i,j) the subdeterminant corresponding to the (n,m)th entries $(i \le n, m \le j)$ of z - A.

Then $K^{\pm}(n;z)$ can be expressed in terms of D(i,j), in particular

$$K^{+}(1;z) = -\frac{(-1)^{N}hb_{1}\cdots b_{N-1} + b_{0}D(2,N-1)}{D(1,N-1)}$$
(4.7)

$$K^{-}(1;z) = -\frac{(-1)^{N}h^{-1}b_{1}\cdots b_{N-1} + b_{0}D(2,N-1)}{D(1,N-1)}$$
(4.8)

Proposition 4 We have

$$K^{-}(n; \lambda + i0) = K^{+}(n; \lambda - i0) = \overline{K^{+}(n; \lambda + i0)} \quad \text{for } \lambda \in \sigma(A)$$
 (4.9)

Put

$$d\rho_{+}(\lambda) = d\rho_{-}(\lambda) = \frac{1}{2\pi} \frac{|D(1, N-1)|}{|b_{0}b_{1} \cdots b_{N-1}| \sqrt{4-\Delta^{2}}}, \quad \lambda \in \sigma(A)$$
 (4.10)

Then the spectral kernels of A can be expressed as

$$d\Theta(n, m; \lambda) = 2\Re\{K^+(n; \lambda + i0)\overline{K^+(m; \lambda + i0)}\}d\rho_+(\lambda) \tag{4.11}$$

We may put $D(1, N-1) = \prod_{k=1}^{N-1} (z - \mu_k)$ where $\mu_1, \mu_2, ..., \mu_{N-1}$ denote the auxiliary spectra such that

$$\lambda_2 < \mu_1 < \lambda_3 < \lambda_4 < \dots < \mu_{N-1} < \lambda_{2N-1} < \lambda_{2N}$$
 (4.12)

We want to find the Gauss decomposition of A as in (3.15) (we put c = 0).

$$A = A_{-} \cdot A_{+}, \quad A_{-} = {}^{t}A_{+} \tag{4.13}$$

such that $\xi_{n+N} = \xi_n$, $\eta_{n+N} = \eta_n$ hold.

We can find uniquely ξ_n , η_n such that (3.16), (3.17) hold with c = 0, i.e.,

$$\xi_0^2 = -b_0 K^+(1;0) \tag{4.14}$$

Remark that (3.17) is a periodic continued fraction in this case. The LR-transform is now defined by

$$A = A_{-} \cdot A_{+} \to A' = A_{+} \cdot A_{-} = A_{+} \cdot A \cdot A_{+}^{-1} \tag{4.15}$$

The following Propsition 5 is most fundamental.

Proposition 5 Let $\{\mu'_1, \mu'_2, ..., \mu'_{N-1}\}$ be the auxiliary spectra for A'. Then A' is the LR-transform of A if and only if

$$z \frac{\prod_{k=1}^{N-1} (z - \mu_k')}{\prod_{k=1}^{N-1} (z - \mu_k)} = (\xi_0 + \eta_0 K^+(1; z))(\xi_0 + \eta_0 K^-(1; z))$$
(4.16)

The matrices A' i.e., $\xi_n, \eta_n, \mu'_1, ..., \mu'_{N-1}$ can be uniquely obtained by solving (4.16).

Proof 2 The Bloch solutions for A' are given by

$$K'_{+}(n;z) = \frac{\xi_n K^{+}(n;z) + \eta_n K^{+}(n+1;z)}{\xi_0 + \eta_0 K_{+}(1;z)}$$
(4.17)

We want to show first that (4.16) implies (4.15). At $z = \infty$, $K^{\pm}(n; z)$ are meromorphic and satisfy

$$K^+(n;z) = O(z^{-n}), K'^+(n;z) = O(z^{-n})$$

There exists the unique upper triangular real matrix $\Xi = (\xi_{n,m})_{n,m=-\infty}^{\infty}$ such that

$$K'^{+}(n;z) = \sum_{m=n}^{\infty} \xi_{n,m} K^{+}(m;z)$$
 (4.18)

From (4.16), (1.1) and (1.2) we have the relations of operators

$$1 = \Xi \cdot \frac{\prod_{k=1}^{N-1} (A - \mu_k')}{\prod_{k=1}^{N-1} (A - \mu_k)} \cdot {}^{t}\Xi$$
 (4.19)

$$A' = \Xi \cdot A \cdot \frac{\prod_{k=1}^{N-1} (A - \mu_k)}{\prod_{k=1}^{N-1} (A - \mu_k)} \cdot {}^{t}\Xi = \Xi \cdot A \cdot \Xi^{-1}$$
(4.20)

Moreover, there exists an upper triangular matrix $Y = (\eta_{n,m})_{n,m=-\infty}^{\infty}$ such that

$$\dot{(\xi_0 + \eta_0 K^+(1; z))} \dot{K}^+(n; z) = \sum_{m=n}^{\infty} \eta_{n,m} K^+(m; z)$$
 (4.21)

which is equivalent to the relations

$$\eta_{n,m} = 2 \int_{-\infty}^{\infty} \Re\{(\xi_0 + \eta_0 K^+(1; \lambda + i0)) K^+(n; \lambda + i0) \overline{K^+(m; \lambda + i0)}\} d\rho_+(\lambda)$$
(4.22)

in view of (1.1) and (4.11). Therefore by substitution of A into $K^+(1;z)$, we have

$$\xi_0 + \eta_0 K^+(1; A) = Y \tag{4.23}$$

In the same way,

$$\xi_0 + \eta_0 K^-(1; A) = {}^tY \tag{4.24}$$

From (4.16), these two equalities imply

$$A\frac{\prod_{k=1}^{N-1}(A-\mu_k')}{\prod_{k=1}^{N-1}(A-\mu_k)} = Y \cdot {}^{t}Y = {}^{t}Y \cdot Y$$
(4.25)

Since Y and tY commute each other,

$$A = {}^{t}Y \cdot \frac{\prod_{k=1}^{N-1} (A - \mu_{k})}{\prod_{k=1}^{N-1} (A - \mu'_{k})} \cdot Y = {}^{t}Y \cdot {}^{t}\Xi \cdot \Xi \cdot Y$$

which is nothing else than the Gauss decomposition of A, i.e.,

$$A_{-} = {}^{t}Y \cdot {}^{t}\Xi, \quad A_{+} = \Xi \cdot Y \tag{4.26}$$

From (4.20)

$$A' = A_+ \cdot Y^{-1} \cdot A \cdot Y \cdot A_+^{-1} = A_+ \cdot A \cdot A_+^{-1}$$

which leads to (4.15).

Next we show that (4.15) implies (4.16).

Put

$$\psi' = A_{+}(K^{+}) \tag{4.27}$$

and normalize it such that $K'^+(0;z) = 1$ as follows.

$$K'^{+}(n;z) = \frac{\psi'(n;z)}{\psi'(0;z)}$$
(4.28)

which gives (4.17) for A'. Then there exists the unique upper triangular matrix Ξ satisfying (4.18). Hence,

$$\{A_{+}(K^{+})\}(n;z) = \{(\xi_{0} + \eta_{0}K^{+}(1;z))\Xi(K^{+})\}(n;z) = \{\Xi \cdot Y(K^{+})\}(n;z)$$

In other words,

$$A_{+} = \Xi \cdot Y \tag{4.29}$$

As a consequence,

$$\{A'\}_{n,m} = \{A_{+} \cdot A_{-}\}_{n,m} = \{\Xi \cdot Y \cdot {}^{t}Y \cdot {}^{t}\Xi\}_{n,m}$$

$$= 2 \int_{-\infty}^{\infty} \Re\{(\xi_{0} + \eta_{0}K^{+}(1, \lambda + i0))(\xi_{0} + \eta_{0}K^{+}(1, \lambda - i0))$$

$$K'^{+}(n, \lambda + i0)K'^{+}(m, \lambda - i0)\}d\rho_{+}(\lambda)$$
(4.30)

On the other hand, by definition

$$\{A'\}_{n,m} = 2 \int_{\infty}^{\infty} \lambda \Re\{\lambda K'^{+}(n; \lambda + i0)K'^{+}(m; \lambda - i0)\} d\rho'_{+}(\lambda)$$

Therefore by uniqueness of expression

$$\lambda d\rho'_{+}(\lambda) = (\xi_0 + \eta_0 K^{+}(1, \lambda + i0))(\xi_0 + \eta_0 K^{+}(1, \lambda - i0))d\rho_{+}(\lambda)$$

Seeing that

$$d\rho'_{+}(\lambda) = \frac{\prod_{k=1}^{N-1} (\lambda - \mu'_{k})}{\prod_{k=1}^{N-1} (\lambda - \mu_{k})} d\rho_{+}(\lambda)$$

we have (4.16).

The hyperelliptic curve X defined by (4.3) has two sheets, physical and unphysical, which correspond to |h| < 1 (> 1) respectively, for $\lambda \notin \sigma(A)$.

Since $K^{\pm}(n;z)$ are meromorphic functions on X, we can represent the functions $K^{\pm}(n;z)$ by using divisors in X. Since z=0, ∞ are not branch points of X, there are two points in X in each case, lying over z=0, and $z=\infty$ $\langle 0 \rangle, \langle \infty \rangle$ in the physical sheet, $\langle 0^* \rangle, \langle \infty^* \rangle$ in the unphysical sheet respectively. X has the canonical involution

$$\iota : h \to h^{-1} \tag{4.31}$$

Obviously $\iota(\langle 0 \rangle) = \langle 0^* \rangle$ and $\iota(\langle \infty \rangle) = \langle \infty^* \rangle$. We denote by D^* the conjugate $\iota(D)$ of a divisor D. Then

Lemma 1 Fix $n \geq 0$. $K^+(n;z)$ has simple poles at the physical points in X, lying over $z = \mu_1, \ \mu_2, ..., \mu_{N-1}$ which do not depend on n. We denote the corresponding positive divisor of degree N-1 by D_0 . It has also a pole of

order n at $\langle \infty^* \rangle$. Similarly it has simple zeros at the unphysical points lying over $z = \mu_1, \ \mu_2, ..., \mu_{N-1}$ (its divisor of degree N-1 is denoted by D_n) and a zero of order n at $\langle \infty \rangle$.

In other words, in terms of divisors,

$$(K^{+}(n;z)) = n\langle \infty \rangle - n\langle \infty^{*} \rangle - D_0 + D_n \tag{4.32}$$

$$(K^{-}(n;z)) = n\langle \infty^* \rangle - n\langle \infty \rangle - D_0^* + D_n^*$$

$$(4.33)$$

Furthermore

$$\left(\prod_{k=1}^{N-1} (z - \mu_k)\right) = -(N-1)\{\langle \infty \rangle + \langle \infty^* \rangle\} + D_0 + D_0^*$$
 (4.34)

$$(h) = N(\langle \infty \rangle - \langle \infty^* \rangle) \tag{4.35}$$

As for the zeros and poles of $\xi_0 + \eta_0 K^+(1; z)$, we have

Theorem 2 There exist a positive divisor of degree N-1, D'_0 and its conjugate D'_0^* , such that

$$(\xi_0 + \eta_0 K^+(1; z)) = \langle 0 \rangle - \langle \infty^* \rangle - D_0 + D_0' \tag{4.36}$$

$$(\xi_0 + \eta_0 K^-(1; z)) = \langle 0^* \rangle - \langle \infty \rangle - D_0^* + D_0^{\prime *}$$
(4.37)

Hence, there exists a positive divisor of degree N-1, D_1' such that

$$(K'^{+}(1;z)) = \langle \infty \rangle - \langle \infty^* \rangle - D_0' + D_1'$$

$$(4.38)$$

The set of divisor classes of degree N-1 in X makes the Jacobi variety of X denoted by Jac(X). As is seen from (4.36), we have the equality as a point of Jac(X)

$$D_0' - D_0 \equiv -\langle 0 \rangle + \langle \infty^* \rangle \tag{4.39}$$

The new tri-diagonal operator A' has the same spectra as A and therefore we can take the LR-transform of A' again. By repeating this procedure, we get a sequence of tri-diagonal operators

$$A \to A' \to A'' \to \cdots \tag{4.40}$$

and a sequence of corresponding divisor classes

$$D_0 \to D_0' \to D_0'' \to \cdots \tag{4.41}$$

such that

$$D_0' - D_0 \equiv D_0'' - D_0' \equiv \dots \equiv -\langle 0 \rangle + \langle \infty^* \rangle \tag{4.42}$$

As a conclusion,

Theorem 3 The sequence of LR-transforms (4.40) is realized in Jac(X), by the discrete parallel displacement of \mathbf{p}_m by the constant divisor class $-\langle 0 \rangle + \langle \infty^* \rangle$, starting from $\mathbf{p}_0 = D_0$ such that

$$\mathbf{p}_m = \mathbf{p}_0 + m\{-\langle 0 \rangle + \langle \infty^* \rangle\}, \quad m = 0, 1, 2, 3, ...$$
 (4.43)

Corollary 1 The sequence of LR-transforms is periodic with period M > 0 if and only if

$$M\{-\langle 0\rangle + \langle \infty^* \rangle\} \equiv 0 \tag{4.44}$$

Remark 1 When A is finite or semi-infinite, the sequence (4.40) never become periodic. In fact, in a finite case, A tends to a diagonal matrix, so that the eigenvalues of A are approximated by these procedure([25],[26],[27]). I do not know how they behave, when A is semi-finite.

Remark 2 f(z) is a polynomial of degree r, it is possible to extend (4.16) to a more general transform (1.6). In this situation (4.16) must be replaced by the equation

$$f(z)\frac{\prod_{k=1}^{N-1}(z-\mu_k')}{\prod_{k=1}^{N-1}(z-\mu_k)} = (\xi_0 + \sum_{k=1}^r \eta_{0,k} K^+(k;z))(\xi_0 + \sum_{k=1}^r \eta_{0,k} K^-(k;z))$$

Since f(A) is no more tri-diagonal, we cannot find tri-diagonal matrices B_{\pm} satisfying (1.5).

Suppose that f(A) is positive definite and multiple- diagonal of width 2m+1. Then f(A) is a tri-diagonal matrix in block form, consisting of matrices $A_{n,n}$, $(A_{n,n} = {}^tA_{n,n} > 0)$ $A_{n,n+1}$, $A_{n+1,n} = {}^tA_{n,n+1}$ of size m+1. One can find an upper block bi-triangular matrix B_+ consisting of triangular matrices $B_{n,n}$ and $B_{n,n+1}$ of size m+1 such that

$$A_{n,n} = {}^{t}B_{n,n} \cdot B_{n,n} + {}^{t}B_{n-1,n} \cdot B_{n-1,n}, \ A_{n,n+1} = {}^{t}B_{n,n} \cdot B_{n,n+1}$$

If we put $Z_n = {}^tB_{n,n} \cdot B_{n,n}$, then we have the reccurence relations

$$Z_n = A_{n,n+1} \cdot (A_{n+1,n+1} - Z_{n+1})^{-1} \cdot {}^t A_{n,n+1}$$

which give the matrix version of the convergent continued fraction (3.17) such that

$$Z_n \leq A_{n,n+1} \cdot A_{n+1,n+1}^{-1} \cdot {}^t A_{n+1,n}$$

 $B_{n,n}$ can be solved uniquely from Z such that all the diagonal elements are positive.

In the next section, in case of N=2, we shall give explicit computation in terms of the sigma functions on the elliptic curve X.

5 Case of period N=2

It is sufficient to give $\{a_0, a_1, b_0, b_1\}$ to define the operator A. We put $W(z) = b_0^2 b_1^2 (\Delta^2 - 4)$, then

$$W(z) = (z - \lambda_1)(z - \lambda_2)(z - \lambda_3)(z - \lambda_4), \quad 0 < \lambda_1 < \lambda_2 < \lambda_3 < \lambda_4 \quad (5.1)$$

Moreover

$$d\rho_{\pm} = \frac{1}{4\pi} \frac{|\lambda - a_1|}{\sqrt{|W(\lambda)|}}, \quad \lambda_2 < a_1 < \lambda_3 \tag{5.2}$$

$$K^{+}(1;z) = \frac{b_0 + b_1 h}{z - a_1}, \quad K^{-}(1;z) = \frac{b_0 + b_1 h^{-1}}{z - a_1},$$
 (5.3)

(4.16) reduces to

$$z\frac{z-a_1'}{z-a_1} = (\xi_0 + \eta_0 K^+(1;z))(\xi_0 + \eta_0 K^-(1;z))$$
(5.4)

Put

$$u = \int_{\lambda_4}^{z} \frac{dz}{\sqrt{W(z)}}, v = \int_{\lambda_4}^{\infty} \frac{dz}{\sqrt{W(z)}} > 0, w = \int_{\lambda_4}^{0} \frac{dz}{\sqrt{W(z)}} > 0$$
$$v - c = \int_{\lambda_4}^{a_1} \frac{dz}{\sqrt{W(z)}}, \quad v > \Re c > 0, \Im c < 0$$
$$\omega_1 = \int_{\lambda_2}^{\lambda_3} \frac{dz}{\sqrt{W(z)}} > 0, \omega_2 = i \int_{\lambda_3}^{\lambda_4} \frac{dz}{\sqrt{|W(z)|}} \in i\mathbf{R}_{>0}$$

then, $2\omega_1, 2\omega_2$ are double periods, and $\langle 0 \rangle, \langle 0^* \rangle, \langle \infty \rangle, \langle \infty^* \rangle$ correspond to

$$u=w, u=-w, u=v, u=-v$$

respectively. Furthermore,

$$4v = 2\omega_1 \equiv 0$$

i.e.,

$$D_2 - D_0 \sim 0$$

 $\sigma(u)$ has the zero u=0, and quasi-periodic

$$\sigma(u + 2\omega_1) = -e^{2(\eta_1 u + \omega_1)} \sigma(u)$$

$$\sigma(u + 2\omega_2) = -e^{2(\eta_2 u + \omega_2)} \sigma(u)$$

(where η_1 , η_2 denote constants). We have

$$z = -\frac{\sigma(u+w)\sigma(u-w)\sigma(2v)}{\sigma(u-v)\sigma(u+v)\sigma(v+w)\sigma(v-w)}$$

$$h = C_1 \frac{\sigma^2(u-v)}{\sigma^2(u+v)}$$

$$K^+(1;z) = C_2 \frac{\sigma(u-v)\sigma(u+v+c)}{\sigma(u+v)\sigma(u-v+c)}$$

$$K^{+'}(1;z) = C_3 \frac{\sigma(u-v)\sigma(u+v+c')}{\sigma(u+v)\sigma(u-v+c')}$$

If we put

$$c' - c = v + w = \int_{0^*}^{\infty} \frac{dz}{\sqrt{W(z)}}$$

then the LR-transform represents the parallel displacement on the 1 dimensional complex trorus $\mathbf{C}/(\mathbf{Z}2\omega_1 + \mathbf{Z}2\omega_2)$

$$c \rightarrow c + v + w \rightarrow c + 2(v + w) \rightarrow \cdots$$

In order that it is periodic, there exists a positive integer M such that

$$M(v+w) \equiv 0 \quad (2\omega_1, 2\omega_2)$$

6 Multi-Index Hankel Matrices and Orthogonal Polynomials in Multi-Variables

In the next three sections we shall make a multi-dimensional extension of LR-transforms developed in the previous sections. Multi-dimensional LR-transforms are related with eigenfunction expansions for commuting self-adjoint operators.

We restrict ourselves to orthogonal polynomials case. The problem of finding LR-transforms reduces to obtaining the connection formula between two systems of orthogonal polynomials. Our main result in this section is

Theorem 4. In the course of proof, we shall give a formula for the connection matrix which is a lower triangular matrix, in terms of determinants of the associated muti-dimensional Hankel matrix.

Let $d\rho = d\rho(x)$, $x = (x_1, \dots, x_n)$ be a Radon measure on the *n* dimensional Euclidean space \mathbb{R}^n whose support is a bounded closed set \mathcal{D} . We assume that all multi-index moments

$$c_{i_1,\dots,i_n} = \int_{\mathbf{R}^n} x_1^{i_1} \cdots x_n^{i_n} d\rho(x)$$
 (6.1)

are finite.

Let \mathcal{H}_{ρ} be the Hilbert space completed by the inner product $(f,g)_{\rho}$

$$(f,g)_{\rho} = \int_{\mathbf{R}^n} f(x)g(x)d\rho(x) \tag{6.2}$$

for real continuous functions f(x), g(x) on \mathbb{R}^n .

For two sequences of indices $I=(i_1,\dots,i_n)$ and $J=(j_1,\dots,j_n)$, we define the sum I+J by the sequence of indices (i_1+j_1,\dots,i_n+j_n) .

We define the lexicographic ordering $\mathcal O$ for the set of multi-indices as follows.

 (i_1, \dots, i_n) is greater than (j_1, \dots, j_n) if and only if there exists a number r $(1 \le r \le n)$ such that $i_1 = j_1, \dots, i_{r-1} = j_{r-1}, i_r > j_r$. In this case, we also say the monomial $x_1^{i_1} \cdots x_n^{i_n}$ is greater than the monomial $x_1^{j_1} \cdots x_n^{j_n}$.

Thus we have the sequence of monomials in increasing order

$$1 < x_1 < \dots < x_n < x_1^2 < x_1 x_2 < \dots < x_n^2 < x_1^3 < \dots$$

Let N be the unique bijective mapping from the set of positive integers onto the set of multi-indices such that $N(l_1) < N(l_2)$ for two positive integers $l_1 < l_2$.

We have
$$N(1) = (0, \dots, 0), N(2) = (1, \dots, 0), N(3) = (0, 1, 0, \dots, 0), \dots, N(n+1) = (0, \dots, 0, 1), \text{ and } N(n+2) = (2, 0, \dots, 0) \text{ etc.}$$

We assume that $d\rho(x)$ is non-degenerate in the sense that

$$\int_{\mathbf{R}^n} f(x)^2 d\rho(x) > 0$$

for any polynomial f(x) which is not identically zero on \mathcal{D} .

Let C be the generalized Hankel matrix with the N(l), N(m)th entries $c_{N(l)+N(m)}$ for $l, m = 1, 2, 3, \cdots$. It is a positive definite matrix, so that all the determinants

$$D_{N(r)} = \det((c_{N(l)+N(m)})_{l,m=1}^r) > 0$$

for $(0 \le r < \infty)$. Here we put $D_{N(0)} = 1$.

Gram-Schmit orthonormalization with respect to the lexicographic ordering gives the orthonormalized polynomials $\{p_{i_1,\dots,i_n}\}_{i_1,\dots,i_n\geq 0}$ such that

$$p_{i_1,\dots,i_n} = \xi_{i_1,\dots,i_n} x_1^{i_1} \cdots x_n^{i_n} + (lower \ order \ terms)$$

$$(6.3)$$

where ξ_{i_1,\cdots,i_n} denote normalizing positive constants. Hence we have the orthonormality

$$(p_{i_1,\dots,i_n}, p_{j_1,\dots,j_n})_{\rho} = \delta_{i_1,j_1} \cdots \delta_{i_n,j_n}$$
 (6.4)

Let N(l) denote the multi-index (i_1, \dots, i_n) . We denote the monomial $x^{N(l)} = x_1^{i_1} \cdots x_n^{i_n}$. Then the polynomials $\tilde{p}_{i_1,\dots,i_n}(x)$ defined by the determinant

$$\tilde{p}_{i_{1},\dots,i_{n}}(x) = \frac{1}{D_{N(l-1)}} \begin{vmatrix}
c_{N(1)} & c_{N(2)} & \cdots & c_{N(l)} \\
c_{N(2)} & c_{N(1)+N(2)} & \cdots & c_{N(2)+N(l)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{N(l-1)} & c_{N(l-1)+N(2)} & \cdots & c_{N(l-1)+N(l)} \\
x^{N(1)} & x^{N(2)} & \cdots & x^{N(l)}
\end{vmatrix}$$
(6.5)

are monic orthogonal polynomials such that the following equations hold.

$$(\tilde{p}_{i_1,\dots,i_n}(x),\tilde{p}_{j_1,\dots,j_n}(x)) = 0 \quad \text{for } (i_1,\dots,i_n) \neq (j_1,\dots,j_n)$$
 (6.6)

$$(\tilde{p}_{i_1,\dots,i_n}(x),\tilde{p}_{i_1,\dots,i_n}(x)) = \frac{D_{N(l)}}{D_{N(l-1)}} \quad \text{for } N(l) = (i_1,\dots,i_n)$$
 (6.7)

so that we have the orthonormalized polynomials

$$p_{N(l)}(x) = \sqrt{\frac{D_{N(l-1)}}{D_{N(l)}}} \tilde{p}_{N(l)}(x)$$
 (6.8)

(The above computation can be done in the same way as in [31].)
We have

$$p_{N(l)}(x) = \sqrt{\frac{D_{N(l-1)}}{D_{N(l)}}} x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n} + (lower \ order \ terms)$$

Let A_1, A_2, \dots, A_n be the bounded linear operators on \mathcal{H}_{ρ} defined by

$$A_i \varphi(x) = x_i \varphi(x) \qquad \varphi(x) \in \mathcal{H}_{\rho}$$
 (6.9)

They can be expressible in matrix form $a_{N(l),N(m)}^{(j)}$ in terms of the basis $x^{N(l)}$ $l=1,2,3,\cdots$

$$x_{j}p_{N(l)}(x) = \sum_{m \ge 1 \text{ (finite sum)}} a_{N(l),N(m)}^{(j)} p_{N(m)}(x) \quad (1 \le j \le n)$$
 (6.10)

We have

$$a_{N(l),N(m)}^{(j)} = (x_j p_{N(l)}(x), p_{N(m)}(x))_{\rho}$$
(6.11)

 A_i are self-adjoint bounded operators and commute each other.

Let $L^2(\mathbf{Z}_{\geq 0}^n)$ denote the Hilbert space consisiting of real sequences $u=(u_{i_1,\cdots,i_n})_{i_1,\cdots,i_n\geq 0}$ with the inner product

$$(u, v) = \sum_{i_1, \dots, i_n \ge 0} u_{i_1, \dots, i_n} v_{i_1, \dots, i_n} \qquad u, \ v \in L^2(\mathbf{Z}_{\ge 0}^n)$$

The correspondence from the set of real sequences $(u_{i_1,i_2,\dots,i_n})_{i_1,\dots,i_n\geq 0}$ to continuous functions $\varphi(x)$

$$(u_{i_1,i_2,\dots,i_n})_{i_1,\dots,i_n\geq 0} \to \varphi(x) = \sum_{i_1,\dots,i_n\geq 0} u_{i_1,i_2,\dots,i_n} p_{i_1,\dots,i_n}(x)$$
(6.12)

give rise to the isomorphism between the space $L^2(\mathbf{Z}_{\geq 0}^n)$ and \mathcal{H}_{ρ} . Consider the shifts τ_{ν} for the sequences $i_1 \geq \cdots, i_n \geq 0$ as

$$\tau_{\nu}^{\pm}: (i_1, \dots, i_n) \to (i_1, \dots, i_{\nu} \pm 1, \dots i_n)$$
 (6.13)

For $N(l)=(i_1,\cdots,i_n)$, we denote by $\tau_{\nu}^{\pm}l$ the number l^{\pm} such that $N(l^{\pm})=\tau_{\nu}^{\pm}N(l)$ by abuse of notation (Remark that l^{-} does not exist when $i_{\nu}=0$.)

From the relations (6.5),(6.8) and (6.10) the following Proposition holds.

Proposition 6 Assume $1 \leq m \leq l$. We can represent explicitly the matrix elements $a_{N(l),N(m)}^{(j)}$ as

$$a_{N(l),N(m)}^{(j)} = \sum_{m \le r \le l} (-1)^{l+m+r} \frac{1}{\sqrt{D_{N(l)}D_{N(l-1)}D_{N(m)}D_{N(m-1)}}}$$

$$\begin{vmatrix} c_{N(1)} & c_{N(2)} & \cdots & c_{N(m)} \\ c_{N(2)} & c_{N(1)+N(2)} & \cdots & c_{N(2)+N(m)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{N(m-1)} & c_{N(m-1)+N(2)} & \cdots & c_{N(m-1)+N(m)} \\ c_{N(r)} & c_{N(r)+N(2)} & \cdots & c_{N(r)+N(m)} \end{vmatrix}$$

$$\begin{vmatrix} c_{N(1)} & c_{N(2)} & \cdots & c_{N(l-1)} \\ c_{N(2)} & c_{N(1)+N(2)} & \cdots & c_{N(2)+N(l-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{N(l)} & c_{T_{j}-N(r)} & c_{T_{j}-N(r)+N(2)} & \cdots & c_{T_{j}-N(r)+N(l-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ c_{N(l)} & c_{N(l)+N(2)} & \cdots & c_{N(l)+N(l-1)} \end{vmatrix}$$

$$(6.14)$$

(The symbol $\rangle \cdots \langle$ denotes the deletion of a line)

Let f(x) be a continuous function on \mathbb{R}^n which is non-negative on \mathcal{D} . Consider the new density $d\rho'(x)$ on \mathbb{R}^n with the same support as \mathcal{D} .

$$d\rho'(x) = f(x)d\rho(x) \tag{6.15}$$

Then we can define the multiplication operators

$$A'_{j}: \varphi(x) \to x_{j}\varphi(x) \quad (1 \le j \le n)$$
 (6.16)

on the new Hilbert space $\mathcal{H}_{\rho'} = L^2(\mathbf{R}^n; d\rho')$ with the inner product $(\cdots, \cdots)_{\rho'}$. Let $(c'_{i_1, \dots, i_n})_{i_1, \dots, i_n \geq 0}$ be the moments of the density $d\rho'$ and \mathcal{C}' be the corresponding generalized Hankel matrix with the N(l), N(m)th entries $c'_{N(l)+N(m)}$.

Then $f(A_1, \dots, A_n)$ is a self-adjoint operator on $\mathcal{H}_{\rho'}$, which is positive definite, because

$$(f(A_1,\cdots,A_n)\varphi(x),\varphi(x))_{\rho}=\int_{\mathcal{D}}\varphi(x)^2f(x)d\rho(x)>0$$

for a continuous function $\varphi(x)$ which does not vanish identically in \mathcal{D} .

Let $(p'_{i_1,\dots,i_n}(x))_{i_1,\dots,i_n\geq 0}$ be the Gram-Schmidt orthonormalization according to the lexicographic ordering \mathcal{O} .

 $(\tilde{p}'_{i_1,\cdots,i_n}(x))_{i_1,\cdots,i_n\geq 0}$ are defined similarly to (1.5), replacing c_{i_1,\cdots,i_n} by c'_{i_1,\cdots,i_n} .

The operator $f(A_1, \dots, A_n)$ can be represented by the matrix with the N(l), N(m)th elements $(f(A_1, \dots, A_n)p_{N(l)}(x), p_{N(m)}(x))_{\rho}$.

We are interested in the connection relations between the two set of orthogonal polynomials $(p_{i_1,\dots,i_n})_{i_1,\dots,i_n}$ and $(p'_{i_1,\dots,i_n})_{i_1,\dots,i_n}$.

 p_{i_1,\dots,i_n} can be represented as a linear combination of p'_{j_1,\dots,j_n}

$$p_{N(l)}(x) = \sum_{1 \le m \le l} R_{N(l)/N(m)} p'_{N(m)}(x)$$
(6.17)

We put further $R_{N(l)/N(m)}$ to be 0 for l < m, so that $R = (R_{N(l)/N(m)})_{l,m \ge 0}$ defines an invertible lower triangular matrix with respect to the lexicographic ordering. In particular the diagonal elements are expressed as

$$R_{N(l)/N(l)} = \sqrt{\frac{D'_{N(l)}D_{N(l-1)}}{D_{N(l)}D'_{N(l-1)}}} > 0$$
(6.18)

As for the relations between $\tilde{p}_{i_1,\dots,i_n}$ and $\tilde{p}'_{i_1,\dots,i_n}$, we have similarly

$$\tilde{p}_{N(l)} = \sum_{1 \le m \le l} \tilde{R}_{N(l)/N(m)} \tilde{p}'_{N(m)} \tag{6.19}$$

for an invertible lower triangular matrix $\tilde{R} = (\tilde{R}_{N(l)/N(m)})_{1 \leq l,m < \infty}$. Remark that $\tilde{R}_{N(l)/N(l)} = 1$. In view of (6.8),(6.17) and (6.19), the following identities hold.

$$R_{N(l),N(m)} = \sqrt{\frac{D_{N(l-1)}D'_{N(l)}}{D'_{N(l-1)}D_{N(l)}}}\tilde{R}_{N(l),N(m)}$$
(6.20)

Theorem 4 As a matrix expression, we have

$$f(A_1, \cdots, A_n) = R \cdot {}^t R \tag{6.21}$$

The matrix R is uniquely determined by (1.21).

For every j, we have the following LR-transforms

$$A_j' = R^{-1} \cdot A_j \cdot R \tag{6.22}$$

In particular,

$$f(A'_1, \dots, A'_n) = R^{-1} \cdot f(A_1, \dots, A_n) \cdot R = {}^tR \cdot R$$

which is just the interchange of R and ${}^{t}R$. R is an invertible matrix so that R^{-1} is well-defined.

For $u=(u_{i_1,\cdots,i_n})_{i_1,\cdots,i_n}\in L^2(\mathbf{Z}^n_{\geq 0}),$ (6.10) and (6.12) give the matrix expression

$$(A_j u)_{i_1, \dots, i_n} = \sum_{j_1, \dots, j_n \ge 0} a_{(i_1, \dots, i_n), (j_1, \dots, j_n)}^{(j)} u_{j_1, \dots, j_n}$$
(6.23)

Let \mathcal{H}_0 be the Hilbert space spanned by the sequences tRu . \mathcal{H}_0 is isomorphic to the space of sequences $v=(v_{i_1,\cdots,i_n})_{i_1,\cdots,i_n}$ in $L^2(\mathbf{Z}^n_{\geq 0})$ such that $(f(A_1,\cdots,A_n)^{-1}v,v)<\infty$. Then the inverse R^{-1} is well-defined as a bounded operator from \mathcal{H}_0 to $L^2(\mathbf{Z}^n_{\geq 0})$.

The matrix elements $\bar{R}_{N(l),N(m)}$ can be expressed by using the following system of determinants ψ_{l_1,\dots,l_r} for different positive integers l_1,\dots,l_r,\dots , from each other.

$$\psi_{l_1} = c_{N(l_1)}, \psi_{l_1, l_2} = \begin{vmatrix} c_{N(l_1)} & c_{N(l_2)} \\ c_{N(2)+N(l_1)} & c_{N(2)+N(l_2)} \end{vmatrix}$$

$$\psi_{l_1,l_2,\cdots,l_r} = \begin{vmatrix} c_{N(l_1)} & c_{N(l_2)} & \cdots & c_{N(l_r)} \\ c_{N(2)+N(l_1)} & c_{N(2)+N(l_2)} & \cdots & c_{N(2)+N(l_r)} \\ \vdots & \vdots & \vdots & \vdots \\ c_{N(r)+N(l_1)} & c_{N(r)+N(l_2)} & \cdots & c_{N(r)+N(l_r)} \end{vmatrix}$$

(Remark that $N(1) = (0, 0, \dots, 0)$.)

In the same way we define the determinants ψ'_{l_1,\dots,l_r} associated with the moments $c'_{N(l)}$

$$\psi'_{l_1} = c'_{N(l_1)}, \psi'_{l_1, l_2} = \begin{vmatrix} c'_{N(l_1)} & c'_{N(l_2)} \\ c'_{N(2) + N(l_1)} & c'_{N(2) + N(l_2)} \end{vmatrix}$$

$$\psi'_{l_1,l_2,\cdots,l_r} = \begin{vmatrix} c'_{N(l_1)} & c'_{N(l_2)} & \cdots & c'_{N(l_r)} \\ c'_{N(2)+N(l_1)} & c'_{N(2)+N(l_2)} & \cdots & c'_{N(2)+N(l_r)} \\ \vdots & \vdots & \vdots & \vdots \\ c'_{N(r)+N(l_1)} & c'_{N(r)+N(l_2)} & \cdots & c'_{N(r)+N(l_r)} \end{vmatrix}$$

Then we have

Proposition 7

$$\tilde{R}_{N(l),N(m)} = \frac{1}{D'_{N(m)} \cdots D'_{N(l-1)} D_{N(l-1)}} \\
\cdot \sum \epsilon \psi'_{1,2,\dots,m-1,\alpha_{m,m}} \psi'_{1,2,\dots,m-1,\alpha_{m+1,m},\alpha_{m+1,m+1}} \\
\cdot \cdots \psi'_{1,2,\dots,m-1,\alpha_{l-1,m},\dots,\alpha_{l-1,l-1}} \psi_{1,2,\dots,m-1,\alpha_{l,m},\dots,\alpha_{l,l-1}}$$
(6.24)

where $\alpha_{m,m}, \alpha_{m+1,m}, \cdots$ move over the set of finite sequences of integers such that the following identities hold as sets

$$\{\alpha_{m,m}, \alpha_{m+1,m}\} = \{m, m+1\},$$

$$\{\alpha_{m+1,m+1}, \alpha_{m+2,m}, \alpha_{m+2,m+1}\} = \{m, m+1, m+2\},$$

$$\cdots = \cdots$$

$$\{\alpha_{l-2,l-2}, \alpha_{l-1,m}, \cdots, \alpha_{l-1,l-2}\} = \{m, m+1, \cdots, l-1\},$$

$$\{\alpha_{l-1,l-1}, \alpha_{l,m}, \cdots, \alpha_{l,l-1}\} = \{m, m+1, \cdots, l\}$$
and that

$$\alpha_{m+2,m} < \alpha_{m+2,m+1},$$

$$\cdots = \cdots$$

$$\alpha_{l-1,m} < \alpha_{l-1,m+1} < \cdots < \alpha_{l-1,l-2},$$

$$\alpha_{l,m} < \alpha_{l,m+1} < \cdots < \alpha_{l,l-1}$$

 ϵ denotes the suitably chosen sign \pm depending on the choices of α 's.

This Proposition follows by solving (6.19) term by term in view of (6.5). For example,

$$\tilde{R}_{N(l),N(l-1)} = 1,$$

$$\tilde{R}_{N(l),N(l-1)} = \frac{1}{D'_{N(l-1)}D_{N(l-1)}}$$

$$\cdot (\psi'_{1,2,\cdots,l-2,l}\psi_{1,2,\cdots,l-2,l-1} - \psi'_{1,2,\cdots,l-2,l-1}\psi_{1,2,\cdots,l-2,l})$$

$$\tilde{R}_{N(l),N(l-2)} = \frac{1}{D'_{N(l-1)}D'_{N(l-2)}D_{N(l-1)}}$$

$$\cdot (\psi'_{1,2,\cdots,l-2}\psi'_{1,2,\cdots,l-1}\psi_{1,2,\cdots,l-3,l-1,l}$$

$$- \psi'_{1,2,\cdots,l-3,l-1}\psi'_{1,2,\cdots,l-2,l}\psi_{1,2,\cdots,l-1}$$

$$+ \psi'_{1,2,\cdots,l-2}\psi'_{1,2,\cdots,l-3,l-1,l}\psi_{1,2,\cdots,l-1}$$

$$- \psi'_{1,2,\cdots,l-3,l-1}\psi'_{1,2,\cdots,l-1}\psi_{1,2,\cdots,l-2,l})$$

and so on.

Example. (Appell's Polynomials) Suppose the density

$$d\rho(x) = x_1^{\alpha_1} \cdots x_n^{\alpha_n} (1 - x_1 - \cdots - x_n)^{\alpha_{n+1}} dx_1 \wedge \cdots \wedge dx_n$$
 (6.25)

be defined on the simplex $\mathcal{D}: x_1 \geq 0, \dots, x_n \geq 0, x_1 + \dots + x_n \leq 1$. We have

$$c_{i_1,\dots,i_n} = \frac{\Gamma(\alpha_1+i_1+1)\cdots\Gamma(\alpha_n+i_n+1)\Gamma(\alpha_{n+1}+1)}{\Gamma(\alpha_1+\dots+\alpha_{n+1}+i_1+\dots+i_n+n+1)}$$

The ratio D(N(l))/D(N(1)) and the monic polynomial $\tilde{p}_{N(l)}$ for every l are rational functions of $\alpha_1, \dots, \alpha_{n+1}$. Whence every element $\tilde{R}_{N(l),N(m)}$ is a rational function of $\alpha_1, \dots, \alpha_{n+1}$.

7 Matrix Form of LR-Transforms and Proof of Theorem 4

Assume that the orthonormal polynomials $p_{N(l)}$ and $p'_{N(l)}$ $l=1,2,3,\cdots$ are expressed as linear combinations of monomials $x^{N(m)}$ $m=1,2,3,\cdots$ as

$$p_{N(l)} = \sum_{m=1}^{l} \xi_{N(l),N(m)} x^{N(m)}$$

$$p'_{N(l)} = \sum_{m=1}^{l} \xi'_{N(l),N(m)} x^{N(m)}$$

We put $\xi_{N(l),N(m)}$ and $\xi'_{N(l),N(m)}$ to be 0 for l < m. Let Ξ , Ξ' be the lower triangular matrices with the N(l),N(m)th elements $\xi_{N(l),N(m)},\,\xi'_{N(l),N(m)}$ respectively. Then the orthonormality and the spectral representations for A_j and A'_j imply the matrix relations

$$\Xi \cdot \mathcal{C} \cdot {}^{t}\Xi = 1 \tag{7.1}$$

$$\Xi' \cdot \mathcal{C}' \cdot {}^t \Xi' = 1 \tag{7.2}$$

and

$$A_j = \Xi \cdot \tau_j^+ \mathcal{C} \cdot {}^t \Xi \tag{7.3}$$

$$A_i' = \Xi' \cdot \tau_i^+ \mathcal{C}' \cdot {}^t \Xi' \tag{7.4}$$

respectively.

Lemma 2 Let M_{ν} , $1 \leq \nu \leq n$ be the operator defined by the matrix whose $(i_1, \dots, i_n; j_1, \dots, j_n)$ th elements are equal to 1 if $(j_1, \dots, j_n) = (i_1, \dots, i_{\nu-1}, i_{\nu} + 1, i_{\nu+1}, \dots, i_n)$ and equal to 0 otherwise. Then we have

$$\tau_{\nu}^{+}(\mathcal{C}) = M_{\nu} \cdot \mathcal{C} \tag{7.5}$$

This lemma shows that (7.3) and (7.4) are equivalent to the followings

$$A_j = \Xi \cdot M_j \cdot \Xi^{-1} \tag{7.6}$$

$$A_j' = \Xi' \cdot M_j \cdot \Xi'^{-1} \tag{7.7}$$

respectively. We have further

$$R = \Xi \cdot \Xi'^{-1} \tag{7.8}$$

(7.6)-(7.8) imply that

$$A_j' = R^{-1} \cdot A_j \cdot R \tag{7.9}$$

This proves the Theorem.

This is a discrete analog of the argument done in [34].

8 Symmetric Polynomials Case

LR-transforms can also be applied to symmetric orthogonal polynomials with respect to a non-degenerate symmetric Radon measure $d\rho(x)$ on \mathbf{R}^n with support $\hat{\mathcal{D}}$ which is a bounded closed set.

Let $\lambda_1, \dots, \lambda_n$ be a partition, namely a sequence of non-increasing integers $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_n \geq 0$.

Assume that $\lambda_1 = \cdots = \lambda_{r_1} > \lambda_{r_1+1} = \cdots = \lambda_{r_2} > \cdots > \lambda_{r_{m-1}+1} = \lambda_{r_m}$ for an incresing sequence $0 < r_1 < r_2 < \cdots < r_m$. Let $m_{\lambda}(x)$ be the symmetric polynomials defined by the symmetrization

$$m_{\lambda} = \frac{1}{r_1!(r_2-r_1)!\cdots(r_m-r_{m-1})!}\sum_{\sigma\in\mathcal{S}_n}\sigma(x_1^{\lambda_1}\cdots x_n^{\lambda_n})$$

under the permutation group S_n of degree n.

The symmetric lexicographic ordering $\hat{\mathcal{O}}$ can be introduced for the partitions as follows. The partition $\lambda = (\lambda_1, \dots, \lambda_n)$ is greater than the partition $\mu = (\mu_1, \dots, \mu_n)$ if there exists a positive integer r such that $\lambda_1 = \mu_1, \dots, \lambda_{r-1} = \mu_{r-1}$ and $\lambda_r > \mu_r$.

The symmetric moments are defined as

$$\hat{c}_{\lambda} = \frac{1}{n!} \int_{\mathbb{R}^n} m_{\lambda}(x) d\rho(x). \tag{8.1}$$

Let $\hat{\mathcal{H}}_{\rho}$ be the Hilbert space consisting of symmetric functions on \mathbb{R}^n with the inner product $(f,g)_{\rho}$ and the norm $||f||_{\rho} = \sqrt{(f,f)_{\rho}}$,

$$(f,g)_{\rho} = \frac{1}{n!} \int_{\mathbf{R}^n} f(x)g(x)d\rho(x)$$
(8.2)

for functions f(x), g(x) on $\hat{\mathcal{D}}$.

Let \hat{N} be the bijective mapping from the set of positive integers onto the set of all partitions such that $\hat{N}(l) > \hat{N}(m)$ for l > m. Hence $\hat{N}(1) = (0, \dots, 0), \ \hat{N}(2) = (1, 0, \dots, 0), \ \hat{N}(3) = (1, 1, 0, \dots, 0) \dots, \hat{N}(n+1) = (1, 1, \dots, 1), \ \hat{N}(n+2) = (2, 0, \dots, 0), \ \hat{N}(n+3) = (2, 1, 0, \dots, 0), \ \hat{N}(n+4) = (2, 1, 1, 0 \dots, 0), \ \hat{N}(2n+1) = (2, 1, 1, \dots, 1), \dots$, so that we have

 $m_{\hat{N}(1)}(x) = 1$, $m_{\hat{N}(2)}(x) = x_1 + \dots + x_n$, $m_{\hat{N}(3)}(x) = \sum_{1 \le i < j \le n} x_i x_j$, $m_{\hat{N}(n+1)}(x) = \sum_{j=1}^n x_j^2$, etc.

The generalized Hankel matrix \hat{C} are defined with the $\hat{N}(l)$, $\hat{N}(m)$ th elements $\hat{c}_{\hat{N}(l)+\hat{N}(m)}$.

We denote the determinants for each $\hat{N}(l) = \lambda$,

$$\hat{D}_{\hat{N}(l)} = \det((\hat{c}_{\hat{N}(r) + \hat{N}(s)})_{r,s=1}^{l})$$
(8.3)

The symmetric orthogonal polynomials $\tilde{\hat{p}}_{\lambda}(x)$ parametrized by the partitions $\hat{N}(l) = \lambda$ are given by the formulae

$$\tilde{\hat{p}}_{\lambda}(x) = \frac{1}{\hat{D}_{N(l-1)}} \begin{vmatrix}
\hat{c}_{\hat{N}(1)} & \hat{c}_{\hat{N}(2)} & \cdots & \hat{c}_{\hat{N}(l)} \\
\hat{c}_{\hat{N}(2)} & \hat{c}_{\hat{N}(1)+\hat{N}(2)} & \cdots & \hat{c}_{\hat{N}(2)+\hat{N}(l)} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\hat{c}_{\hat{N}(l-1)} & \hat{c}_{\hat{N}(l-1)+\hat{N}(2)} & \cdots & \hat{c}_{\hat{N}(l-1)+\hat{N}(l)} \\
m_{\hat{N}(1)}(x) & m_{\hat{N}(2)}(x) & \cdots & m_{\hat{N}(l)}(x)
\end{vmatrix} (8.4)$$

$$= m_{\hat{N}(l)}(x) + (lower \ order \ symmetric \ polynomials)$$
 (8.5)

The orthogonality and the norms are given by

$$(\tilde{\hat{p}}_{\lambda}(x), \tilde{\hat{p}}_{\mu}(x))_{\rho} = 0 \quad \lambda \neq \mu$$
(8.6)

$$= \frac{\hat{D}_{\hat{N}(l)}}{\hat{D}_{\hat{N}(l-1)}} \quad \lambda = \mu \tag{8.7}$$

so that

$$\hat{p}_{\hat{N}(l)}(x) = \sqrt{\frac{\hat{D}_{\hat{N}(l-1)}}{\hat{D}_{\hat{N}(l)}}} \tilde{\hat{p}}_{\hat{N}(l)}(x)$$
(8.8)

are the orthonormal polynomials having the properties

$$(\hat{p}_{\lambda}(x), \hat{p}_{\mu}(x))_{\rho} = 0 \quad \lambda \neq \mu$$
$$= 1 \quad \lambda = \mu$$
(8.9)

and

$$p_{\hat{N}(l)}(x) = \sqrt{\frac{\hat{D}_{\hat{N}(l-1)}}{\hat{D}_{\hat{N}(l)}}} m_{\hat{N}(l)}(x) + \text{ lower order symmetric polynomials (8.10)}$$

Let e_r $(1 \le r \le n)$ be the elementary symmetric polynomials $e_r = \sum_{1 \le i_1 < \dots < i_r \le n} x_{i_1} x_{i_2} \cdots x_{i_r}$. We define the bounded linear operators \hat{A}_r (Pieri operators) on $\hat{\mathcal{H}}_{\rho}$

$$\hat{A}_r: f(x) \in \hat{\mathcal{H}}_\rho \to e_r(x) f(x) \in \hat{\mathcal{H}}_\rho \tag{8.11}$$

They can be expressed in matrix form as

$$e_r(x)\hat{p}_{\lambda}(x) \rightarrow \sum_{\mu} \hat{a}_{\lambda,\mu}^{(r)} \hat{p}_{\mu}(x)$$
 (8.12)

Let f(x) be a symmetric polynomial in x, such that f(x) can be expressed as a polynomial F in e_1, \dots, e_n $f(x) = F(e_1, \dots, e_n)$

The multiplication operator by f(x) on $\hat{\mathcal{H}}_{\rho}$ can be expressed as $F(\hat{A}_1, \dots, \hat{A}_n)$.

We assume that f(x) is positive in $\hat{\mathcal{D}}$ so that $F(A_1, \dots, A_n)$ is a positive definite operator on $\hat{\mathcal{H}}_{\rho}$.

Let $d\rho'(x) = f(x)d\rho(x)$ be another positive Radon measure on \mathbb{R}^n with the same support \mathcal{D} as $d\rho(x)$.

We denote by $\hat{D}'_{\hat{N}(l)}$ the determinant $\det((\hat{c}'_{\hat{N}(r)+\hat{N}(s)})^l_{r,s=1})$. We can define the orthogonal polynomials $\tilde{p}'_{\lambda}(x)$ and $\hat{p}'_{\lambda}(x)$ in the same way as (3.4), (3.7) respectively.

$$\hat{p}'_{N(l)}(x) = \sqrt{\frac{\hat{D}'_{N(l-1)}}{\hat{D}'_{N(l)}}} \tilde{p}'_{N(l)}(x)$$
(8.13)

and

$$(\hat{p}'_{\lambda}(x), \hat{p}'_{\mu}(x))_{\rho'} = 0 \quad \lambda \neq \mu$$
$$= 1 \quad \lambda = \mu$$
(8.14)

We have the connection relations between $\{\hat{p}_{\hat{N}(l)}(x)\}_{l\geq 1}$ and $\{\hat{p'}_{\hat{N}(l)}(x)\}_{l\geq 1}$ in the following form

$$\hat{p}_{\hat{N}(l)}(x) = \sum_{m=1}^{l} \hat{R}_{\hat{N}(l)/\hat{N}(m)} \hat{p}'_{\hat{N}(m)}(x)$$
(8.15)

$$\tilde{\hat{p}}_{\hat{N}(l)}(x) = \sum_{m=1}^{l} \tilde{\hat{R}}_{\hat{N}(l)/\hat{N}(m)} \tilde{\hat{p}}'_{\hat{N}(m)}(x)$$
(8.16)

where

$$\hat{R}_{\hat{N}(l),\hat{N}(m)} = \sqrt{\frac{\hat{D}_{\hat{N}(l-1)}\hat{D}'_{\hat{N}(m)}}{\hat{D}_{\hat{N}(l)}\hat{D}'_{\hat{N}(m-1)}}}\tilde{\hat{R}}_{\hat{N}(l)/\hat{N}(m)}$$
(8.17)

In particular,

$$\hat{R}_{\hat{N}(l),\hat{N}(l)} = \sqrt{\frac{\hat{D}'_{\hat{N}(l)}\hat{D}_{\hat{N}(l-1)}}{\hat{D}_{\hat{N}(l)}\hat{D}'_{\hat{N}(l-1)}}} > 0$$
(8.18)

because $\tilde{\hat{R}}_{\hat{N}(l),\hat{N}(l)} = 1$. Let \hat{R} and $\tilde{\hat{R}}$ be the corresponding lower triangular operators which are both invertible.

Theorem 5 We have the LR transforms

$$F(\hat{A}_1, \cdots, \hat{A}_n) = \hat{R} \cdot {}^t \hat{R}$$
(8.19)

$$\hat{A_r}' = \hat{R}^{-1} \cdot \hat{A_r} \cdot \hat{R} \tag{8.20}$$

Example 2. (Koornwinder polynomials , Heckman-Opdam BC_2 -type Polynomials) (see [12],[18].)

Let $d\rho(x) = (1-x_1)^{\alpha}(1-x_2)^{\alpha}(1+x_1)^{\beta}(1+x_2)^{\beta}(x_1-x_2)^{2\gamma+1}$ defined on $\mathcal{D}: -1 \leq x_2 \leq x_2 \leq 1$ in the 2-dimensional Euclidean space.

For a partition $\lambda_1 \geq \lambda_2 \geq 0$

$$\hat{c}_{\lambda_1,\lambda_2} = \int_{\mathcal{D}} (x_1^{\lambda_1} x_2^{\lambda_2} + x_2^{\lambda_1} x_1^{\lambda_2}) d\rho(x) \qquad \lambda_1 > \lambda_2$$
 (8.21)

$$= \int_{\mathcal{D}} (x_1 x_2)^{\lambda_1} d\rho(x) \qquad \lambda_1 = \lambda_2 \tag{8.22}$$

One can consider the symmetric orthogonal polynomials $\tilde{p}_{\hat{N}(l)}(x)$ as functions of $u = x_1 + x_2$, $v = x_1 x_2$ (We also denote them by $\tilde{p}_{N(l)}^{\alpha,\beta,\gamma}(u,v)$ or simply

by $\tilde{p}_{N(l)}^{\alpha}(u,v)$, $\tilde{p}_{N(l)}^{\gamma}(u,v)$, $\tilde{p}_{N(l)}(u,v)$ etc according as we are interested in dependence on α,β or γ .)

 \mathcal{D} is defined by the inequalities

$$1 - u + v \ge 0$$
, $1 + u + v \ge 0$, $u^2 - 4v \ge 0$

The symmetric lexicographic ordering $\hat{\mathcal{O}}$ with respect to x_1 , x_2 coincides with the lexicographic ordering \mathcal{O} with respect to u, v.

Let

$$1, u, v, u^2, uv, v^2, u^3, u^2v, uv^2, u^3, \cdots$$
 (8.23)

be the sequence of monomials in the lexicographic order.

$$\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma}(u,v) = u^{\lambda_1-\lambda_2}v^{\lambda_2} + (lower\ order\ terms)$$

are the monic orthogonal polynomials in u, v, obtained by Gram-Schmidt orthogonalization with respect to the inner product

$$(f(u,v),g(u,v))_{\gamma} = \int_{\mathcal{D}} f(u,v)g(u,v)\mu^{\alpha,\beta,\gamma}(u,v)dudv$$
 (8.24)

where $\mu^{\alpha,\beta,\gamma}(u,v)$ denotes the density

$$\mu^{\alpha,\beta,\gamma}(u,v) = 2^{2\alpha+2\beta+2\gamma+3}(1-u+v)^{\alpha}(1+u+v)^{\beta}(u^2-4v)^{\gamma}$$
 (8.25)

The first moment can be evaluated by using the 2 dimensional Selberg integral formula:

$$c_{0,0} = \hat{c}_{0,0} = 2^{2\alpha + 2\beta + 2\gamma + 2}$$

$$\cdot \frac{\Gamma(\alpha + \gamma + \frac{3}{2})\Gamma(\beta + \gamma + \frac{3}{2})\Gamma(\alpha + 1)\Gamma(\beta + 1)\Gamma(2\gamma + 2)}{\Gamma(\alpha + \beta + 2\gamma + 3)\Gamma(\alpha + \beta + \gamma + \frac{5}{2})\Gamma(\gamma + \frac{3}{2})}$$
(8.26)

The moments $c_{i,j} = \int_{\mathcal{D}} u^i v^j \mu^{\alpha,\beta,\gamma} du dv$ can be expressed explicitly as follows (see [1].)

We put U = 1 - u + v and V = 1 + u + v. Remark first that

$$\int_{\mathcal{D}} U^r V^s \mu^{\alpha,\beta,\gamma} du dv = c_{0,0} \frac{(\alpha + \gamma + \frac{3}{2})_r (\beta + \gamma + \frac{3}{2})_s (\alpha + 1)_r (\beta + 1)_s}{(\alpha + \beta + 2\gamma + 3)_{r+s} (\alpha + \beta + \gamma + \frac{5}{2})_{r+s}}$$
(8.27)

where $(\alpha)_r$ denotes the product $\alpha(\alpha+1)\cdots(\alpha+r-1)$. Hence

$$c_{i,j} = \int_{\mathcal{D}} 2^{-i-j} (U - V)^{i} (U + V - 2)^{j} \mu^{\alpha + \beta + \gamma} du dv$$

$$= 2^{-i-j} c_{0,0} \sum_{i \ge \nu_{1} \ge 0, j \ge \nu_{2} + \nu_{3}} (-1)^{j+\nu_{1}-\nu_{2}-\nu_{3}}$$

$$\cdot \frac{(\alpha + \gamma + \frac{3}{2})_{\nu_{1}+\nu_{2}} (\beta + \gamma + \frac{3}{2})_{i-\nu_{1}+\nu_{3}} (\alpha + 1)_{\nu_{1}+\nu_{2}} (\beta + 1)_{i-\nu_{1}+\nu_{3}}}{(\alpha + \beta + 2\gamma + 3)_{i+\nu_{2}+\nu_{3}} (\alpha + \beta + \gamma + \frac{5}{2})_{i+\nu_{2}+\nu_{3}}}$$

The norm $(\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma},\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma})_{\gamma}$ has been evaluated by Heckman-Opdam in the form of a product of Gamma functions. The following expression is given by van Diejen (see [8]).

$$(\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma},\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma})_{\gamma} = 2^{2\alpha+2\beta+2\gamma+2+2(\lambda_1+\lambda_2)+3}\Delta_{+}(\alpha,\beta,\gamma)\Delta_{-}(\alpha,\beta,\gamma)$$
(8.28)

where

$$= \frac{\Delta_{+}(\alpha,\beta,\gamma)}{\Gamma(\alpha+\beta+\gamma+\lambda_{1}+\frac{3}{2})\Gamma(\alpha+\gamma+\lambda_{1}+\frac{3}{2})\Gamma(\alpha+\beta+\lambda_{2}+1)\Gamma(\alpha+\lambda_{2}+1)}{\Gamma(\alpha+\beta+2\gamma+2\lambda_{1}+2)\Gamma(\alpha+\beta+2\lambda_{2}+1)}$$

$$\cdot \frac{\Gamma(\alpha+\beta+2\gamma+\lambda_{1}+\lambda_{2}+2)\Gamma(2\gamma+\lambda_{1}-\lambda_{2}+1)}{\Gamma(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{3}{2})\Gamma(\gamma+\lambda_{1}-\lambda_{2}+\frac{1}{2})}$$

$$= \frac{\Delta_{-}(\alpha,\beta,\gamma)}{\Gamma(\gamma+\lambda_{1}+\frac{3}{2})\Gamma(\beta+\gamma+\lambda_{1}+\frac{3}{2})\Gamma(\lambda_{2}+1)\Gamma(\beta+\lambda_{2}+1)} \frac{\Gamma(\alpha+\beta+2\gamma+2\lambda_{1}+3)\Gamma(\alpha+\beta+2\lambda_{2}+2)}{\Gamma(\alpha+\beta+\lambda_{1}+\lambda_{2}+2)\Gamma(\lambda_{1}-\lambda_{2}+1)} \cdot \frac{\Gamma(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{5}{2})\Gamma(\gamma+\lambda_{1}-\lambda_{2}+\frac{3}{2})}{\Gamma(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{5}{2})\Gamma(\gamma+\lambda_{1}-\lambda_{2}+\frac{3}{2})}$$

From (6.7), $D_{N(l)}$ is evaluated by the identities

$$D_{N(l)} = \prod_{m=1}^{l} (\tilde{p}_{N(m)}^{\alpha,\beta,\gamma}, \tilde{p}_{N(m)}^{\alpha,\beta,\gamma})_{\gamma}$$

The operators A_1 , A_2 and $B = A_1^2 - 4A_2$ are defined by

$$f(u,v) \to uf(u,v) \tag{8.29}$$

$$f(u,v) \to v f(u,v) \tag{8.30}$$

$$f(u,v) \to (u^2 - 4v)f(u,v)$$
 (8.31)

respectively.

They can be expressed in recurrence form by the use of orthogonal polynomials as follows (see [9], [29] for explicit forms.)

$$A_{1}: u\tilde{p}_{\lambda_{1},\lambda_{2}}(x)$$

$$= a_{\lambda_{1},\lambda_{2};\lambda_{1}+2,\lambda_{2}}^{(1)}\tilde{p}_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}+2,\lambda_{2}}^{(1)}\tilde{p}_{\lambda_{1}+2,\lambda_{2}}(x)$$

$$+ a_{\lambda_{1},\lambda_{2},\lambda_{1}+1,\lambda_{2}-1}^{(1)}\tilde{p}_{\lambda_{1}+1,\lambda_{2}-1}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}-1}^{(1)}\tilde{p}_{\lambda_{1}-1,\lambda_{2}-1}(x)$$

$$+ a_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}+1}^{(1)}\tilde{p}_{\lambda_{1}+1,\lambda_{2}+1}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}}^{(1)}\tilde{p}_{\lambda_{1}-1,\lambda_{2}}(x)$$

$$+ a_{\lambda_{1},\lambda_{2};\lambda_{1}-2,\lambda_{2}}^{(1)}\tilde{p}_{\lambda_{1}-2,\lambda_{2}}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}+1}^{(1)}\tilde{p}_{\lambda_{1}-1,\lambda_{2}+1}(x)$$

$$(8.32)$$

$$A_{2}: v\tilde{p}_{\lambda_{1},\lambda_{2}}(x)$$

$$= a_{\lambda_{1},\lambda_{2};\lambda_{1}+2,\lambda_{2}}^{(2)}\tilde{p}_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}+2,\lambda_{2}}^{(2)}\tilde{p}_{\lambda_{1}+2,\lambda_{2}}(x)$$

$$+ a_{\lambda_{1},\lambda_{2},\lambda_{1}+1,\lambda_{2}-1}^{(2)}\tilde{p}_{\lambda_{1}+1,\lambda_{2}-1}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}-1}^{(2)}\tilde{p}_{\lambda_{1}-1,\lambda_{2}-1}(x)$$

$$+ a_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}+1}^{(2)}\tilde{p}_{\lambda_{1}+1,\lambda_{2}+1}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}}^{(2)}\tilde{p}_{\lambda_{1}-1,\lambda_{2}}(x)$$

$$+ a_{\lambda_{1},\lambda_{2};\lambda_{1}-2,\lambda_{2}}^{(2)}\tilde{p}_{\lambda_{1}-2,\lambda_{2}}(x) + a_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}+1}^{(2)}\tilde{p}_{\lambda_{1}-1,\lambda_{2}+1}(x)$$

$$(8.33)$$

$$B: (u^{2} - 4v)\tilde{p}_{\lambda_{1},\lambda_{2}}(x)$$

$$= b_{\lambda_{1},\lambda_{2};\lambda_{1}+2,\lambda_{2}}\tilde{p}_{\lambda_{1},\lambda_{2};\lambda_{1}+2,\lambda_{2}}(x) + b_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}}\tilde{p}_{\lambda_{1}+1,\lambda_{2}}(x)$$

$$+ b_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}-1}\tilde{p}_{\lambda_{1}+1,\lambda_{2}-1}(x) + b_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}-1}\tilde{p}_{\lambda_{1}-1,\lambda_{2}-1}(x)$$

$$+ b_{\lambda_{1},\lambda_{2};\lambda_{1}+1,\lambda_{2}+1}\tilde{p}_{\lambda_{1}+1,\lambda_{2}+1}(x) + b_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}}\tilde{p}_{\lambda_{1}-1,\lambda_{2}}(x)$$

$$+ b_{\lambda_{1},\lambda_{2};\lambda_{1}-2,\lambda_{2}}\tilde{p}_{\lambda_{1}-2,\lambda_{2}}(x) + b_{\lambda_{1},\lambda_{2};\lambda_{1}-1,\lambda_{2}+1}\tilde{p}_{\lambda_{1}-1,\lambda_{2}+1}(x)$$

$$(8.34)$$

where the matrices $(a_{\lambda_1,\lambda_2;\mu_1,\mu_2}^{(1)})$, $(a_{\lambda_1,\lambda_2;\mu_1,\mu_2}^{(2)})$, and $(b_{\lambda_1,\lambda_2;\mu_1,\mu_2})$ define the bounded self-adjoint operators A_1 , A_2 , B on $L^2(\mathbf{Z}_{\geq 0}^2)$ respectively.

We have the connection formulae between the $\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma}(x) = \tilde{p}_{\lambda_1,\lambda_2}^{\gamma}(x)$ and $\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma+1}(x) = \tilde{p}_{\lambda_1,\lambda_2}^{\gamma+1}(x)$ as follows.

$$\tilde{p}_{\lambda_{1},\lambda_{2}}^{\gamma}(x) = \tilde{p}_{\lambda_{1},\lambda_{2}}^{\gamma+1}(x) + \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}-1}\tilde{p}_{\lambda_{1}-1,\lambda_{2}-1}^{\gamma+1}(x)
+ \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}+1}\tilde{p}_{\lambda_{1}-1,\lambda_{2}+1}^{\gamma+1}(x)
+ \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}}\tilde{p}_{\lambda_{1}-1,\lambda_{2}}^{\gamma+1}(x) + \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-2,\lambda_{2}}\tilde{p}_{\lambda_{1}-2,\lambda_{2}}^{\gamma+1}(x)$$
(8.35)

We put $\tilde{R}_{\lambda_1,\lambda_2/\mu_1,\mu_2}$ to be 0 for $(\lambda_1,\lambda_2)<(\mu_1,\mu_2)$. We denote by \tilde{R} the lower triangular matrix $\{\tilde{R}_{\lambda_1,\lambda_2/\mu_1,\mu_2}\}_{\lambda_1,\lambda_2/\mu_1,\mu_2}$ thus obtained.

The matrix R is then defined by (6.19).

Let the operators A'_1 , A'_2 , B' be the corresponding operators for $\gamma + 1$ in place of γ . Then the following formulae of LR-transforms similar to (6.19) and (6.20) hold.

$$B = R \cdot {}^{t}R \tag{8.36}$$

$$A_1' = R^{-1} \cdot A_1 \cdot R \tag{8.37}$$

$$A_2' = R^{-1} \cdot A_2 \cdot R \tag{8.38}$$

These are equivalent to the idetities (8.18),(8.19) and (8.20) respectively. The elements of \tilde{R} can be evaluated in a remarkable way.

Proposition 8

$$\begin{split} &= \frac{\tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}+1}}{(\gamma+\lambda_{1}-\lambda_{2}-\frac{1}{2})(\gamma+\lambda_{1}-\lambda_{2}+\frac{1}{2})} \\ &= \frac{(\lambda_{1}-\lambda_{2}-1)(\lambda_{1}-\lambda_{2})}{\tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}}} \\ &= \frac{4(\lambda_{1}-\lambda_{2})(\alpha-\beta)(\alpha+\beta)(\alpha+\beta+\lambda_{1}+\lambda_{2}+1)}{(\alpha+\beta+2\lambda_{2})(\alpha+\beta+2\lambda_{2}+2)(\alpha+\beta+2\gamma+2\lambda_{1}+1)(\alpha+\beta+2\gamma+2\lambda_{1}+1)} \\ &\tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}-1} \\ &= \frac{4\lambda_{2}(\alpha+\lambda_{2})(\beta+\lambda_{2})(\alpha+\beta+\lambda_{2})}{(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{1}{2})(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{3}{2})} \\ &\cdot \frac{(\alpha+\beta+\lambda_{1}+\lambda_{2})(\alpha+\beta+\lambda_{1}+\lambda_{2}+1)}{(\alpha+\beta+2\lambda_{2}-1)(\alpha+\beta+2\lambda_{2})^{2}(\alpha+\beta+2\lambda_{2}+1)} \end{split}$$

$$= \frac{4(\lambda_{1} - \lambda_{2} - 1)(\lambda_{1} - \lambda_{2})(\alpha + \beta + \lambda_{1} + \lambda_{2})(\alpha + \beta + \lambda_{1} + \lambda_{2} + 1)}{(\gamma + \lambda_{1} - \lambda_{2} - \frac{1}{2})(\gamma + \lambda_{1} - \lambda_{2} + \frac{1}{2})(\alpha + \beta + \gamma + \lambda_{1} + \lambda_{2} + \frac{1}{2})(\alpha + \beta + \gamma + \lambda_{1} + \frac{1}{2})(\alpha + \beta + \gamma + \lambda_{1} + \frac{1}{2})} \cdot \frac{(\alpha + \gamma + \lambda_{1} + \frac{1}{2})(\beta + \gamma + \lambda_{1} + \frac{1}{2})(\gamma + \lambda_{1} + \frac{1}{2})(\alpha + \beta + \gamma + \lambda_{1} + \frac{1}{2})}{(\alpha + \beta + 2\gamma + 2\lambda_{1})(\alpha + \beta + 2\gamma + 2\lambda_{1} + 1)^{2}(\alpha + \beta + 2\gamma + 2\lambda_{1} + 2)}$$

The operator $B_+ = 1 - A_1 + A_2$ corresponding to the shift $\alpha \to \alpha + 1$ is defined by

$$B_+: \varphi(u,v) \to (1-u+v)\varphi(u,v)$$

Its connection formula for $\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma}(x) = \tilde{p}_{\lambda_1,\lambda_2}^{\alpha}(x)$ and $\tilde{p}_{\lambda_1,\lambda_2}^{\alpha+1,\beta,\gamma}(x) = \tilde{p}_{\lambda_1,\lambda_2}^{\alpha+1}(x)$ is given by

$$\begin{split} \tilde{p}_{\lambda_{1},\lambda_{2}}^{\alpha}(x) &= \tilde{p}_{\lambda_{1},\lambda_{2}}^{\alpha+1}(x) + \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1},\lambda_{2}-1}\tilde{p}_{\lambda_{1},\lambda_{2}-1}^{\alpha+1}(x) \\ &+ \quad \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}}\tilde{p}_{\lambda_{1}-1,\lambda_{2}}^{\alpha+1}(x) + \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}-1}\tilde{p}_{\lambda_{1}-1,\lambda_{2}-1}^{\alpha+1}(x) \end{split}$$

where

$$\begin{split} \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1},\lambda_{2}-1} &= -2\frac{\lambda_{2}(\beta+\lambda_{2})}{(\alpha+\beta+2\lambda_{2})(\alpha+\beta+2\lambda_{2}+1)} \\ \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}+1} \\ &= -2\frac{(\lambda_{1}-\lambda_{2})(2\gamma+\lambda_{1}-\lambda_{2})}{(\gamma+\lambda_{1}-\lambda_{2}+\frac{1}{2})(\gamma+\lambda_{1}-\lambda_{2}-\frac{1}{2})} \\ &\cdot \frac{(\gamma+\lambda_{1}+\frac{1}{2})(\beta+\gamma+\lambda_{1}+\frac{1}{2})}{(\alpha+\beta+2\gamma+2\lambda_{1}+1)(\alpha+\beta+2\gamma+2\lambda_{1}+2)} \\ \tilde{R}_{\lambda_{1},\lambda_{2}/\lambda_{1}-1,\lambda_{2}-1} \\ &= 4\frac{\lambda_{2}(\beta+\lambda_{2})(\gamma+\frac{1}{2})}{(\alpha+\beta+2\lambda_{2})(\alpha+\beta+2\lambda_{2}+1)(\alpha+\beta+2\gamma+2\lambda_{1}+1)} \\ &\cdot \frac{(\beta+\gamma+\lambda_{1}+\frac{1}{2})(\alpha+\beta+2\gamma+\lambda_{1}+\lambda_{2}+1)(\alpha+\beta+\lambda_{1}+\lambda_{2}+1)}{(\alpha+\beta+2\gamma+2\lambda_{1}+2)(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{3}{2})(\alpha+\beta+\gamma+\lambda_{1}+\lambda_{2}+\frac{3}{2})} \end{split}$$

One can obtain a similar formula for the operator $B_- = 1 + A_1 + A_2$ induced by the shift $\beta \to \beta + 1$, seeing that $\tilde{p}_{\lambda_1,\lambda_2}^{\alpha,\beta,\gamma}(x) = (-1)^{\lambda_1+\lambda_2} \tilde{p}_{\lambda_1,\lambda_2}^{\beta,\alpha,\gamma}(-x)$.

We have the corresponding LR-transforms

$$1 \mp A_1 + A_2 = R \cdot {}^t R,$$

$$A'_1 = R^{-1} \cdot A_1 \cdot R$$

$$A'_2 = R^{-1} \cdot A_2 \cdot R$$

respectively.

Details of these formulae will be discussed later.

Remark 3 It seems interesting to generalize our observations to more general case. For example, Koornwinder polynbomials have been generalized to BC-type orthogonal polynomials by Heckman-Opdam. Prof. K.Kadell has discussed the connection relations (8.15)-(8.16) in the case of Selberg-Jack polynomials. One may ask if simple product formulae like in Proposition 8 will be given in these cases.

References

- [1] G.Andrews, R.Askey and R.Roy. Special Functions, Cambridge UP. 2000.
- [2] K.Aomoto. Density matrices for Eigenfunction Expansions and LR-Transforms, preprint, 2000.
- [3] K.Aomoto, A Formula of Eigenfunction Expansions I, Case of Asymptotic Trees; II Exterior Dirichlet Problem in a Lattice, Proc. Japan Acad., 61, Ser.A, No1(1985) 11-14; 157-160.
- [4] K.Aomoto, Self-adjointness and limit pointness for adjacency operators on a tree, J. d'Anal. Math., 53(1989), 219-232.
- [5] R.Askey and J.A.Wilson Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Meni. Amer. Math. Soc., 1985...
- [6] J.M.Berezanski, Expansions in eigenfunctions of self-adjoint operators, AMS Transl., 17(1968).
- [7] M.Case and M.Kac, A discrete version of the inverse scattering problem, J.Math. phys.,14(1973),594-603

- [8] J. F.van Diejen. Properties of Some Families of Hypergeometric Orthogonal Polynomials in Several Variables, Transact. AMS., 351(1999), 233-270
- [9] S.N.Elaydi, An Introduction to Difference Equations, Springer, 1996.
- [10] H.Flaschka, The Toda Lattice II, Inverse scattering solution, Prog. Theoret. Phys., 51(1974), 703-716.
- [11] I.M.Gelfand and B.M.Levitan, On the determination of a differential equation from its spectral function AMS Transl.(2),1, 253-304(1955).
- [12] G.J.Heckman and E.M.Opdam. Root System and Hypergeometric Functions, I Compo. Math., 64(1987), 329-352.
- [13] S.Kakei, Dressing method and the coupled KP hierarchy preprint, 1999.
- [14] Y.Kato and K.Aomoto, Jacobi-Perron algorithmus, bi-orthogonal polynomials and inverse scattering problems Publ. R.I.M.S., 20(1984), 635-658.
- [15] K.Kadell. The Selberg-Jack Symmetric Functions, Ad in Math., 130(1997), 33-102.
- [16] K.Kadell. The Dyson Polynomials, mimeographed note, 2000.
- [17] J.Kaneko. Selberg Integrals and Hypergeometric Functions Associated with Jack Polynomials, SIAM J. Math. Anal., 24(1993), 1086-1110.
- [18] T.H.Koornwinder. Orthogonal Polynomials in Two Variables Which are Eigenfunctions of Two Algebraically Independent Partial Differential Operators I,II, Proc. Kon. Ned. Akad. v.Wet., Amsterdam, Series A, 77(1974), 48-58, 59-66.
- [19] J.Moser Integrable Hamiltonian systems and spectral theory Pisa, 1981.
- [20] P.van Moerbeke and D.Mumford The spectrum od difference operators and algebraic curves, Acta Math., 143, 93-154(1979).
- [21] A.Mukaihira and Y.Nakamura, Schur flow for orthogonal polynomials on the unit circle and its integrable discretization, preprint, 1999.

- [22] A.Mukaihira and Y.Nakamura, Integrable discretization of the modified KdV equations and applications, Inverse Problems, 16(2000), 413-424.
- [23] Y.Nakamura, A tau-function for the finite Toda molecule, and information spaces, in Symplectic Problem and Quantization, Contemp. Math., 17(1993), 205-211.
- [24] Y.Nakamura and Y.Kodama, Moment problem of Hamburger, hierachies of integrable systems, and positivity of tau-functions, Acta Appli. Math., 39(1995), 435-443.
- [25] H.Rutishauser, Der Quotienten-Differenzen-Algorithmus, Zeit. und angew. Math. Phys.,5(1954),233-251.
- [26] H.Rutishauser, Anwendungen des Quotienten-Differenzen-Algorithmus, Zeit. und angew. Math. Phys.,5(1954),496-508
- [27] H.Rutishauser, Une methode pour la determination des valeurs propres d'une matrice, C.R.Acad.Sci.Paris 240(1955), 34-36
- [28] Jiro Sekiguchi. Zonal Spherical Functions on Some Symmetric Spaces Pub. RIMS, 12 Suppl.,(1977), 455-464.
- [29] B. Simon The classical moment problem as a self-adjoint finite difference operator, Adv. Math., 137(1998), 82-203.
- [30] V.Spiridonov and A.Zhedanov. Discrete Darboux Transformations, the Discrete Time and Toda Lattice and the Askey-Wilson Polynomials Methods and Appli. of Anal., 2(4), 1995, 369-398.
- [31] G.Szego. Orthogonal Polynomials, AMS 1975.
- [32] M.Toda, Non-linear lattice waves, (in Japanese) Iwanami, 1978.
- [33] L.Vretare. Formulas for Elementary Spherical Functions and Generalized Jacobi Polynomials, SIAM J. Math. Anal., 15(1984) 805-833.
- [34] G.Wilson Infinite-dimensional Lie groups and algebraic geometry in soliton theory, Phil. Trans. R. Soc. Lond.A315, 393-404(1985)

[35] V.E.Zakhalov and A.B.Shabat, A scheme for integrating the non-linear equations of mathematical physics by the method of the inverse scattering problem I, Funct Anal and Its Appli., 8(1974),226-235.