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A construction of interacting Fock spaces

derived from quantum decomposition
and its applications

Yukihiro Hashimoto ! (44T #)
Graduate school of Polymathematics, Nagoya University

(BEBRFEFRFRS THEM EH7EH)

1. Introduction

Random walks on discrete graphs have been discussed in algebraic probability theory as they
provide us a rich resource of many new ideas. Recently we introduce the idea of quantum
decomposition in the category of discrete groups [12]. Let G be a discrete group with a length
function |- | : G — N U {0}. Suppose that an element a € G has the property

lag| =19l £1, VgeG.
Then we naturally come to a ‘decomposition’
a=at+a”

where atg = ag if |ag| = |g| + 1 (resp. a~¢g = ag if |ag| = |g9| — 1) and a*g =0 if |ag| # |g| + 1
(resp. a~g = 01if |ag| # |g| —1). The idea traces back to the Hudson-Parthasarathy theory [14]
on quantum analysis of stochastic evolutions. Our approach of the quantum decomposition has
advantage in quantum analysis of set partition statistics. We construct a sequence of one-mode
interacting Fock spaces associated with a filtration of the group. Then we directly observe an
intrinsic Fock space structure associated with discrete Laplacians on large Cayley graphs. We
show stochastic convergence of such a sequence of interacting Fock spaces and obtain a fully
quantum version of the de Moivre-Laplace theorem for the discrete Laplacians (Theorem 4.1).

In this paper we present various applications of quantum decomposition to the limit theorems
for the discrete Laplacians on Cayley graphs. In Section 5.2, we see that the Haagerup states
give rise to a transform on set partition statistics through their coherent expression. Hence we
explain the reason for the appearance of the free Poisson law in the context of the central limit
theorem under the Haagerup states and reproduce the result in [10]. We observe the asymptotic
behavior of products of free elements in Section 5.3 and the anti-commutation of free elements
in Section 5.4. The idea of quantum decomposition is applied to more general discrete graphs.
As an instance, we illustrate a result on the Hamming graph in Section 6.

2. Quantum decomposition in a discrete group

Let G be a discrete group equipped with a length function |-| : G — Ng := NU{0} and a set
of generators  := {g, | @ € Z*}. Throughout this paper we adopt the convention {g_, = g;'}
and assume g_, # g, for simplicity. We say that ¥ is compatible with respect to the length
function | - | if

(A1) |ga| =1 for any g, € %,
(A2) |9o-g| =gl £ 1 for any g, € £ and g € G.

Then we introduce a ‘quantum’ decomposition of g,:
(2.1) 9o =9a + 9a-
1JSPS Research Fellow.
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We take the left regular representation m : G — 1?(G). Let m(g¥) be bounded operators defined
by

Sgugr  if [9ag] = lg| + 1 _ ) if |gagl = || - 1
2.2 )5, = { 99 y ’ §g =14 99 - ’

Here 0, denotes the characteristic function of a singlet {g}. Then we see that 7(g,) = 7(g}) +
™(9a), 7(94)" = 7(9%) and [[m(g3) fllie < || fli2 for f € I*(G). |

A family of subsets 3™ := {g, | |o| = 1,..., N} C & gives a filtration of G: GO c G® ¢
-+ C G, where GW) is the subgroup generated by ™). For each g € G put
w(9) = {(9002) € ZM x G | m(g)d: = 5},

(23) w(_N)(g) = {(9a, 7) € ZM) x GW™) | w(g3)é, = 9}

We note that 7 (g£)d, =, implies |g] = |z| £1 and #wiN) (9) + #w™ (9) = 2N by assumption
(A2). With these notations we assume :

(A3) for each n € N, there exist w, € N and C, > 0 such that

#{g € G™ | |g| = n and #w{V(g) # wa} < Cu(2N)Y,
(A4) for each n € N,

sup  sup #wiN) (9) =: W, < oo,
NeN geGM) |g|=n

and lim sup,,_,., /" < 0.

(A5) if |g] =n and g € G™), there exists an n-tuple (ga,, . . -, ga,) € (™)™ such that

8 = (ga) * - (ga, )e-

Canonical examples are given in section 5.

3. Asymptotic interacting Fock space associated with a discrete group

For each subgroup G™), we construct a one-mode interacting Fock space [2] as follows. The

vacuum vector is defined by |0) := J.. A vector v € [2(G'M) is called n-homogeneous if it has
a form of

(3.1) v=" 3 wg(@I0), v(g)€C.

9eGW) Jg|=n
We define a sequence of homogeneous vectors |n)") € [2(G) for each n and N, by

W= (=) S e,

geGM), |gl=n

Then the operators

afp = w(gty)+---+mlgh) +m(gf) + -+ 7o)
ay = w(giy)+--+m(9ly) +7(9y) + - +7(gy)

behave like a creation and an annihilation, respectively.
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Lemma 3.1. For any n > 0,

(N) — (N)
n =wppn+1 + Up
’_2Nl ) +1] ) +1( ,——)
ay (N) — 1)) 1 —
n+1 =|n + Upn , and 0 =0,
where v,(N™) is an n-homogeneous vector such that an(N"‘)H,z = O(Nm).

Proof. By definition we have
a; ) 1 n+1 Z Z
(32) Sy = () (o) ~(2)(0).
2N 2N |a|=l,...,N xGG(N)’ |z|=n

By virtue of assumption (A5), the right hand side becomes

1 n+1 +
(33) _ (ﬁ) > S a(gh)r@)o)

9€GM), |gl=n+1 (g, z)ew!™ (g)

(%) T w0,

geGN), |g|=n+1
= wnpaln + 1) +v

where v is an (n + 1)-homogeneous vector

_ (L™ R "
v_( m) Y N (9) - wn)m(9)|0).

geG) | |g|=n+1

It follows from assumptions (A3) and (A4) that ||v||2 = O(1/N). The second relation is obtained

similarly. The last one is proved by definition. O
Lemma 3.2. For eachn >0 and N > 1 it holds that
1 1
N) — _— —_

where (wp)! = wiws - - - Wy
Proof. Note that (2N)*(n|n)M) = #{g € G™ | |g| = n}. Then, the relation (3.2)(3.3) and
assumptions (A3)(A4) imply that
IN#{g € G™ | |g| = n} = wn#{g € GV | |g| = n + 1} + O(N™).
Hence the assertion follows. O

Definition 3.3. Let T be a one-dimensional complex vector space equipped with a pre-scalar
product

(z|w)M) := zw(®(n)|®(n))M, z,w € C,
where |®(n))™) stands for a number vector defined by
@)™ = (wn)! )™

The completion of the orthogonal sum &,{T'", (-|)$"} is denoted by ['(G™)
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By Lemmas 3.1 and 3.2, we have for any n > 0,

n))™ = |®(n M 4w
\/——Iq’( ) |®(n+1))"" + n(\/—')

N _\$(n N =y n()vn—
\/2&]\7@( + 1) = wna| @)™ +va(5),

TR |R(0) " =

and (®(n)|®(n))™ = (w,)! + O(1/N). With each GWY) we thereby associate a one-mode
interacting Fock space T(GW)) with parameters {\g := 1, A\, := (wy)!}. (See [2] for definitions.)
Definition 3.4. For X € C we define
o o0 ,\"
EQNW =D M) ™ =3 (@ (),
n=0

n=0 (wn) !

whenever (E(V)|EN)) = 300 |A12*/(wy)! converges. We call |E(A))N) a coherent vector.
It is shown that a coherent vector is an eigenvector of ay in an asymptotic sense, in fact,

Lemma 3.5. For A\ € C in a neighborhood of 0 we have

TJEMN® = NENND + o(p)

Proof. Assumption (A4) yields the estimate:

N N — 1
O = NEQHD|| = O(5).

Tl
O

Lemma 3.6. Letv € I2(G®™)) be an n-homogeneous vector. Then, alv and ayv are respectively
(n+ 1)- and (n — 1)-homogeneous vectors with the norm estimates:

lafvllZz < 2NWallvllz,
layvlizz < 2NWalfull.

Proof. Suppose that v is given as in (3.1). Then,

2

latelr= > (X v@ rghn)0)
9eGWM) lgl=n+1|| (ga,z)ew(™(g)

= ¥ > v(x)l < > W) (Y @)P)

9eGM) |g|l=n+1 (ga,x)Ew(+N) (9) geG(N),|g|=n+1 (ga» z)ew(N) (9)

<Wo Y #W@)()]? < 2NW,|lv|?,

zeGWM) |x|=n

where #w(,N) (z) < 2N is taken into account. Assumption (A3) implies the inequality for ay
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4. Interacting Fock space in the limit

We construct an interacting Fock space for the limit of af; and ay as N — oco. Let I'(G)
denote the one-mode interacting Fock space with parameters {Ao := 1,\, := (w,)!}. By
definition I'(G) is the completion of the orthogonal sum of one-dimensional space I, := C|®(n))
equipped with a pre-scalar product

(z|w)n = Zw(®(n)|P(n)), z,w € C,

where |®(n)) stands for a number vector with norm /A, = y/(w,)!. The creation at and
annihilation a~ are uniquely determined by

a*|®(n)) =|2(n+1)), a7|®(n+1)) =wapa|®(n)),  a7|2(0)) =0.
For A € C, we define a coherent vector

[e ] /\n

(4.1) Z

n=0

whenever (£(A)|E(N)) = ' 0 |AI>*/(wn)! converges. By definition, a~|E())) = A|€(N)) holds.
For u = 3 u,|®(n)) € [(G), we put

(4.2) u™ = "0, |B(n))M € T(GM).
Theorem 4.1. Letm > 1 and ey, ..., e, € {£}. Then, for any u € I'(G) and n € Ny we have

: ay W) Q... gtm
i ] (R (S o)y = (ula -+ al@(mhece

Proof. By definition, there exists a constant wy(€i,...,€r,) depending on n € N and the
indices of the product such that

a® -+ -a*™|®(n)) = wpley,. .., en)|2(1)),
where [ = n+ #{i | ¢ = +} — #{i¢ | & = —}. Then, combining Lemmas 3.1, 3.2 and 3.6, we

see that . e
() () 10 = o)+

where |v)(") is an l-homogeneous vector whose norm is of order 1/v/N. Then the assertion
follows. .

iiem)

5. Applications to limit theorems in algebraic probability theory

5.1. Central limit theorems on the vacuum state. Since Theorem 4.1 is nothing but
a general form of limit theorems in algebraic probability theory, it particularly leads to the
algebraic central limit theorem with respect to the vacuum state (0] - |0):

(5.1) Jim <0|(“Nj2”) 10}y = (@(0)](a* + &™) [@(0))r(c).

Let A (resp. F') be a free abelian group (resp. a free group) generated by T := {g,}, where
95! = g-o according to our convention. Each element g € A (resp. g € F) has a canonical
expression in terms of X:

— pfl €m
9= 9a; " " Gam>
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O<ayy<ag < - <oy, E€Z
(resp.  lon| # |oo| # -+ # |am|, & €Z),
and a reduced length function is defined by

l9l = lex| 4+ - + |eml-
Conditions (A1)(A2)(A5) are obvious. As for (A3)(A4), we employ some combinatorial argu-
ments. In fact, we see for g € A (resp. g € F) with |g] = n,
#0i(9) <, #{g € A lg] =n, #u{"(g) < n} < (2N,
2N —n < #uw™M(g) <2N -1,

( resp. #wSrN)(g) =1, #w™(g) =2N - 1).

Hence we have w, = n (resp. w, = 1), which implies that the‘interacting Fock space in the
limit is the one-mode boson (resp. free) Fock space. In fact, by (5.1) the limit distribution

dp of the field operator (af; + ay)/V2N under the vacuum state is determined by its 2m-th
moments, which is well known:

2m)!
%, for G = A,
O +a 0o =4
m, for G = F.
In other words,
. ,
——e "2y forG=A
/’""'271_ bl )

du(z) = .
gxl-wl V4 —z2dx, for G=F.

5.2. Limit theorems for Haagerup states. It is well known ([4][6]) that the Haagerup
function o, (g) = ¥9' (0 < v < 1) on a finitely generated free group FY) is positive definite.
In the previous paper [10], the limit distribution of the field operator (aj; + ay)/v2N under
the Haagerup state was obtained by way of Fourier transform of the Bessel function. The
result was thought as an analogy of a central limit theorem for a vacuum state, though the
limit distribution had peculiar properties. In fact, the limit distribution coincides with the free
Poisson law [22] up to translation. It is noticeable that limit behaviors of the field operators
under a vacuum state are completely described by pair-partition statistics [3], while the Poisson
laws are induced from all set partition statistics [14][19][17]. The next result shows that the
Haagerup states give rise to a transform of set partition statistics through a coherent expression
of the Haagerup functions.

Let us first consider a general interacting Fock space I with parameters {\, = (w,)!}. Forn >
0, let o, : Clwi,ws,...] = Clwi,ws, . ..] be a shift operator on the polynomial ring in w;’s de-
fined by o (ws) = witn. As (2(p)lat - - a|®(q))r € Clwr,wy, . ..], on ((2(p)|a - - - a|®(q))r)
is well defined.
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Proposition 5.1. For an interacting Fock space (I, {\.}) and a coherent vector |E(A))r given
by (4.1), we have a recurrence decomposition

(EW@* +a7)™2(0)r = (2(0)|(a™ +a™)™|®(0))r
oo [(m-1)/2]
+3 Y a(@Ol@t +a)eo)r)
=1 =0
- —(®(n)|Aa*a”|®(n))r - ———;(®(n - 1)|(a” +a7) |2(0))r-
Wy (wn_l).
Proof. By definition, the left hand side is a linear combination of (®(n)|(at + a~)™|®(0))
where n > 0. The term for n = 0 appears in the first term of the right hand side. Suppose
n > 1. If (®(n)|a® ---a“|®(0)) # 0, there exists a unique ! satisfying

(5.2) ati+2.. .aem|<p(0)) € CI‘I’(TL _ 1)>, a2+ = a+,
(5.3) a* .- -a?|®(n)) € &;2,C|®(p)) forany 1<k <2

It follows from (5.3) that

(@(n)[at - - |@(n)) = 0w ((@(0)]a" - --a[2(0) ) (B(n)|2(n).
Note that (®(n)|a‘+1|®(n — 1)) = (®(n)|a*a™|®(n))/ws. Then we have a decomposition
(wn){(@(n)]a® - - - a|®(0))
= 0 ((®(0)la" - a=[2(0))) - (B(m)]a*a"|&(n)) - (B(n — a2 - a"[2(0))
which leads to

[(m-1)/2]

(@)@m)|(@* +a)m@0) = Y. oa((2(0)](a* +a7)*|2(0)))

=0
~(@(n)|a*a”|®(n)) - (B(n — 1)|(a* +a™)™"*71|2(0)).

Thus the assertion follows. O
Let us return to the special case of I'(F).

Lemma 5.2. For any A € C with || < 1,

0 (9) = (ENIm(9)I0) 3,

holds for any g € FM,
Proof. If |g| = n, by definition we have

o= (J3) = LA O™ = EWIEI0™

The assumption |A| < 1 guarantees that |£())) € ['(GW)) is defined. O

It follows from Theorem 4.1 that the moments of the field operator in the limit are given by

dm e (A7) = (el + o) io e
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Since the parameters \,’s are identically equal to 1, we have o, ((<I>(O)|(a+ + a‘)2‘|<I>(O))) =
(®(0)|(a™ + a™)*|®(0)). Denoting by P, the vacuum projection, we rewrite the factor

(®(n)la*a”|®(n)) = 1 = (2(0)|Fo|2(0)).

Then it follows from Proposition 5.1 that

(5.4) (EMl(a* +a7)™@(0)) = ((0)|(a* + a™)™|2(0))
[(m—1)/2]
+ Z (®(0)|(a* + a7)%|®(0))

H(2(0)[AR|2(0)) - (E(N)I(a™ + 7)™ 71 @(0)),

while an expansion of (a* + a~ + AP)™ gives

(2(0)|(a™ +a” + APo)™|2(0)) = (2(0)|(a™ + a™)™|®(0))
[(m=1)/2]
+ Y (20" +a7)*|(0))

(2(0)AR|2(0)) - (2(0)[(a™ +a™ + AP)™ 71| @(0)).
By induction we then obtain the following
Corollary 5.3. In the free Fock space {TI'(F'), {\, = 1}}, the identity

(ENN(@* +a7)™@(0))rry = (R(0)|(a* + a™ + APo)™|8(0))r(r)
holds, where Py is the vacuum projection.

Remarks.

(1) Since in the free Fock space, the vacuum projection Py = I —ata~, the random variable
a® +a~ + AP, is nothing but the free Poisson one [19], that is,

at +a” + APy = )\+——<\/—a -\/—X) (\/_a-—%)

(2) Corollary 5.3 describes a Gaussian-Poisson transform in terms of coherent vectors, while
Oravecz [16] recently introduced a Gaussian-Poisson transform called the F-transform
for an arbitrary symmetric measure from the viewpoint of orthogonal polynomials.

(3) With the recurrence formula (5.4) one obtains a functional identity for the moment
generating functions. Put F'(t) = 14 | F,t™ with F,,, = (E(\)|(a*+a~)™|®(0)) and
C(t) = (1 — v/1 — 4t2)/2t?, which is the moment generating function of the normalized
semi-circle law. Then we have the identity F(t) = C(t) + MC(¢)F(t), from which the
limit distribution is computed easily:

1 1 1 V4 — z2
dp(zr) = max {O, 5 (1 - ﬁ)} 5A+§(x) + o X225 Ty A$d$.

This coincides with the result in [10] up to translation in the case of A € [0, 1].
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5.3. Multiplication of free elements. Corollary 5.3 implies that under the Haagerup state,
Sn/V2N = 7(g) + n(g;") + -+ + 7(gn) + 7(gy') is decomposed into a creation a*, an
annihilation a~ and ata™ in the limit. In this subsection we present a central limit theorem
associated with a multiplication of free elements, and again we obtain the same decomposition
as Corollary 5.3.

Let F be a free product of Z/2Z, F = x2,Z/2Z0;, where o;’s are generator of order 2. Note
that o;’s are free from each other with respect to the vacuum state (0| - |0) in the sense of
Voiculescu [22]. Let us consider a set of products of free elements ¥, := {w;; := 0;0; (i # 7)},
which are not free from each other, and a subgroup F» C F' generated by ¥;. We use a new
length function |- |5 : F; — Ny with respect to £, different from the one introduced in Section
5.1. Since any product wj,;, - - - Wi,,j,, has a reduced expression in terms of o0;’s,

Wigjy * * Winjon = Ty " * Oky

where k; # ko # - - - # ki, its length is defined by

(5.5) Wi, «* Winjm |2 1= 1/2.

Then we see for any g = oy, - - - 0,, € F3 and w;j, the following three cases occur:
lgla+1, if j # ki,

(5.6) lwijgla =< lg9la — 1, if (3,7) = (kq, k1),
|9l2, if j = k; and  # ko.

It follows from |w;;|; = 1 and (5.6) that |g|, € N for any g € F5.

The existence of the third case is a noticeable difference from our discussions before. Con-
cerning the new case, we extend our argument. The condition (A2) in Section 2 is replaced
to

(A2) |ga - 9] = |g] or |g| £ 1 for any g, € ¥ and g € G.
In accordance with (A2)’ we have a ‘quantum’ decomposition of g,:
(5.7) 9o =95 + 95 *+ 92
where g% are defined by (2.1) and g2 is given by

6 if |gag| = |g|
o 6 — 9a g [a] )
™(9a)%s {0, otherwise.

Let us return to the example (Fy, 53). We put T := {wy |1<i#j< N} FN) denotes
the subgroup generated by ZgN). For g € FéN) we define w(iN)(g) by (2.3) where we take GV
(N) (N)
for F;"’, and we '(g) by

(5.8) wiM(g) == {(wij,z) € ) x B3 | w(g2)d, = &}

By definition, we have wSLN)(e) = wM(e) = 0 and W™ (e) = ) for the unit e € Fy. It is easy

to see that for g € FQ(N) with |g|]s =n > 1 and for large N,

#wSrN)(g) =1, #w(_N)(g) = (N —1)%? and #w™M(g) = N - 2.
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Also note that #w+ )(g) + #w™M (g) + # (g) = #Z) = N(N - 1). According to Section
3, we define a number vector :

n

1
|B(n))™ := T > w(g)o),
V #23 gEFN)(2),|g|2=n

and define canonical operators corresponding to the decomposition (5.7),

ay :=—l———— Z m(wg;),

ij
V#ES 1<izi<n

where € = 4, 0. Then by similar arguments in Section 3, we have

1B = B+ DI + s (1),

1B+ 1)) = [BE)™ +va(3),

forn > 1,

(5.9) 1
ay|®(n)) ™) = |@(n))™) +Un(ﬁ),
ay|0)™) = ag|0)™) =0,

where v, is a homogeneous vector defined in Section 3. We also construct an asymptotic
one-mode Fock space I‘(FQ(N)) by way of similar manner in Section 3.

Let I'(F) be the one-mode free Fock space, a*, a~ and a° := P, be the creation, the annihi-
lation and the vacuum projection respectively, used in the previous subsection. It follows from
(5.9) that we have a ‘quantum’ central limit theorem associated with (FZ(N), 5™y as follows.

Theorem 5.4. Let m > 1 and €y, ..., €, € {£,0}. Then for any u € T'(F) and n € Ny, we
have

. asy asyr N €
lim (u®)] ﬁ | e | 12y, = (ula® -+ @),
#23 \V #Es

where we use the notation (4.2).
Particularly we obtain a classical central limit theorem.

Corollary 5.5.

(N) _ + - oym
0 ey 3 o) D = O 4P

1<i#j<N

5.4. Anti-commutation of semi-circular elements. Throughout this paragraph, we use
the notations in Section 5.3. By taking subsets of Z(ZN), we obtain various kinds of ‘quantum’
decomposition. See [11] for detail, where combinatorial moments are calculated by way of path
counting on graphs. Here we observe one of the decompositions, which leads us an analysis of
anti-commutations of semi-circular elements.

Let us take a subset Zg\? C ZgN) for 0 < v < 1,

zg{? = {w,; € n{M |1 <i<max{l,yN} <j<Norl<j<max{l,yN} <i< N}.
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FZ,(,I,\Y]) denote the subgroup of FZ,(N) generated by Eg\y. Since (5.7) holds, we again obtain a
decomposition

(5.10) Wi = W5 + Wi + W,
According to the decomposition, we define operators
€ .__ 1 €
(5.11) ay = — Z m(wg;),
w,-jEFgf,)

where ¢ = +,0 and v := #E(N) ~ 27(1 — 4)N2. The purpose of this paragraph is to establish
a limit theorem on the operators (5.11) for a constant . General cases are discussed in [11].
It is easy to see that for any g € Fég), we have

(5.12) 2(yN = 1)((1 = )N = 1) < #™(g) < 29(1 = 7)N2.

However, to determine #w.(FN) (g9) and #ng) (g9), we need a delicate argument as follows. Let
= [1,yN]NN and J := (7N, N]NN. For each n > 0, let us decompose the set V,, of elements

F(N) with |g|s = n into 22" disjoint subsets,

N
Vo=l BV llgh=n}= I  Alm,.,mn
M, N2n€{l,J}

where A(7,...,792,)’s are given by

A,y .. ymon) = {0i - 0i, €EVn | %1 €EM,y... 20 € Non}

With the notations above, we see

(N)(g) =1, forge A(I,J,n3,...,m) UA(J, I,n3, ..., 02n),

(N)(g) =0, forge A(L,I,n3,...,0a) UA(J, J, 73, ..., M2n),
(1 — NN —1<#0M(g) < (1= 7N, for g€ AL,y - ., 7an),
YN -1 < #wM(g) <N, for g € A(J,ma, - ., Tom).-

(5.13)

According to the decomposition of V,, the number vector

D)™ = (—) 3 n(g)l0)

gE€Vn

has an orthogonal decomposition into 22* homogeneous vectors

'Q(n)>(N) = Z I'fll, e ’772n>(N)’

Mm,--M2n €{1,J}
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where |71, ..., o)) = > geA(m,..mam) T(9)10)//v. Then we define a Fock space F(Félz)) =
Drr...mone{1.T} M - - - s Tan) M) Tt follows from (5.12) and (5.13), we have

1
a-’l\}('nla cee ,772n>(N)) = |I7 ']7 M- -- ,Tl2n>(N) + |J’ I’ m,- .. ’7’2n>(N) -|-’Un (%) ’

_ _ 1 (1
a’N|I> J> n3, ... an2n)(N) = a'NIJ?Ia',’\?n e ’n2n>(N) = 5'7731 g anQ'n.)(N) +vn (;) )

-
)

a‘I_VII)I’ n3, - "'a772n>(N) = a;l!‘L J7773, v a772n)

a’?\/"I, Jv n3, - - ')77271)(N) = |J’ ']) n3,.-- ?n2ﬂ>(N) +'U

Y
2(1- )

a‘?\/llalanfi""anZn)(N)_\/ IJI 3, .. 777271)( )+U (
o ) ) 1
ay|S, I,y ... nan) = II Inz, ..., nan)™ + v

° (N>=,/;IJ (N) — .
aN|']) J’ 73, 77)211,) 27 l y <y 113, ’77271) +vn (\/’T))

In view of the relations (5.14), we prepare a two-mode free Fock space, I'? := &% ('?(n), where

' T?(n) := C-linear span{|n,. .. ,’lhn> | m: € {I,J}},

(5.14)

e

)

equipped with a canonical inner product (m1, ..., %2|M, - -, Mon) = Ony - 57127»,71"2,17 and opera-
tors at, a~ and a° specified by

a+(|771,---,772n)) = IIv J)ﬂl)"'a’rhn) + IJalanl)-"7n2n>7

1
CL_|I, J»7I3,---,772n> :a’_l‘]a[an3a""772n) = 5'773""77’271)7
a_|IvIa773""7772n> = a'_l‘]’ ‘]7773a'~'7772n> :Oa

a°|I,J,773,---,772n>= )|JJ773;---;772n>;

(5.15) 2(1

ao|I,I,773,-~->772n>= |JI773)---,77271>,
7)

2(1

a°|J,I,773,---,722n> = \['Q_T’yllalan37--'7n2n>)
o /1_
a I']) Ja773a"')772n> = _%lll)*])n&--'a”hn)'

Summing up the arguments above, we have established a central limit theorem associated
with the decomposition (5.10) as follows.

Theorem 5.6. Let m > 1 and €y,..., €6, € {£,0}. Then for any constant 0 < vy < 1, u € I'?
and m,...,nn € {I,J}, we have

. N a‘j\lf a?}n ( m
i (] () (B s, = a0l b

where we use the notation (4.2). The operators at, a~ and a° are specified by (5.15).
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In particular, combinatorial moments with respect to the vacuum state are given by

. 1 (N) _ + - o\m
16) Jlim. <0|(% S° wwy) 1005, = (Ol(a® + 0™ +a*)"0)rs
w,JEE( )
Remarks.

(1) By a combinatorial argument, we see that the combinatorial moments (5.16) are given
as the number of closed walks on a induced subgraph of a weighted binary tree. (The
weights A = 1/ V2 are given in the figure below.) Indeed m-th combinatorial moment

F,, is given by the number of m-step walks which leave o and return to o. Let f,, be
the number of m-step walks which leave z and return to z without arriving at o. By
the self-similarity of the graph, we see for m > 2,

fm = Z(fk+ )fm k-2,

F, = kaF —k-2
k=0

where fo = Fo = 1. Then the moment generating function F(t) = ) F,t™ and
f(t) =3, fmt™ satisfy

f) -1 = ((t)+F}f))f<t)

Ft)—1 = t*F(t)%
hence
t2F(t)® + t?F(t)? — 2F(t) + 2= 0.

The Cauchy transform G(t) of the distribution associated with the combinatorial mo-
ments (5.16) is given as a solution of

tG(t)® +G(t)® - 2tG(t) +2 = 0.

(2) The limit distribution associated with (5.16) coincides with the one in Ezamples 1.5
(1.16) and (1.17) of [15], up to the variance, where the anti-commutation ab + ba of
semi-circular elements a,b which are free from each other is observed. Indeed we see
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that
1 01+---+07N> <07N+1+"'+0'N
—= ﬂ(wi')%(
ﬁwﬂe%m ’ vIN V-7
+ OyN41+ -+ ON (01+'--+07N)
V1 —=7)N VTN

which is nothing but the anti-commutation of semi-circular elements in the limit N —
0.

6. Commutative association scheme and its quantum decomposition

It is quite natural to apply our approach of the quantum decomposition to isotropic random
walks on homogeneous graphs. In fact, it will be seen that any adjacency operator of a certain
graph is decomposed into a sum of a ‘creation’, an ‘annihilation’ and a function of ‘number’
operators. Such a decomposition is motivated by the standard theory of quantum stochastic
evolutions [14]. This idea is useful for quantum limit theorems associated with random walks on
graphs, particularly, on distance regular graphs. Indeed, in [21}[9] we carried out our idea on the
Hamming scheme as follows. Let F be a set of n+1 points. A Hamming graph H(d,n+1) = F*¢
is a distance regular graph with a distance d(z, y) defined by

0(z,y) = #{i | z: # vi}
for z = (z1,...,%4), ¥ = (y1,...,%a) € H(d,n + 1). Let Agn+1) be the adjacency matrix of
the Hamming graph H(d,n+1). The adjacency matrix acts on the finite dimensional complex
Hilbert space H spanned by {|z) | z € H(d,n+1)} with the inner product uniquely determined
by
(z|y) = 0zy, x,y € H(dn+1).

Alz) => " ly),

T~y

where z ~ y means that z is adjacent to y. We fix an arbitrary point o € H(d,n + 1) as an
origin. Then we have a partition

The action is given by

where Hy .= {z € H(d,n+ 1) | d(0,z) = k}. We deﬁne number vectors

|©(K) Zl)

zeH
for k=1,...,d. The orthonormal system {l@(k))} in H gives a one-mode Fock space
d
Cansn) = D 12(K))-
k=1

By the definition of the adjacency matrix, we have

(6.1) Agmenlzy = > o+ Y. B+ Y. 9

aEHid’n+1)(z) bEH(_d’"+1)(w) ceHgd'"H)(z)
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Here we put for ¢ = 4+, — and o,
HE@ D (1) := {y ~ 2 | 8(y, 0) = &(z, 0) + 71}

with 7 = +1, —1 and 0 respectively. The equation (6.1) gives raise to a natural decomposition
of the adjacency matrix Agn+1):

An+) = AfGpeny + Agasny + Alnr

where each factor is determined by

Agninled =" D Iy

yeHéd,n+1) (.’Z:)

It follows from the distance regularity of H(d,n + 1) that as n,d — oo with n/d — 7 > 0 we
have

Az;l,n+1) ~
g |®(K)) ~ V(k+1)|®(k+1))

A(_d,n+1) —~ _
e 120 ~ VE|®(k - 1))
Alan+y) -

As a consequence, the asymptotic behavior of A(gn+1) is described in terms of a one-mode
Boson Fock space I', = @C|¥(k)) and the canonical creation and annihilation operators B+
defined by

B*|¥U(k)) = Vk + 1|¥(k + 1))
and
BT|¥(k)) = VE[¥(k-1)), k>1, B7|¥(0)) =0.

Theorem 6.1. Let 7 > 0,m > 1 and €y,...,em € {+,—,0} be given. Then for any k,| =
0,1,..., we have

fcli.n+1) Aiznﬂ)

g

lim <<I>(k)

dn—oo,n/d—r

<I>(l)> = (¥(k)|B**--- BT (1)), -
Cd,n+1)
In particular, we have a classical central limit theorem

im <<I>(k)| (%)m’é(z»mnm = (U(k)|(VTB*B~ + B* + BY)"[¥(1)),, -

As a result, we reproduce one of Hora’s results [13] on the asymptotic distribution of eigen
values of the adjacency matrix associated with a Hamming graph.

Acknowledgement. The author would like to thank Professor N. Obata for his constant
encouragement.
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