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We recall the definition of 1-genus 1-bridge knots. A properly imbedded
arc t in a solid torus V is called trivial if it is boundary parallel, that is, there
is a disc C imbedded in V such that ¢t C C and CNAV = cl (0C'—t). We call
such a disc a cancelling disc of the trivial arc t. Let M be a closed connected
orientable 3-manifold, and K a knot in M. The knot K is called a 1-genus 1-
bridge knot in M if M is a union of two solid tori V; and V; glued along their
boundary tori V; and 9V, and if K intersects each solid torus V; in a trivial
arc t; for i = 1 and 2. The splitting (M, K) = (Vi,t1) Un (Va,12) is called a
1-genus 1-bridge splitting of (M, K), where H = V; NV, = 0V) = V3, the
torus. We call also the splitting torus H a 1-genus 1-bridge splitting. We
say (1,1)-knots and (1, 1)-splitting for short.

1-genus 1-bridge knots are very important in light of Heegaard splittings
and Dehn surgeries as shown in the theorems below.

Theorem 0.1. (T. Kobayashi [15]) Let M be a closed orientable connected
3-manifold of genus 2. Suppose that M admits a non-trivial torus decom-
position. Then either (i) M is a union os an ecterior of a (1,1)-knot and
a Seifert fibered manifold over a disc with 2-ezceptional fibers, or ()-(v),
which we omit here.
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Let (M,K) = (W,t1) Ug (Va,t2) be a (1,1)-splitting. If there are an
essential simple closed curve £ in the torus H and cancelling discs C; of ¢; in
Vi for i = 1 and 2 such that C;N¢ = @, then we say that the knot (M, K) has
a satellite diagram on the (1, 1)-splitting torus H. At this time, the knot
K has a 1-bridge diagram on an annulus in H. We say that the satéllite
diagram is of meridional (resp. longitudinal) slope if ¢ is of meridional
(resp.longitudinal) slope of V; or V5. .

Theorem 0.2. (K. Morimoto and M. Sakuma, [19]) Let K be a satellite knot
in the 3-sphere S® of tunnel number one. Then K is a satellite (1,1)-knot
such that K has a satellite diagram of non-meridional and non-longitudinal
slope on the (1,1)-splitting torus.

It is well-known that all the (1, 1)-knots are of tunnel number one.

Theorem 0.3. (D. Gabai [4]) Let V be a solid torus, and K a knot in the
wnterior of V.. Suppose that a Dehn surgery on K yields a solid torus. Then
K is a 1-bridge braid, that is, isotopic to a union of an arc a on OV and
a triwvial arc in a meridian disc D of V' such that all the intersection points
of a and D are of the same sign.

Note that K forms a (1,1)-knot when we imbed the 1-bridge braid (V; K)
in a standard manner in a 3-manifold of genus 1.

Theorem 0.4. (A. Thompson [27]) Let M be a closed connected orientable
3-manifold, and M = Wy Uy Wy a Heegaard splitting of genus 2. Suppose
that this splitting has the disjoint curve property, that is, there are an es-
sential simple closed curve £ in H and essential discs D; of the handlebody
Wi such that £N (Dy N Dy) =0 Then M is non-hyperbolic or a result of a
Dehn surgery on a (1,1)-knot.
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These theorems show that (1,1)-knots are important. There are many
researches on (1,1)-knots as below. In the following, we assume that M is
not homeomorphic to S? x S! for simplicity.

Let V be a solid torus, and t a trivial arc in V. We call a disc D properly
imbedded in V a t-compressing discif D is disjoint from ¢ and 9D is essential
in o0V — 0t.

Let (M,K) = (V1,t1) Ug (Va,t2) be a (1,1)-splitting. The splitting is
called K -reducible if there are t;-compressing D; in (V;,t;) for i = 1 and 2
such that dD; = dD, in H. ‘

Theorem 0.5. (H. Doll [3]) Let M be a closed connected orientable 3-
manifold of genus 1, and (M, K) a (1,1)-knot. Then the next three con-
ditions are equivalent.

(1) The knot K is split, that is, the exterior of K contains an essential
2-sphere.

(2) The (1,1)-splitting is K -reducible.

(8) K is the trivial knot, that is, it bounds an imbedded disc in M.

He has studied more general case of g-genus n-bridge knots.

Theorem 0.6. ([9]) Let (S®, K) be a (1,1)-knot. Then K is a trivial knot
if and only if the (1,1)-splitting is K -reducible.

Theorem 0.7. ([9], [13], [11]) Let (M, K) be a (1,1)-knot. Then K is a core
knot, that is, the exterior is a solid torus if and only if for (i,j) = (1,2) or
(2,1) there are a meridian disc D of V; such that DNt; = 0 and a cancelling
disc C of tj in V; such that OC intersects 0D transversely in a single point.

Let V be a solid torus, and ¢ a trivial arc in V. We call a meridian disc
D of V a meridionally compressing disc if D intersects ¢ transversely in a
single point.
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Let (M,K) = (Vi,t1) Ug (V2,t2) be a (1,1)-splitting. The splitting is
called weakly K -reducible if there are properly imbedded discs D; in V; for
i =1 and 2 such that 8D; NdD, =0 in H.

Lemma 0.8. ([10]) Let (M, K) be a (1,1)-knot. Suppose that the (1,1)-
splitting is weakly K -reducible. Then either (1) K is a core knot in a lens
space, (2) K is a (maybe trivial) 2-bridge knot in S® or (8) K is a composite
knot of a core knot and a 2-bridge knot.

Theorem 0.9. (H. Doll [3]) Let K be a (1,1)-knot. If K 1is a composite
knot, then the (1, 1)-splitting is weakly K -reducible.

Theorem 0.10. (T. Kobayashi and O. Saeki [16]) Let K be a 2-bridge knot
in the 3-sphere S®. Then any (1, 1)-splitting of K is weakly K-reducible.

Theorem 0.11. (K. Morimoto [18]) Let K be a non-trivial non-core torus
knot, where “torus” knot means that K can be iéotoped into a Heegaard
splitting torus. Then any (1,1)-splitting of K is cancellable, that is, there
are cancelling discs C; of t; in V; for i = 1 and 2 such that 0C1 N 0Cy =
oty = 0Ot,.

We can push K along the discs C; and C into the splitting torus.

Theorem 0.12. ([9]) Let (M, K) be a (1,1)-knot. Suppose that K 1is a
cabled knot, that is, there is a solid torus V in M such that K C 0V and
that any meridian disc of V' intersects K in two or more points. Then
either (1) the (1,1)-splitting is K -reducible or weakly K-reducible, (2) K
is a torus knot, or (3) K has a 1-bridge diagram on an annulus A in the
splitting torus H such that each bridge is an essential arc in A.

Theorem 0.13. ([10]) Let (M, K) be a (1,1)-knot. Note that M may be a
lens space. If K is a satellite knot, then the (1,1)-split admits a satellite
diagram of a non-meridional non-longitudinal slope.
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Theorem 0.14. (H. Matsuda [17]) Let (S°, K) be a non-trivial (1, 1)-knot.
Suppose that K bounds a Seifert surface F' of genus 1. Then either (1) K is
a 2-bridge knot and F is a plumbing sum of two twisted unknotted annulus
or (2) F is obtained from an essential annulus A in the (1,1)-splitting torus
H by adding a twisted band along an essential arc in H — GA.

Theorem 0.15. (M. Hirasawa and C. Hayashi [12]) Let (M, K) = (Vi, t1)Un
(Va,t2) be a (1,1)-splitting. Let F' be a closed connected orientable surface
of genus 2 imbedded in M such that K is contained in F' and that F in-
tersects the knot exterior in an incompressible and boundary incompressible
surface. Then F' can be isotoped to intersect each solid torus V; in zero or
some number of 0-parallel annuli disjoint from K and one of the surfaces
of four types (a)-(b) as below :

(a) O-parallel once punctured torus which contains the arc t;,

(b) an annulus A which is parallel to an annulus A’ in OV, contains the
arc t;, and added a non-twisted band B along an essential arc in A, so that
AU B forms a once punctured torus,

(c) a pair of pants P such that P is O-parallel in 0V;, that P contains the
arc t;, that precisely two components of OP is essential in OV, and that Ot;
is contained in the other component of 0P,

(d) an annulus Z which is parallel to an annulus Z' in OV, contains the arc
t;, and added a non-twisted band C along an inessential arc in A’, so that
Q = ZUC forms a pair of pants and that the inessential component of 0Q
contains Ot;.

These theorems are on (1, 1)-splittings of special (1, 1)-knots. How about
(1, 1)-splittings of general (1, 1)-knots?

Following theorem helps study of (1, 1)-splittings. This is a generalization
of a result by H. Rubinstein and M.Scharlemann [22].
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Theorem 0.16. (T. Kobayashi and O. Saeki [16]) Let M be a closed con-
nected orientable 3-manifold. Let L be a link in M. Suppose that M has
a 2-fold branched covering with the branched set L. Let H; be a (gi,n:)-
splitting of (M,L) for i = 1 and 2. Suppose that the splittings are not
weakly L-reducible. Then after an adequate isotopy H, and Hj intersect
each other transversely in a non-empty collection of L-essential loops, that
is, none of the loops Hy N Hy bounds a disc D in Hy or Hy such that D s
disjoint from L or intersects L in a single point.

There are some notes on the above theorem.
(1) A (1,1)-splitting is a special case of a (g, n)-splitting.
(2) The condition “non-empty” is very important because we can isotope
H, and H, to be disjdint from each other.
(3) The projective space RP? does not have a branched covering with the
branched set a core knot, for example.
(4) The author expect that the above theorem holds when there is not such
a branched covering.

Theorem 0.17. ([11]) Let M be the 3-sphere S* or a lens space. Let K
be a knot in M. Let H, and H, be (1,1)-splitting tori of (M, K). Suppose
that H, and Hy intersect each other transversely in a non-empty collection
of K-essential loops. Then after an adequate isotopy either

(1) H; and H, are isotopic to each other in (M, K),

(2) one of the splittings H; and H, is weakly K-reducible,

(3) K is a satellite knot, or

(4) Hy and Hy intersect each other transversely in 1 or 2 K -essential loops.

Theorem 0.18. ([11]) In case (4) in the previous theorem, after an ade-
qute isotopy at least one of the next four conditions (a)-(d) holds.
(a) One of (1)-(3) in the conclusion of the previous theorem holds.
(b) (M,K) is a sum of two tangles (B,T) and (X,S) as below. (B,T)
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a trivial 2-string tangle. X is a once punctured lens space and S 1S
disjoint union of two arcs s, and sy properly imbedded in X such that

E; =cl(X — N(s;)) is a solid torus and that s; is parallel to the boundary
OF; for (i,7) = (1,2) or (2,1). The (1,1)-splitting torus H; is obtained from
0X by applying a tubing operation along the arc s; for i =1 and 2.

(c) One of the splittings H, and Hy admits a satellite diagram of a longitu-
dinal slope.

(d) There is a solid torus V in M as below. The exterior of the solid torus is

also a solid torus. The knot K intersects V in two arcs. There are disjoint

union of two discs Dy and Dy in OV as below. There are disjoint union of
two balls By and B, such that B;NV = D;, that K N B; is an arc, that K

m

tersects the solid torus V U B; in a trivial arc, and that H; is isotopic to

oVNB; fori =1 and 2.

In case (c), the knot K is obtained from a component L; of a 2-bridge

link L, U L, by a Dehn surgery on the other component L.

wW N

S Ot

The author is not satisfied with the conclusion (d).
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