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ON 1-BRIDGE TORUS KNOTS

DOO HO CHOI AND KI HYOUNG KO

ABSTRACT. A 1-bridge torus,_knot is a knot drawn on a standard torus in S3_ with 1-
bridge. We introduce two types of normal forms to parametrize the family of 1-bridgev
torus khots that are similar to the Schubert’s normal form and the Conway’s normal fbrm
for 2-bridge knots. For a givén Schubert’s normal form we give a classificatoin of some
sub-class of 1-bridge torus knots. We also give a description of the double brannced cover
of S? branched along any 1-bridge torus knots by using the Conway’s normal form and

obtain an explicit formula. for the first homology of the double cover.

1. INTRODUCTION

One of traditions in knot theory is to study a family of knots satisfying a certain con-
dition. Examples of such families include the family of torus knots studied by Dehn and
Schreier and the family of 2-bridge knots studies by Schubert, Montesinos and Conway:
These classes can be referred as the classes of knots and links indexed by the pairs (g,0)
of non-negative integers as defined in [9]. A knot K in a 3-manifold M has. a (g,b)-
decomposition or is called a (g, b)-knot if for some heegaard splitting M = U UV of genus
g, each of KNU and KNV is consisted of trivial b arcs. A collection of properly embedded:
arcs in a 3-manifold W with boundary is trivial if arcs « in the collection together with arcs
on OW joining the two ends of the arcs bound mutually disjoint disks in W. A (g, b)-knot
can be embedded in a heegaard surface of genus g in M except at b over(or under)-bridges
and vice versa. Torus knots are (1, 0)-knots;and 2-bridge knots are (0, 2)-knots. Clearly the

family of (g, b)-knots becomes strictly larger as g or b increase. Since an over-bridge can
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be removed by adding a handle and by embedding the over-bridge into the added handle,
(g, b)-knots are contained in the family of (¢ + 1,b — 1)-knots.

In this article we study the family of 1-bridge torus knots, that is, (1, 1)-knots in S3. This
family contains torus knots and 2-bridge knots and is contained in the family of double
torus knots, that is, (2,0)-knots. Hill and Murasugi studied the family of double torus
knots in |11, 12] and parametrized the family. Non-trivial knots with the trivial Alexander
polynomial was found in the subfamily of double torus knots that separate the double
torus. They also considered non-separating double torus knots and a subfamily of 1-bridge
torus knots and found various double torus knots that are fibered.

The 1-bridge torus knot has the tunnel number one, but not all tunnel-number-one knots
are 1-bridge torus knots. In [14], Morimoto, Sakuma and Yokota found tunnel-number-one
knots that are not 1-bridge torus knots as confirmed by a condition on the Jones polynomial
for a knot to admit a (g, b)-decomposition in [18]. In [15], they gave another criteria to
determine whether a given knot has the tunnel number one and whether it is a 1-bridge
torus knot.

Besides torus knots and 2-bridge knots, the family of 1-bridge torus knots includes
Berge’s double-primitive knots, 1-bridge braids that were classified by Gabai in [10] and
satellite 1-bridge torus knots. Morimoto and Sakuma, studied satellite 1-bridge torus knots

and classified their unknotting tunnels in [13].

FIGURE 1. 1-bridge torus knot

In this article, we parameterize the family of 1-bridge torus knots using two kinds of

normal forms as done for the family of 2-bridge knots. Schubert described a 2-bridge knots
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by a pair of integers of a certain condition from its top view. In the top view a 2-bridge
knots is embedded in a plane except the two bridges. He in fact completely classified
2-bridge knots using this normal form [17]. Since a 1-bridge knot can be embedded in a
standard torus except the bridge (See Figure 1), we will describe it by a 4-tuple of integers
from this top view. We will call such a 4-tuple the Schubert’s normal form of the 1-bridge
torus knot determined by the 4-tuple. In Section 2, we introduce the Schubert’s normal
forms of 1-bridge torus knots and classify some subfamily of 1-bridge torus knoté expressed
the Schubert’s normal forms.

On the other hand, a 2-bridge knot can also be viewed as a 4-plats as studied first in
[2]. From this side view, it is easy to see that the composition of homeomorphisms of a
four-punctured sphere that determines the 2-bridge knot. Using this description, Conway
constructed a bijection between 2-bridge knots and lens spaces via double branched covers
[8]. A similar description using the composition of homeomorphisms on a two-punctured
torus is possible for 1-bridge torus knots and this will be called the Conway’s normal form.
In Section 3, we construct the double branched cover of S® branched along an 1-bridge
torus knot given by the Conway’s normal form and give a formula for the first homology

of the branched double cover.

2. SCHUBERT'S NORMAL FORMS

In this section, we introduce a notation describing a 1-bridge torus knot which is called
Schubert’s normal form and give a classification of subfamily of 1-bridge torus knots. The
Schubert’s normal form of a 1-bridge torus knot is an analogue of the Schubert’s normal

form of 2-bridge knot or link.

2.1. Schubert’s normal forms.

Theorem 2.1. [6] Any I1-bridge torus knots is represented by a 4-tuple (r,s,t,p)e, where

T, 8,t are non-negative integers, p is an integer and € is a sign £1.
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In the Schubert’s normal form of a 1-bridge torus knot, 7, s,t and € determine the shape
of the knot in the neighborhood of a meridian disk containing the bridge (See Figure 2),

and p means the rotation number (See Figure 3).

FIGURE 2

g =2

(1,1,2,8)_, (1,2,1,5),,

FIGURE 3. Schubert’s normal forms of 1-bridge torus knots

Remark 2.2.

(1) (r,8,t,0)41 = (r,t,8,p+ (2r + 1))_; (See Figure 3).

(2) A 1-bridge torus knot with (r,s,t, )41 is a mirror image of a 1-bridge torus knot
with (7, s,t,—p)_;.

(3) If r = 0 in the normal form, then it represents a 1-bridge braid(See |10]).

(4) A (p, g)-torus knot is a 1-bridge torus knot (0,0,p—1, —q)4; or (0,p—1,0, —g+1)_;.

(5) Any 2-bridge knot in S® has a Schubert’s normal form B(a,¢3) (See Chapter 3 of
[1]), where

a>0,0<fB<a e==1, ged(e,B) =1, and «, 5 odd.
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A 2-bridge knot B(a,€f) is a 1-bridge torus knot (3 — 1,a — 283 + 1,0,¢)e (See
Figure 4).

=)

B(7,+3) (2,2,0,+1) 4

FIGURE 4

(6) K. Morimoto and M. Sakuma showed that any satellite knot which admits an

unknotting tunnel is equivalent to a knot represented by K (o, €5; p, ) in [13], where

a even integer, p, q positive integers, ¢ = £1 and 0 < 3 < /2.

B-—1 a—-20 a «

The knot K(a,€eB;p,q) is a 1-bridge torus knot ( 5 g P Eq)e.

FIGURE 5. K =(3,4,0,-3)_,

2.2. sub-class (r,s,0,¢(s — 1)) of 1-bridge torus knots. Consider (r,s,0,e(s — 1)),

where 7 > 0, s > 0 are integers and € = +1(See Figure 5).

Lemma 2.3. (r,s,0,e(s—1)). is always the Schubert’s normal form of 1-bridge torus knot.

Furthermore, (r,s,0,—(s — 1))_y is a mirror image of (r, $,0,8 — 1)41.
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Proof. For (s — 1,0,2(r + 1), s), we get “1” from Compoment Counting Algorithm in [6],
since gcd(1,2r+s+1) = 1. Therefore, (r, s,0,€(s—1)). satisfies the conditions of Schubert’s

normal form. O

Since if s = 1 then (r, 1,0,0), represents the unknot, we may assume that s > 1.

Theorem 2.4. [7] Let K, s be a 1-bridge torus knot (r,s,0,(s — 1))41. Then a genus of
K, is

2+ 3(32_3) if r is odd,
s(s—1)
2
Furthermore, K, , is fibred if and only if r =0 or 1.

if T is even.

Using Theorem 2.4, we get the following corollary;
Corollary 2.5. K, , is not isotopic to K;; if r # 7 or s # 3.

Proof. Suppose K., ; is isotopic to K ;.
Casel)r=r
If r and 7 are odd then by Theorem 2.4,

2+ 8(82_ Y = Q(Kr,s) = g(Kﬁf) =2+ 5(52_ 2

Therefore, s = 50r s+35 = 3. Since s # 5, s+35 = 3 and so s or 5 is 1 but this is impossible,

since 8,8 > 1.
If r, 7. are even then similarly, we meet a contradiction.
Case 2) r # 7
If r and 7 are even(or odd), then by the method of Case 1, we meet a contradiction. So
we may assume that 7 is odd and 7 is even.
9+ s(s—3) _ 5(5—1)
2 2

Then integer solutions of the above equation are
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Therefore, the only possibility is the last solution. That is, s = § = 2. Then K, s(or K5 ;)
is a 2-bridge knot B(2r + s + 1,7 + 1)(resp. B(2F + 5+ 1,7 + 1)) (See 5. of Remark 2.2).

Hence, r = 7. But this is impossible. O

Theorem 2.6. [7]

(- DEED 1) -1 - o
- -1 2 (t’+12— 1) if r is even,
~ 1(t -1 — 1) L
A, (1) = { gs*=3stay2 _ T F L o
o) =t 3 T if T is odd, s =2 or 3,
o — D(EeDED — 1) p1(E— DY 1)
S () 2 (F-1-1) if v is odd, 5 >

where A, 5(t) is the Alexander polynomial of K, ;.
Corollary 2.7. K, , is fibred if and only if its Alexander polynomial is monic.
Proof. From Theorem 2.6,

T . .
1+ 2 if r is even,

the leading coefficient of A, 4(t) = r 1

if r is odd,
and K, s is fibred iff r = 0 or 1 by Theorem 2.4. Hence, the proof is complete. O

Recently, K. Murasugi and M. Hirasawa conjectured the above statement for twisted
torus knots. They proved that it is true for the type 1:1 non-separable double torus knots
and M. Hirasawa showed that the statement is also true for the sub-class of twisted torus

knots. Therefore, their conjecture is true for our class.

Theorem 2.8. [7] Forr >0, s > 2,

$3(s=1)b,—s(s+1)/2 r—1

(1) Vi, (t) = T g(—t‘l)"A(t) + (—t’l)’B(t)> ifr>1,
t-s(sﬂ)/z _
(2) Vi, (8) = —T—z B,

where A(t) =1 — %2 — {229 4 2-3 gnd B(t) = 1 — t!7° — ¢°+2 4 ¢.
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Corollary 2.9. [7] K, r > 0, s > 2 is non-amphicheiral except for Ky which is a
figure-eight knot.

Corollary 2.5 and Corollary 2.9 give us the classification of the 1-bridge torus knots with
normal forms (r,s,0,¢(s — 1))(r >0, s > 2).

Theorem 2.10. For any two 1-bridge torus knots K, K' with normal forms (r, s,0,¢(s—1)),

(r',8,0,€(s — 1))e, respectively,
K is not isotopic to K' ife # €, r#7 ors# s
except for (1,2,0,1)41 = (1,2,0,—1)_; which is a figure-eight knot.

3. CONWAY’S NORMAL FORMS AND DOUBLE BRANCHED COVERS

In this section, we concern about double branched covers of a 3-sphere branched along
the 1-bridge torus knots. In order to this, we use an analogue of Conway’s normal form of

the 2-bridge knot (See Chapter 12. in (1] and Chapter 10. in [16]).

3.1. Conway’s normal forms of 1-bridge torus knots. Let K be a 1-bridge torus
knot, (V1,t1) Up (V2,1t2) & (1,1)-decomposition of (S%, K') and t; be an arc on 8V; such that
toUtz bounds a disk in V5. Then h is s, homeomorphism from dV; onto 8V, which is isotopic
to a homeomorphism hg sending a meridian(resp. longitude) in 8V; to a longitude(resp.
meridian) in 8V, and ¢; U h(%,) is isotopic to K. Then h = hhy' is a homeomorphism on
a torus isotopic to the identity.

The mapping class group M(1,2) of a two-punctured torus is generated by d., de,
¢, Tm and o (For exmaple, see Chapter 4. in [5]), where d,(resp. d¢) is a Dehn-twist
along the meridian(resp. longitude), ¢ is a homeomorphism exchanging two punctures
and T, (resp. 7e) is & homeomorphism sliding one of punctures along the meridian (resp.
longitude) as illustrated in Figure 6. By forgetting the punctures, a homomorphimsm
Je: M(1,2) —» M(1,0) into the mapping class group of a torus is induced. Then A is in
ker j.. Therefore we can say that an element of ker j, represents a (1,1)-decomposition of

a 1-bridge torus knot.
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?— ?
Vi 1

FIGURE 6
Consider the homoemorphisms h, = 107, 1 and A = Tmo ™71, Then
T8 = hyo and 2 = hlo.

The homeomorphisms he and h,,, have an effect on the arc t; in V; as illustrated in Figure 7.

FIGURE 7

For integers ai,...,0m,b1,...,0m,
(3) {(al, b17 ag, b2)5 ((13,()3, ag, b4)7 vy (am—ls bm—la Ay bm)]

repfesents a 1-bridge torus knot in S® that has a (1,1)—décomposition (V1,t1) Un ’(Vg,tz)
such that h = hho and | ‘.

h = (h‘;lablhgah)(h?abs hf,‘l‘ab") e (h?'"‘lab"“lhfn'"ab’").
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The above (1,1)-decomposition of a 1-bridge torus knot will be called a Conway’s normal

S
=y

FI1GURE 8. Conway’s normal form ((3,0,1,0),(—1,0,1,0)]

form of a 1-bridge torus knot.

Theorem 3.1. [6] Every 1-bridge torus knot has a Conway’s normal form.

Sy~ (o)
{‘7 X{/ o fﬂl’\)}p Q&,\;l )

N

A U ~’
FIGURE 9

Remark 3.2. A 2-bridge knot has the Conway’s normal form [2a;,2as, ... ,2a..] as il-
lustrated in Figure 9. We choose a (1,1)-tunnel p as in Figure 9. Then we get a (1,1)-
decomposition of it and the attaching homeomorphism of the (1,1)-decomposition is hq
(reo™1) (o™ 12m-1) - - - (07 %2721) (See Figure 9). By using the relations of ker j, we can

obtain a Conway’s normal form of 1-bridge torus knot for the given 2-bridge knot.

3.2. Double branched covers along 1-bridge torus knots. Consider a double branched
cover ¥ of a solid torus V branched along a trivial arc in V, which is a genus two handlebody
(See Figure 10).

Then from Figure 10 and Figure 11, the following facts are evident;
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FIGURE 10. Double branched cover of a solid torus branched along an arc

(1) The lifting of ho, ho, is & homeomophism of % such that ho(my) = Iy, ho(mg) = I,
ho(l1) = my and ho(ly) = mo.

(2) The lifting of o, &, is d.,, where c; is a curve as shown in Figure 10.

(3) The lifting of he, he, is d;'d? d2 dZ},

(4) The lifting of hp, B, is d'd2, d2, dc,, where c;(i = 1,2,3) is a curve depicted at

c3 Tmyp Tmy

Figure 10.

\X WK $

FIGURE 11. The lifting of o and the homoemorphisms hg, A,

Therefore, we can obtain the following theorem,;
Theorem 3.3. If a 1-bridge torus knot K has a Conway’s normal form

[(ala bl, az, b2)7 (a'33 b37 a4, b4)7 ceey (am—I) bm—l’ Am, bm)]
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then the double branched cover X, of S® branched along K has a genus two H
splitting 1 Uy, 3y such that X;(i = 1,2) is a genus two handlebody and

h= (h3*5" h225b) (R2a"RasGb ) - . - (RomGbm=1homGbm)he.
Lemma 3.4. [6]
hu([ma]) = 1/22m[ma] + (@mzm + 1/2(2m—1 + 1))[l1]

— 1/2zm|mo] — (amzm + 1/2(zm-1 — 1))[l2),

where 2y, is a sequence such that 2, = 2am_12m-1 + Zm—2, 20 =0 and 21 =1.
Proposition 3.5. Let z, be a sequence satisfying the following recursive formula;
Zm+1 = 2mZm + Zm-1,20 = 0 and z; = 1,

where a,, is a sequence. Then

7]

(4) “m41 = 2™ ala2 + Z o Z A(]l’.72’ ce ,jt),
(710 .Jt)
ect,
where

={0n-- ) EN*|1<ji < <je<m, ju— o1 22, k=1,...,t}

AQG1,d25- -5 t) = (@102 - 65,1)(@j, 427 - - Qjpy) - - - (@42 Qm),
and A(1,3,--- ,m — 1) = 1 when m is even.
From Lemma 3.4 and Proposition 3.5, we caculate the first homology of X,.

Theorem 3.6. Let K be a I1-bridge torus knot with the Conway’s normal form

[(ala bla Q2, b2)a (a3s b31 aq, b4)7 ey (am;la bm-—h () bm)],

and X3 be a double branched cover of S® branched along K. Then Hy(X,) = Z/|z,

where zy11 is a sequence at the formula (4).
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Proof. By excision, H1(X2) = H1(X; U (B; U Bs)), where By, By are the tubular neigh-
borhoods of meridian disks D;, D, of ¥2. And by Mayer-Vietoris sequence, H;(X3) =
Coker(f: Hy(A; U A2) — Hy(%,)), where A; = dD; x I(i = 1,2). Since [m,] and [m]
generate Hy(A; U Ay) and Hy(31) = (li,m; | m; = 0,5 = 1,2), f([mi]) = hu([mi]), s = 1,2.
From Lemma 3.4 and the periodic property of Xa, ' | ‘

flmil) = (@mzm + 1/2(zm-1 + )] = (@mzm + 1/2(zm-1 — 1)) L2},

F([ma]) = —(@mzm + 1/2(zm-1 = 1))la] + (@m2m + 1/2(zm-1 + 1)) [11]-
Therefore, H,(X2) = (I3, 2 |R), where

(@mzm +1/2(Zm-1+ 1)) —(@mzm + 1/2(zm-1 — 1))

—(Omzm +1/2(2m-1—1))  (@mzm + 1/2(zm-1 + 1))

R=

Hence, the proof is complete since

1 0 1 0
R ~o ~o
0 20mzZm + Zm-1 0 zZmn

O

Corollary 3.7. H1(X2) is a finite cyclic group and |zmi1| = |Ak(=1)|, where Ag(t) is
the Alexander polynomial of K.

Corollary 3.8. Suppose K is a 1-bridge torus knots with the Conway’s normal form
[(ah bl7 az, bg), (03, b3, ay, b4)a R (am—la bm—la A, bm)]
(1) Ifag; =0 oragi_1 =0 fori=1,...,m/2 then K is a trivial knot.

(2) If either a; > 0 or a; < 0 then K is not a trivial knot.
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