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Abstract

We study the Cauchy problem for the (2+1)-dimensional relativistic abelian
Chern-Simons-Higgs model. Given finite energy data, we prove the global ex-
istence and uniqueness of the solutions.

1 Introduction

Chern-Simons theories have been proposed in order to explain such physical phenom-
ena as high-temperature superconductivity, quantum hall effect and anyon physics.
The first (2+1) dimensional abelian Chern-Simons-Higgs (CSH) model was proposed
by Hong, Kim and Pac [9] and Jackiw and Weinberg [10] independently.

The lagrangian density of the CSH model is given by

L(Au §) = 3 AuF,, + DyudDRg — V(igP), (1.1)

where A, is a real vector field, ¢ a complex scalar field, F,,, = 9,4, — 0,Au, Dyo =
0,9 —1A,¢, £ > 0 a Chern-Simons coupling constant, €#? the totally skew-symmetric
tensor with €' = 1, V(|¢|?) the Higgs potential, and f represents the complex
conjugate of a complex valued function f. We are working on the Minkowski space-
time R'*? with metric g, = diag(1, -1, —1).

The corresponding Euler-Lagrange equations are

1 - ;
F,, = Ee,w,,J”, J? := 2Im(¢D*¢),

_ (1.2)
D,D*¢ = —¢V'(|4]?),



and the energy density corresponding to the lagrangian density (1.1) is given by

E(t,z) = Y |Dug(t,2)[* + V(I6(t, 2)I%).

p=0

In the case of the static configuration, Hong, Kim and Pac [9] and Jackiw and
Weinberg [10] showed that the CSH model admits first-order self-dual equations if
the Higgs potential takes the special form V(|¢[?) = Z%|#[>(1 — |#|?)2. There are
three possible boundary conditions of the self-dual equations on R?; the topological
boundary condition (|¢(z)] — 1 as || — o0), the nontopological one (¢(z) — 0 as
|z| = o00) and the periodic one. There are several results available on the topological
multivortex solution ([16], [14]), the nontopological one ([4], [13]) and the periodic
ones ([3], [15], [12]). However, it is still open whether the self-dual equations are
equivalent to the Euler-Lagrange equations (1.2) in a suitable sense.

In this paper, we study the full evolution problem of (1.2). We decompose A, into
Ap and A = (A;)j=12. Given a function f(t,z) we denote by V f the spatial derivative.
We also denote by O] the D’Alembertian operator O = 82 — A = 82 — 8% ~ 2.

Given a vector field V, we can decompose V = V* + V¢ where V - V* = 0 and
@ is a scalar field. We introduce the projection operator P : V. — V*.

Notice that the system of equations (1.2) is invariant under the transform

Ay = Ay +08,x, ¢ ge.

Then we can choose a function x so that A, satisfies a special property. In this paper
we construct a solution of (1.2) assuming the Coulomb gauge condition V - A = 0.
Then A, can be determined by the elliptic equations

AAo(t,z) = (1/K)(B1J2 — Bedh),

AAj(ta il?) = (l/ﬁ)fkjakjo, (13)

where ¢ is the skew-symmetric tensor with €;5 = 1.
In view of (1.3), we assume A, is given by

1
aulti) == [ Ga-v)-Itndy, t20

throughout this paper. Here, G(z) = rllzlf(zg, —1;) and J = (J1, Jy).

Then we find that the Euler-Lagrange equations (1.2) consist of constraint equa-
tions and evolution equations for A and ¢. We note that the constraint equations are
automatically satisfied for all £ > 0 whenever they are satisfied at ¢ = 0.

Therefore we have derived the following system of evolution equations
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BA = ir(—Jz, 7)),

(1.4)
O¢ = 2iA¢0e¢ + 10, Ao + Ajp — 21A - Vé — |APd — ¢V'(|6]%)
subject to the initial condition at ¢ = 0
A;(0,:) = aj, j=1,2
i(0,°) = a; J (1.5)
#(0,-) = ¢o, 0:9(0,°) = ¢
with the following constraints
. 2 _
B’aj = 0, 81a2 - 62(11 = ’—C-Im[qbodq —_ ZA()(O, )|¢0|2] . (16)

It can be verified that the solution of (1.4)-(1.6) also satisfy the Euler-Lagrange
equation (1.2). The system (1.4)-(1.6) is the main equation to study in this paper.

We prove the global existence and uniqueness of the solution of the system (1.4)-
(1.6) for the finite energy data. For this purpose, we introduce the norm

TO@) :=TY(4,9)(t Z 143, ims + 18 )l ga+r + 10b(2, )|, ¢ >0

and we make use of the energy estimates

t
A, ) lws < T(0) + / 18- A(T, )| dr,
0 (1.7)

16t Yloss + 1228, e < C1 (T (0) + /0 10(r, ) l1dr).

Our main result is the following.

Theorem 1.1 Suppose that V € C3(R;), V" is locally Lipschitz, V(0) =0, V(s) >
—a’s and |V"(s)| < C(1+5P) for some constants o, C, 8 > 0. Given data a;, ¢, € H*
and ¢g € H? satisfying the constraints (1.6), the system (1.4)-(1.6) has a unique global
solution A; € C([0,T); H') and ¢ € C([0,T); H*) n C*([0,T); H) for any T > 0.

In our case the evolution is governed by the nonlinear wave type of equations. In
[1], Bergé et al. proved the finite time blow-up of the solutions of the Cauchy problem
from the non-relativistic Chern-Simons-Higgs model where the evolution is governed
by the nonlinear Schrédinger type of equations.

We outline the proof of Theorem 1.1 in the following sections. The detailed proof
can be found in [5].
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2 Local Existence

In this section we prove the local in time existence of the solution of the system
(1.4)-(1.6).

Proposition 2.1 Suppose that V € C*(R,) and V" is locally Lipschitz. Given data
aj,¢1 € H? and ¢y € H? satisfying (1.6), there exists a Ty > 0 depending only on
T®(0) such that the initial value problem (1.4)-(1.6) has a unique solution A; €
C([0, To]; H?), and ¢ € C([0, To]; H®) N C'([0, To}; H?).

Since the righthand side of the second equation in (1.4) contains the time derivative
of A, we consider the modified problem ,

BA = i—’P(——Jz, J1),
Clg = 26400, + idh + A2p — 2iA -V — |APd — V' (16]?),

(2.1)

subject to the initial condition (1.5)-(1.6). Here, h is defined by
2
htz) = -2 [ Glo—9)- Wit,9)dy
K JRr2

with the vector field W = 2Im(8,¢V¢) — 2|BPP(—Ja, J1) — 2Re(Ad0;0). If (A,, ¢) is
a solution of the modified system (2.1) then W = (1/2)8,J — VIm(#0;¢) and hence
h = 0;Ag. Then we can prove Proposition 2.1 by studying the system (2.1) together
with (1.5)-(1.6).

We need the following estimates for Ay and h and the difference estimates for
Ao — Ay and h— h. The next two lemmas can be proved from the Calderon-Zygmund
inequality.

Lemma 2.1 If A € C([0,T); H?) and ¢ € C([0,T); H3) n C'([0,T); H?) for some
T > 0, then there exists a constant C, depending only on p such that for 0 <t <T

(i) IVAo(t, )lze + [IVAE, )lr < C[1+ 7'(1)(t)]5 for 1< p< oo,
(i) |[V2Ao(t, )lze + [[V2A(E, )|lr < C[1+ T(l)(t)]47'(2)(t) for 2 < p< .

Lemma 2.2 If A,A € C((0,T]; H?) and ¢,¢ € C([0,T]; H®) n C([0,T}; H%) for
some T > 0, then there exists a constant C, such that for each0 <t <T

() 9(40 — Ao)(2, Mlzs + IV (h = B)(t )lles
SCL+TO@R) +TOW]* TO(A-A,6-F)(t) for 1<p< oo,

(i) IV2(Ao = Ao)(t, -)llzs + [|V2(R = R)(2, )llzs
<SCR+TO) +TOW]' T®A-4,6—¢)(t) for 2<p< oo,
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where TO(t) = TE(A, §)(¢), s = 1,2.

Proof of Proposition 2.1. Let Ay = [C(0,T; H%))? x [C(0,T; H®) N C*(0,T; H?)]. It
follows from the contraction mapping argument that there is a constant 7T, > 0 such
that the initial value problem (2.1) admits a unique solution (A, ¢) € Ag,. Indeed,
it follows from the energy estimates (1.7) and Lemma 2.1-Lemma 2.2 that if Ry is
sufficiently large and T = T(R,) is sufficiently small, then the mapping F from
Br = {(4,¢) € Ar | suppcscr T®(t) < Ro} into itself such that (4%, ¢*) = F(4, ¢)
satisfies '
1
A" = —P( = Jr(4,9), 1(4,9)),
O¢* = 2iAg0;¢ + idh + Adp — 24 - Vo — |Al*¢ — ¢V'(|9]?),

subject to the initial condition (1.5)-(1.6), is a well-defined contraction mapping. [

3 Global Existence and uniqueness

In this section we denote by (A,, ¢) the solution constructed in Proposition 2.1. The
next two lemmas show that 7(Y)(¢) is uniformly bounded on each finite time interval,
which in turn implies that (A,, ¢) can be extended past any finite time interval.

Lemma 3.1 If V(s) > —a’s for some constant a > 0, then there erists a constant
C such that

6@t M + 10:6(, )2 < Ce™,
IVAL(t,)|lz» < Ce*™,  for each 1 < p < 2.

Lemma 3.2 Suppose that V(0) = 0, V(s) > —a?s and |V"(s)| < C(1 + %) for some
constants a, C, B > 0. The quantity

v = (1 +ZHD Dbt s+ 3 103Dt 13:)

Jik=1

is uniformly bounded on each finite time interval [0, T].

Since A¢ = D?¢ + D2¢ + 2i ZJ LA D]¢ |A|2¢, Lemma 3.1 and the following
inequality

' (p-2)/
el < cw/"(z IDwllzz)” . 2<p<oo (3.1)

imply that
ot Mluz < Cly(t) + ). (3.2)
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Then it follows from (1.7), (3.2), Lemma 3.1-Lemma 3.2 and the identity
8j3t¢ = DjDOd’ + 2¢6]A0 + ZA()D]¢ + ZAJD0¢ - A()Aj¢

that 7()(t) is uniformly bounded on each finite time interval [0, T].
We now prove Lemma 3.1 and Lemma 3.2. We note that the mapping ¢ — E(t) :=
Jgz €(t, ) dz is constant by the law of conservation of the energy.

Proof of Lemma 8.1. Lemma 3.1 follows from (3.1), the following inequalities
¢l = 2Re [ 0Dodda < Cllglia(EO)I + o)

2 2
IVAulle < CQ l1ulle <Y ClIDBlILeNGl o, 1<p <2,

v=0 v=0

and the identity 0,¢ = D,¢ +iA,¢. O

Proof of Lemma 3.2. We note that F,, satisfies the first equation of (1.2). From
Lemma 3.1 and (3.1), we obtain

%[y(t)]z < Cly@®)2(1 + [|(2, -)||200 ) EB+8)et

It follows from (3.2) and Lemma 3.3 below that y'(t) < Cy(t)(1 + Iny(t))e(65+15)at
which in turn implies that y(t) is uniformly bounded on each finite time interval. O

Lemma 3.3 (Brezis-Gallouet, [2]) There exists a constant C such that

lullzee < CA+ lfull ) vIn(l + [Juflm2)
for each u € H%(R?).

We next estimate the differences between two solutions (A, ¢) and (A,, ). Let
TN =TW(A,¢) and TV = TO(A, ).

Proposition 3.1 Suppose that V € C*(R,.), V(0) =0, V(s) > —a’s and [V"(s)| <
C(1+ sP) for some constants a,C, B > 0. Let (Ay, @) and (A,, d) be two solutions of
the system (1.4)-(1.6). Then there ezist positive increasing functions f, g : [0, 00) —
[0, 00) depending only on T and T®) such that

TO(A- 4,6 - §)(t) < f(t)ehdNOBTO(A 4 ¢ - §)(0)

for allt > 0.
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Proof. The proof follows from (1.3) and the difference estimates
TO(A-A¢-3)®) <FO(TOA-4,6-8)(0) |
v [ 1104 - 2,400, i + 108 = D)5 )
A straightforward calculation shows that

1A = B A) (s, )l + 1@ — TB)(s, M < g(5)TV (A~ 4,6 —)(s)

for some positive increasing function g : [0, 00) — [0, 00) depending only on T and
7M. Then Proposition 3.1 can be easily proved from the Gronwall inequality. O

Then Theorem 1.1 can be proved from the density argument.
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