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Deformed free probability of Voiculescu

MAREK BOZEJKO'
Institute of Mathematics, Wroclaw University
Pl. Grunwaldzki 2/4, 50384 Wroclaw, Poland

Abstract. We introduce 7-free product of states on the free product of C -algebras and r-free
convolution of probability measures on real line. This makes unification of the free and
Boolean probability. New classes of associative convolution of measures are considered
related to Muraki-Lou examples.

The plan of this paper is following:
1. Introduction.
2. r-free product (0 <r <1) of states.
a. r =1 - free product of Voiculescu
b. r = 0-Boolean product
r-Fock Space and 7-Gaussian random variables.
r-free convolution of probability measures on R .
Central limit theorem for 7-convolution.
Remarks to Muraki-Lou convolution and A -convolution of measures.
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1. Introduction

As each discrete group G with N generators is é homorphism image of the free group Fy in

the same manner we would like to say that each “natural” probability is a deformation of
the free probability of Voiculescu. In the papers [BS] [BKS] we considered deformed
classical probability and we get so called g-deformed Fock space, g-second quantization
and ¢g-Gaussian processes. In this note we propose some versions of deformation of the
free probability of Voiculescu using our technique coming from the conditional free
product construction [BLS],[BW]. We use one parameter deformation 0 <7 <1 and we get
for r = 1 the free probability and for » = 0 the Boolean probability.

One of the main result of this paper is the construction on the free product of non-unital
C"-algebras 4, with states ¢, : A — C, (we recall that by a state on a non-unital algebras

we mean positive functional of norm 1), a new examples of states ¢ :*4, — C such that
i @] A4 =@
ii. (Voiculescu property) If p(a,)=0 fori=1, ..., n, and
a4, i #i #...,

then ¢(aa,...a,)=0

In the case r = 1 we get the construction of the free product of states of Voiculescu. If r =0,
then we have the regular free product of states [B1,B2] (called also Boolean product). It has
the property that if a; € 4, , 4 #i, #..., than p(a@,...a,)=¢(a)...¢(a,) .

Using the construction of r-free product of states (0 < r <1) we can form the r-free
convolution of probability measures on R . Then we introduce the analogue of R(u) — R-

transform. The main ideas comes from the our paper [BLS,BW2].

As an example of application of R-transform we obtain central limit theorem for 7- 7
convolution. Our central limit measure x, is the “symmetrization” of the Marcenko-Pastur
measure (the free Poisson measure) which Cauchy transform is of the form:

G, (2)=
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which is 2-periodic continued fraction and the measure x4, is supported on two intervals if
0<r<l.

In the section 6 we propose some generalization of our construction so we can get some
results of Muraki and Lou concerning monotonic convolution and then in central limit we

have the arcsinus low that means the measurelsfl —x’dx.
4

2. r-Free Product of States
Let A, be a non-unital C'-algebra 4, with states ¢, : 4, — C . Let Z be the unitalization of

A4, (i.e. 4 = A4 +C1) and we define the extension of @ as g(1) =1, 3): | 4 = @,. Moreover let
define a new state y, =r@, +(1-r)d, where J, is the functional defined as

0 if x= A1

5‘("):{4 if x = Al

then y, is also a state on unital algebra Z and we can form the conditional free product state
@ on the free product C-algebra 4 =*4, =*4, :
0 =*@.¥,).

By [BLS] we knew that :7) is a state on C -algebra A . Hence also we get state @ = &3 | 4 o0
the free product of non-unital algebra 4 =*4,. We call ¢ =*_¢, - the r-free product state.
From the construction of @ we have the following properties:

@ o 4=

() ifa,e4 ,i#i,#..., then

ol(@ -re@)l(a, -rp@)l...@,-re@ )] =(1-r) p(@)...p(a,)
The formula (i) is equivalent to:

o(aa,...a,)= rzj:qp(aj)w(a1 avj @)Y o(a)pla, w(a C\l/, t;j .a,)

(i)
Fo k[ D™ +(A-1)" | p(@)-..0(a,).

We see that in the case 7 = 0 we get the regular free product of states (or Boolean). i.e.
p(aa,...a,)=p(a)...9a,),if a,€ 4 ,i #i, #.... The class of such as states we founded
in our paper from 1986 [B1,B2] which is a generalization of Haagerup states on the free
product of group. [Haal].

The most natural state on the group algebra of the free group Fy with the free generators

X, X,,..., X, is the Haagerup state

H (8)=4®, geF,
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if g =xPx?..xk, g #e, i #iy 2k #...,n,€Z,(g)= |n]|,l(e) = 0. Since the full C'-
:

N
algebra C'(FN)=HC *(Z)®, where the product is the free product of C* algebras and

i=1
H, =F*..*P
is the Boolean free product, where P (n)= q"'l , (n€ Z) is the classical Fourier transform of the

Poisson kernel.

One can see that in the case 7 = 1 our construction give Voiculescu free product of states in
the case when the algebras 4, are unital.

Remark 2.1. If (4, ) =* (4,9, is the r-free product as defined above then if a; are in
different algebras 4;, then p(aa, ...a,) = p(a, )o@y)...p(a,).
Moreover if @,a, € 4,be 4;,i # j, then

2.1) p(aba,) = rp(aa,)p(d) +(1-r)p(a )pb)p(a,)
Remark 2.2. From the formula (2.1) we can infer that for » # 0,1 our r-free product is not
associative i.e. if (¢, *, @)%, @, =@ * (9, *, @) thenr=0o0rr=1.]

Remark 2.3. From the formula (iii) we see that the 7-free product of states (¢ =* ¢,) has
Voiculescu property:
If p(a,)=0forallj and a; € 4,5 #i,#..., then p(aaq,...a,)=0
Also for r #1 ¢ is different from the free product of Voiculescu.
Problem 1. Find other examples of states F on *(4,, @) such that:
O Fly=o
(1) F satisfies Voiculescu property

Problem 2. If r-free product of states is again a state for r > 1?

2. r-Fock space and r-Gaussian random variables

Let H be a real Hilbert space and H will be its complexification. We define the free Fock

space F(H.)=CQ® éll{g’”. Now we make deformation of the scalar product as follows:

For x,,y, € H."" we put

(%0 7). =r*(x,,y,) ifn=2korn=2k+1,k=0,1,2,3, ....

Moreover (Q,Q) =(QQ)=1.
We can see (x,x) =(x,x) for xe #. The completion of F{%{ . ) with respect the scalar
product (,)r we called 7-Fock space and will be denoted F(H, r). Moreover for f € H we
define the r-creation operation 4*(f)x; ®...®x, = f®x, ®...®x, and the r-annihilation
operator A(f) such that A(f)Q=0 and 4(f)x,®...8x, =4,(f,x)x,®...9x,,
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1= 1 if n=2k+1
“r if n=2k

Proposition 3.1.
@ Af)Y =4'(f).feH
@ J4N|=|4" @)= mexa,re]
(iii) A()4°(g)=AN)(f.g) where A(N)x; ®...x, = 4,x,®...x,.
(iv) If P is the orthogonal projection of F{H, r) onto é} H®" | then
AN)=rP+(I -P)=I+(r—1)P.

(v) If 4, = A(e;), where {e,} is an orthonormal basis of 7, then
IZa,. ®A,||2 = max(l,r)"Za,. a |

Proof of (i) to (iii) follows directly from the definition. To get (v) let us observe that
HZa, 8‘4-"2 =||(Za, ®A,)(Za;. ®A4; )H = HZa,a; ®A(N)6g.l = IZa,.a,' ®1(N)I =
~[Saallent

Since A(N) is the diagonal operator, therefore JA(N)||=max(1,r).

Now we define r-Gaussian random variables. For f € H G(f) = A(f)+ A*(f) and for
a bounded operator 7 on F{H, r) we define the vacuum state £(7') = (TQ, Q) )

Corollary 3.2.

max {“Zaﬂ: MZ a;a, "} < "Z a; ®G,-| < 2max(7, ) max {“Za,a: I!,IZa,‘ a,."} .

We can now state the generalization of classical Wick formula (see []).
Let us recall that NC,(1,2n) denote the set of all non-crossing 2-partitions on {1, 2, ...,

2n},
e(V)=# {B; € V : d(B)) is even number}. Here d\(B,) is the depth of the block B; in the
partition ¥ as was defined in [].

Theorem 3.3. If f; € H then
G sGUGUL)--CUN= X {fi Sy ) (S ).

VeNG,(l....2n)

The proof of the formula (3.1) follows from general result which was proven by us in
the paper with Accardi [AB].
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Remark 3.4. In the case r = 1 (the free Gaussian random variable) this formula w:
obtained by R. Speicher,[Sp1].

If r = O (the Boolean Gaussian random variable) we have the following simple formula:

&GUHGU)--G(u)) = (1o L)\ fis L)+ A frmrs o) -

In the special case when f; =f we have

2n .
G = {'f " irk=an
0 if k=2n+1.

Hence if | f||=1, we see that the distribution of the Boolean Gaussian random variables G(f)

in the vacuum state ¢ is the Bernoulli law g, = —;—(5, +d,).

Later on we will calculate the distribution of the r-free Gaussian random variables.
Moreover in the Boolean case we have much more that corollary 3.2.

Corollary 3.5.
(3.2) “Z a, ®Giﬂ = max {"Z aa ", “Z aa, "}
The proof of (3.2) follows from the following observation for the block matrices:
(0 TYO0 T (rr* o
" ONT" o) {0 TT

0 a - a

n

*

a
: 0
a‘

n

and 7'=) a,®G, =

Problem 3. Let VNAN) = VNAG,, ..., Gn) will be the von Neumann algebra generated by
Gy, ...,Gy in the r-Fock space F(H, 7).

If 7 = 0, then VNo(N) = M (C).
If r = 1, then VN1(N) is the free group factor — VN(Fy).

Try to verify if VNAN) is also a factorial von Neumann algebra for 0 <7 <1.
When does exist a trace on VNAN)?

3. r-Free Convolution of Probability Measures on R.

In this section we will work mainly with probability measures 4 on R with compact support

(ueP”). Let
mk(p)zj’xkdp(x), k=0,12,...
R
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and we treat the measure 4 as a state on the algebra of polynomials C(X): p[X "] =, (u).

If we take two probability measures x4, 1, eP° we define their
r-free convolution (1, ® u,) as follows:

@.1) (4 ® )X 1=, ) (X, + X)) | k=01,...,
here (1, *, 4,) is the r-free product of states on the algebra of non-commutative polynomials
C(X LX)

On the other hand using our conditionally free product of pairs of probability measure as was
done in [BLS]. The r-convolution of measure 4, &, is the measure u denoted as 1, ® 1,
can be obtained in the following way:

(14, V,(1)B(,,,V, (14,)) = (12,v) , where v is the Voiculescu free product
V, (1) BV, (1) =v .
Here V,(u)=ru+(1-r)d,.
This implies that
[# V() =r [ xd(upe), k21
and therefore using the conditional R-transform R, (k)= R(u,V,(u)Xk) we have the
following formula for calculation of moments for u € P*:

(42) [rdun= 3 RO,
VeNC(n)
where R, (V)= HR” (#B) and e is a suitable function on the set of non crossing partitions
BeV
NC(2n).

The important property of the function e is that e(Vo) = 1, where Vo = {{1, ..., n}}.
The formula (4.2) is obtained directly from the formula (4.3) from the paper [BLS]

4.3) m,(u)= Z Z R,, (4 )’"1(1)(/‘) . -mz(t-l)(/‘)mz(k)(ﬂ)" nokIE)
k=1 1Q)...1(k)=0
1)+ I(k)=n—k
The formula (4.2) implies that r-free convolution of probability measure is associative.
Moreover if 8, is Dirac measure at point xe R, then §,®6, =4,
Problem 4

From theorem (3.3) we know that for 2-non-crossing partition V,
e(V)=#{BeV :d,(B) iseven}. Find a description of the function for all non-crossing
partitions.

After this consideration we can now formulate our result:

Proposition 4.1
If ue# and for ze C* ={zeC:Im(z) >0} then
1 1
“4.4) C.®) = z—R”(rGﬂ(z)+(l——r)-z—), where



G,(2)= j’ i‘;“—_(’;—), RO(2)=R,(2)= iR” k)z* .

The proof of (4.4). is the reformulation of the corresponding formula from the theorem 5.2 in
[] in the particular case where the measure v =r, +(1-r)J,.

Therefore G, (2) =rG (z)+(1- r)—l- .
z
The details are left to the reader.

Remark 4.2

If » = 1 the fact (4.4) is the Voiculescu theorem for the free cumulant. If 7 = 0 then we have
Boolean cumulant formula of Speicher and Wourudi[ SW1:

-
G,(2) z

4. Central Limit Theorem

This section is devoted to the main result of this paper.
Theorem 5.1

Let X, =X c(4,p), where Ais a C algebra with a state @ and X, X,,... are r-free

random variables in the probabilistic system (A4, ¢). That means that A=* A4, ¢ =* ¢, and
X, =X, €(4,9). Assume that:

(i) o(X)=0
@  eX)=1
i)  |X[]<C.

N
If we take S, = —JLAFZ X, , then lim P(Sh) = I x*d u_(x) , where the probability measure

H, :%(j;(x)ll, +fr("x)l(-1,))dx and f,(x) :;1;\/4"-("2 —-(1+r)).

Moreover the Cauchy transform of the measure x4, has the following continued fraction form:

G, (2)= !
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Proof. The limit measure 4, is such that

G.1) Rf:)(z)=z.
The argument is almost the same as in the proof of the free probability central limit theorem
so we omit it (see [VDN]).

Hence the Cauchy transform G(z) =G, (z) of measure 4, satisfies the equation:

L. z-—(rG(z)+(]—r)-£—).

(5.2) )

Now we will show that G(z) = H(z), where H(z)=—

First we see that H(z)=z— —;—1—(—)- So we see that H = H(z) satisfies the following
z-rH(z

equation:

(5.3) zrH*+(1-2*-r)H +z=0.

But from the formula (5.2) follows that G(z) is also the root of the equation (5.3). Therefore
G(z) = H(2).

Now we want to calculate explicit form of the limit measure 4, . For this let us observe that
the following fact holds:

(5.4) M) = m,(p,),

where n > 0 and p, is the free Poisson measure with intensivity 7.

To show (5.4) let us recall that
(5.5) m(,)= Y, ™

VeNC(n)

For the proof of that fact see [Sp1,BLS]. On the other side let us calculate the moments of our
limit measure 4, and the free Poisson measure p, using our theorem from [AB]:

m2(ﬂr)=1 'nl(pr)zr
m4(ﬂ,)=l+r m2(pr)=r(l+r)
my(u,)=1+3r +r? my(p,)=r(+3r+r?)

and by the induction argument we get the proof of (5.4).
Hence by small calculation we obtain the equation:
(5.6) G, (2)=~1G, (%) +(1-2)~.
r - rz

Now in the proof we need the following simple lemma:

104
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Lemma 5.2 Let f € L'(R), and supp(f Flc R* and
F =2 (£02+ (- 75()

then the Cauchy transform of ? is of the form:

fWx)
BN

5.7 G~(z) 2G,(z%), where F(x) ===

Since P. =(1-r)d, + F,(x) dx, where 0<r <1.
This implies that:
(5.8) G, (2)=2G, (z)= G; (2).

Therefore by lemma 5.2 we get that
(59) =J (x)dx= (f(x)z,(x)+f( =X) 21y (¥)) e
As we knew (see [VDN,BLS])
F.(x)= 571;\/4r ~(x-(1+r))*.

rSince f(x)=2xF (x*) = ;1;\/4r —(x* =(1+r))?

and supp f; = I, where [, is interval of the form /, = [1 ~Jr ,1 +r ] , therefore this completes
the proof of theorem 5.1.

Remark 5.3 If 7 = 1, we have f(x)=—+4-x
T

Therefore y, = —2-1—\/ 4-x’ X3, 4 - s0 this is semicircle low of Wigner (free Gaussian
pn ,
random variables).

Remark 5.4 It is also possible to calculate the measure u, for 7 > 1 and then we can see

that measure has a one atom at O (see [K]). It will be interesting to see why that measure is
connected with quasi-free free state considered by Shlyakhtenko [Sh]?

5. Remarks on Muraki-Lou convolution and A-convolution.

In this chapter we present some generalization of 7-free convolution of probability measures.
For this let C : Prob(R) — Prob(R) will be some map and Prob(R) is the set of all

probability measures on the real line. We will define C-free convolution of measures as
follows:

(6.1) (44, C() ) B (14, C(1,)) = (1, C(1) ) BC (1)),
where the convolution of the pairs of measure is conditionally free convolution ([BLS]).

The formula (6.1) defines C-free convolution of 1, © u, =
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In the special case when C(u) =V, (u) =ru+(Q1-r)é, = (ré, + (1-r)d,) O yu by above method
we obtain again r-free convolution. Here O denote the multiplicative convolution of
probability measures on real line.

Another example of deformed free convolution was presented by Wysoczanski and myself
(see [BW1,BW2]). This corresponds to C-convolution, where C = U, (¢ 2 0) is defined by the
1 t
G,n(@ G,(2)
limit measure K; is the Kesten measure which is the spectral measure for the random walks on

+(1-0)z, where u(t)=U,(u)=C(u). In that example the central

equation

the free group Fy and the parameter 7 = 1——2—lﬁ . The Cauchy transform of the measure X has

following continued fraction form:

GK, (2)=

z-"-,

The rest of that chapter will be devoted to the special class of convolution — called
A -convolution which corresponds to the map C : Prob(R) — Prob(R) done by the

multiplicative convolution O on the real line by the suitable measure
w; so we define C(u) = 4 U@ or in another words if §, = Ix"da)(x) , then

m, (C(u))=38,m,(u),n=0, 1, .... In that case our A-convolution is associative, since we
have R-transform — Rﬁ = R*(u) which make linearization of our C-convolution. That exactly

means that R*(x© u,) = R® (1) + R*(14,) . Also there is a nice connection between R* -
cumulants and moments done by formula:

_[ x"du(x)= Y RA(V)tV,A)
R

VeNC(n)
for proper function #(-, A) on non-crossing partition set NC(7). Now we can present a
generalization of central limit theorem for A-convolution.
We recall that dilatation D, of the measure 4 is defined as D,(u)XE)= ,u(lE) for Borel set
EcR and s 0. ’
Theorem 6.1
Let 4, € Prob(R) and all moments of measures u; are finite. Assume that
@) [xdp;(x)=0
(ii) j' x’du (x)=1
(iii) | [ x"d,uj(x)l <B,, forallj,
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then the measures S, =D |, (14)©...© D, (u,) weakly tends to limit measure 4.
W W

D,(u)E) = p(E) for Borel set ECR.
N

Moreover

(6.2) G, (2)= (<> Ri2)=2).

1
z —GC( ”)(z)

The proof'is the same like theorem 5.1 so we omit it.
Corollary 6.2

If we take as a measure dwo(x) = le Xy dx then the corresponding A -convolution is related
to the convolution discovered by Muraki-Lou and the central limit measure is the arcsinus low
1 1
dx .

7T 2 -x?

In the proof of the corollary use the fact that C(u) = l\/2 -x° x[ 7] dx if
. ﬂ- !
1

M =———=—==dx . Moreover
N2 —x?
1
Gu(2)= 1
z- :
. %
%
VA
z——22
RN
and
1
GC(;:)(Z)'_' }/
z - 2
z- f
. _ %
)
z-—£
z—"".

so evidently the equation (6.2) is satisfied.

Problem 5
Characterize all central limit measures for all moment sequences A =(J,) in the case of

A -convolution.

Remark 6.3

x?

One can show that the classical Gauss measure e 2dx is not the central limit

1
2r

measure for any A-convolution. Hint: Use the equation (6.2).
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Remark 6.4

In our case A-convolution are commutative but as was shown by Muraki his monotonic
convolution is not comutative.

Remark 6.5

If we take C(u)=u 038, =D,(u) i.e that 8, =m,(w)=s" then we obtain a quite
interesting deformation of the free convolution. The case s = 0 is again Boolean convolution.
The corresponding central limit measure for that convolution is the measure x4 =y, , for

which Cauchy transform satisfies the equation
1

1 z)’
=20

If 0<s<1, then one can verify that our central limit measure 4, is discrete measure

G,(2)=

and the orthogonal polynomials with respect that measure satisfy equation:
xP,(x)= P, (x)+s"F,,(x), P(®)=1 PB()=x.
That last fact about orthogonal polynomials is equivalent (by Stieltjes theorem) that the
Cauchy transform of the measure 4, has the form:

G,(2)=

z—"".

We will finish our note with the following problem related to the last example of

convolution.
Problem 6
@ Calculate the support of the measure u, for s <1.

(ii) Consider also the case s > 1.
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