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We recall the definition of 1-genus1-bridge knots. Aproperly imbedded
arc $t$ in asolid torus $V$ is called trivial if it is boundary parallel, that is, there
is adisc $C$ imbedded in $V$ such that $t\subset\partial C$ and CndV $=\mathrm{c}1(\partial C-t)$ . We call
such adisc acancelling disc of the trivial arc $t$ . Let $M$ be aclosed connected
orientable 3-manifold, and $K$ aknot in $M$ . The knot $K$ is called a1-genus1-
bridge knot in $M$ if $M$ is aunion of two solid tori $V_{1}$ and $V_{2}$ glued along their
boundary tori $\partial V_{1}$ and $\mathrm{d}\mathrm{V}2$ and if $K$ intersects each solid torus $V_{i}$ in atrivial
arc $t_{i}$ for $i=1$ and 2. The splitting $(M, K)=(V_{1}, t_{1}) \bigcup_{H}$ (Vi, $t_{2}$ ) is called a
1-genus1-bridge splitting of $(M, K)$ , where $H=V_{1}\cap V_{2}=\partial V_{1}=\mathrm{d}\mathrm{V}2$ , the

torus. We call also the splitting torus $H$ a1-genus1-bridge splitting. We
say $(1, 1)$ -knots and $(1, 1)$ -splitting for short.

1-genus1-bridge knots are very important in light of Heegaard splittings
and Dehn surgeries as shown in the theorems below.

Theorem 0.1. (T. Kobayashi [15]) Let $M$ be a closed orientable connected

3-manifold of genus 2. Suppose that $M$ admits a non-trivial torus decom-
position. Then either (i) $M$ is a union $os$ an exterior of $a(1,1)$ knot and
a Seifert fibered manifold over a disc with 2-exceptional fibers, or $(ii)-(v)$ ,

which we omit here
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Let $(M, K)=(V_{1}, t_{1}) \bigcup_{H}(V_{2}, t_{2})$ be a $(1, 1)$ -splitting. If there are an
essential simple closed curve $\ell$ in the torus $H$ and cancelling discs $C_{i}$ of $t_{i}$ in
$V_{i}$ for $i=1$ and 2such that $C_{i}\cap\ell=\emptyset$ , then we say that the knot $(M, K)$ has
asatellite diagram on the $(1, 1)$ splitting torus $H$ . At this time, the knot
$K$ has a1-bridge diagram on an annulus in $H$ . We say that the satellite
diagram is of meridional (resp. longitudinal) slope if $\ell$ is of meridional
(resp.longitudinal) slope of $V_{1}$ or $V_{2}$ .

Theorem 0.2. (K. Morimoto and M. Sakuma [19]) Let $K$ be a satellite knot
in the 3-sphere $S^{3}$ of tunnel number one. Then $K$ is a satellite $(1, 1)$ knot
such that $K$ has a satellite diagram of non-meridional and non-longitudinal
slope on the $(1, 1)$ -splitting torus.

It is well-known that all the (1,$1)$ -knots are of tunnel number one.

Theorem 0.3. (D. Gabai [4]) Let $V$ be a solid torus, and $K$ a knot in the
interior of V. Suppose that a Dehn surgery on $K$ yields a solid torus. Then
$K$ is $a$ 1-bridge braid, that is, isotopic to a union of an arc cr on $\partial V$ and
a trivial arc in a meridian disc D of V such that all the intersection points
of $\alpha$ and $\partial D$ are of the same sign.

Note that K forms a (1,$1)$ -knot when we imbed the 1-bridge braid (V, K)
in astandard manner in a3-manifold of genus 1.

Theorem 0.4. (A. Thompson [27]) Let $M$ be a closed connected orientable
3-manifold, and $M=W_{1} \bigcup_{H}W_{2}$ a Heegaard splitting of genus 2. Suppose
that this splitting has the disjoint curve property, that is, there are an es-
sential simple closed curve $\ell$ in $H$ and essential discs $D_{i}$ of the handlebody
$W_{i}$ such that $\ell\cap(D_{1}\cap D_{2})=\emptyset$ Then $M$ is non-hyperbolic or a result of $a$

Dehn surgery on $a(1,1)$ knot
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These theorems show that $(1, 1)$ -knots are important. There are many
researches on $(1, 1)$ -knots as below. In the following, we assume that $M$ is
not homeomorphic to $S^{2}\cross S^{1}$ for simplicity.

Let $V$ be asolid torus, and $t$ atrivial arc in $V$ . We call adisc $D$ properly
imbedded in $V$ a $t$ -compressing disc if $D$ is disjoint from $t$ and $\partial D$ is essential
in $\partial V-\partial t$ .

Let $(M, K)=(V_{1}, t_{1}) \bigcup_{H}(V_{2}, t_{2})$ be a $(1, 1)$-splitting. The splitting is
called $K$ -reducible if there are $t_{i}$-compressing $D_{i}$ in $(V_{i}, t_{i})$ for $i=1$ and 2
such that $\partial D_{1}=\partial D_{2}$ in $H$ .

Theorem 0.5. (H. Doll [3]) Let $M$ be a closed connected orientable 3-

manifold of genus 1, and $(M, K)a(1,1)$ -knot. Then the next three con-
ditions are equivalent.
(1) The knot $K$ is split, that is, the exterior of $K$ contains an essential
2-sphere.
(2) The $(1, 1)$ -splitting is K-reducible.
(S) $K$ is the trivial knot, that is, it bounds an imbedded disc in $M$ .

He has studied more general case of g genus $n$-bridge knots.

Theorem 0.6. ([9]) Let $(S^{3}, K)$ be $a(1,1)$ -knot. Then $K$ is a trivial knot

if and only if the $(1, 1)$ -splitting is K-reducible.

Theorem 0.7. ([9], [13], [11]) Let $(M, K)$ be $a(1,1)$ -knot. Then $K$ is a core
knot, that is, the exterior is a solid torus if and only if for $(i,j)=(1,2)$ or
$(2, 1)$ there are a meridian disc $D$ of $V_{i}$ such that $D\cap t_{i}=\emptyset$ and a cancelling
disc $C$ of $t_{j}$ in $V_{j}$ such that $\partial C$ intersects $\partial D$ transversely in a single point.

Let $V$ be asolid torus, and $t$ atrivial arc in $V$ . We call ameridian disc
$D$ of $V$ ameridionally compressing disc if $D$ intersects $t$ transversely in a
single point.
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Let $(M, K)=(V_{1}, t_{1}) \bigcup_{H}(V_{2}, t_{2})$ be a $(1, 1)$ -splitting. The splitting is

called weakly $K$ -reducible if there are properly imbedded discs $D_{i}$ in $V_{i}$ for
$i=1$ and 2such that $\partial D_{1}\cap\partial D_{2}=\emptyset$ in $H$ .

Lemma 0.8. ([10]) Let $(M, K)$ be $a(1,1)$ -knot. Suppose that the $(1, 1)-$

splitting is weakly $K$ -reducible. Then either (1) $K$ is a core knot in a lens
space, (2) $K$ is $a$ (maybe trivial) 2-bridge knot in $S^{3}$ or (3) $K$ is a composite

knot of a core knot and a 2-bridge knot.

Theorem 0.9. (H. Doll [3]) Let $K$ be $a(1,1)$ -knot. If $K$ is a composite

knot, then the $(1, 1)$ -splitting is weakly K-reducible.

Theorem 0.10. (T. Kobayashi and O. Saeki [16]) Let $K$ be a 2-bridge knot

in the 3-sphere $S^{3}$ . Then any $(1, 1)$ -splitting of $K$ is weakly K-reducible.

Theorem 0.11. (K. Morimoto [18]) Let $K$ be a non-trivial non-core torus
knot, where “torus” knot means that $K$ can be isotoped into a Heegaard
splitting torus. Then any $(1, 1)$ -splitting of $K$ is cancellable, that is, there

are cancelling discs $C_{i}$ of $t_{i}$ in $V_{i}$ for $i=1$ and 2such that $\partial C_{1}\cap\partial C_{2}=$

$\partial t_{1}=\partial t_{2}$ .

We can push K along the discs $C_{1}$ and $C_{2}$ into the splitting torus.

Theorem 0.12. ([9]) Let $(M, K)$ be $a(1,1)$ -knot. Suppose that $K$ is $a$

cabled knot, that is, there is a solid torus $V$ in $M$ such that $K\subset\partial V$ and

that any meridian disc of $V$ intersects $K$ in two or more points. Then

either (1) the $(1, 1)$ splitting is $K$ -reducible or weakly $K$ -reducible, (2) $K$

is a torus knot, or (3) $K$ has $a$ 1-bridge diagram on an annulus $A$ in the

splitting torus $H$ such that each bridge is an essential arc in $A$ .

Theorem 0.13. ([10]) Let $(M, K)$ be $a(1,1)$ -knot. Note that $M$ may be $a$

lens space. If $K$ is a satellite knot, then the $(1, 1)$ -split admits a satellite
diagram of a non-meridional non-longitudinal slope
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Theorem 0.14. (H. Matsuda [17]) Let $(S^{3}, K)$ be a non-trivial $(1, 1)$ -knot.
Suppose that $K$ bounds a Seifert surface $F$ of genus 1. Then either (1) $K$ is
a 2-bridge knot and $F$ is a plumbing sum of two twisted unknotted annulus
or (2) $F$ is obtained from an essential annulus $A$ in the $(1, 1)$ -splitting torus
$H$ by adding a twisted band along an essential arc in $H-\partial A$ .

Theorem 0.15. (M. Hirasawa and C. Hayashi [12]) Let $(M, K)=(V_{1}, t_{1}) \bigcup_{H}$

$(V_{2}, t_{2})$ be $a(1,1)$ -splitting. Let $F’$ be a closed connected orientable surface
of genus 2imbedded in $M$ such that $K$ is contained in $F’$ and that $F$ in-
tersects the knot exterior in an incompressible and boundary incompressible

surface. Then $F’$ can be isotoped to intersect each solid torus $V_{i}$ in zero or
some number of $\partial$-parallel annuli disjoint from $K$ and one of the surfaces
of four types $(a)-(b)$ as below:
(a) $\partial$-parallel once punctured torus which contains the arc $t_{i}$ ,
(b) an annulus A which is parallel to an annulus $A’$ in $\partial V$ , contains the
arc $t_{i}$ , and added a non-twisted band $B$ along an essential arc in $A’$ , so that
$A\cup B$ for$rms$ $a$ once punctured torus,
(c) a pair of pants $P$ such that $P$ is $\partial$-parallel in $\mathrm{d}\mathrm{V}\mathrm{i}$ , that $P$ contains the
arc $t_{i}$ , that precisely two components of $\partial P$ is essential in $\partial V$ , and that $\partial t_{i}$

is contained in the other component of $\partial P$ ,
(d) an annulus $Z$ which is parallel to an annulus $Z’$ in $\partial V_{f}$ contains the arc

$t_{i}$ , and added a non-twisted band $C$ along an inessential arc in $A’$ , so that
$Q=Z\cup C$ forms a pair of pants and that the inessential component of $\partial Q$

contains $\partial t_{i}$ .

These theorems are on $(1, 1)$ -splittings of special $(1, 1)$ -knots. How about
$(1, 1)$ -splittings of general $(1, 1)$ -knots?

Following theorem helps study of $(1, 1)$ -splittings. This is ageneralization
of aresult by H. Rubinstein and M.Scharlemann [22]
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Theorem 0.16. (T. Kobayashi and O. Saeki [16]) Let $M$ be a closed con-
nected orientable 3-manifold. Let $L$ be a link in M. Suppose that $M$ has
a 2-fold branched covering with the branched set L. Let $H_{i}$ be $a(g_{i}, n_{i})-$

splitting of $(M, L)$ for $i=1$ and 2. Suppose that the splittings are not
weakly $L$ -reducible. Then after an adequate isotopy $H_{1}$ and $H_{2}$ intersect
each other transversely in a non-empty collection of $L$ -essential loops, that
is, none of the loops $H_{1}\cap H_{2}$ bounds a disc $D$ in $H_{1}$ or $H_{2}$ such that $D$ is
disjoint from $L$ or intersects $L$ in a single point.

There are some notes on the above theorem.
(1) A $(1, 1)$ -splitting is aspecial case of a $(g, n)$ -splitting.
(2) The condition “non-empty” is very important because we can isotope
$H_{1}$ and $H_{2}$ to be disjoint from each other.
(3) The projective space $\mathbb{R}P^{3}$ does not have abranched covering with the
branched set acore knot, for example.
(4) The author expect that the above theorem holds when there is not such
abranched covering.

Theorem 0.17. ([11]) Let $M$ be the 3-sphere $S^{3}$ or a lens space. Let $K$

be a knot in M. Let $H_{1}$ and $H_{2}$ be $(1, 1)$ -splitting tori of $(M, K)$ . Suppose
that $H_{1}$ and $H_{2}$ intersect each other transversely in a non-empty collection

of $K$ -essential loops. Then after an adequate isotopy either
(1) $H_{1}$ and $H_{2}$ are isotopic to each other in $(M, K)$ ,
(2) one of the splittings $H_{1}$ and $H_{2}$ is weakly K-reducible,
(3) $K$ is a satellite knot, or
(4) $H_{1}$ and $H_{2}$ intersect each other transversely in 1or 2 $K$ -essential loops.

Theorem 0.18. ([11]) In case (4) in the previous theorem, after an ade-
qrrte isotopy at least one of the next four conditions $(a)-(d)$ holds.
(a) One of (1) $-(\mathit{3})$ in the conclusion of the previous theorem holds.
(b) $(M, K)$ is a sum of ttno tangles $(B, T)$ and $(X, S)$ as below. $(B, T)$
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is a trivial 2-string tangle. $X$ is $a$ once punctured lens space and $S$ is
a disjoint union of two arcs $s_{1}$ and $s_{2}$ properly imbedded in $X$ such that
$E_{i}=cl(X-N(s_{i}))$ is a solid torus and that $s_{j}$ is parallel to the boundary
$\partial E_{i}$ for $(i, j)=(1,2)$ or $(2, 1)$ . The $(1, 1)$ -splitting torus $H_{i}$ is obtained from
$\partial X$ by applying a tubing operation along the arc $s_{i}$ for $i=1$ and 2.
(c) One of the splittings $H_{1}$ and $H_{2}$ admits a satellite diagram of a longitu-
dinal slope.
(d) There is a solid torus $V$ in $M$ as below. The exterior of the solid torus is
also a solid torus. The knot $K$ intersects $V$ in two arcs. There are disjoint
union of two discs $D_{1}$ and $D_{2}$ in $\partial V$ as below. There are disjoint union of
two balls $B_{1}$ and $B_{2}$ such that $B_{i}\cap V=D_{i}$ , that $K\cap B_{i}$ is an arc, that $K$

intersects the solid torus $V\cup B_{i}$ in a trivial arc, and that $H_{i}$ is isotopic to
$\partial V\cap B_{i}$ for $i=1$ and 2.

In case (c), the knot $K$ is obtained from acomponent $L_{1}$ of a2-bridge
link $L_{1}\cup L_{2}$ by aDehn surgery on the other component $L_{2}$ .

The author is not satisfied with the conclusion (d).
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