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Scattering problem for nonlinear Schrodinger and
Hartree equations

BEHBRFREES THEMEM AR P BX (K. Nakanishi)
JtHEE K FRF BB AR TR MNE M (T. Ozawa)

We consider the existence and asymptotic completeness of the wave operators for
nonlinear Schrodinger equations of the form

NLS 0, + %Au = f(u),

where u is a complex-valued function of (¢,z) € R x R®, 8, = 8/0t, A is the Laplacian
in R™, and f describes the nonlinear interaction. Typical form of f is given by

e (power-type nonlinearity) f(u) = A|u|P~'u, where A € R and p > 1,
and by

o (Hartree-type nonlinearity) f(u) = (V * |u|?)u, where V(z) = A|lz|~", A€ R, v > 0,
and * denotes the convolution in R".

There is a large literature on the scattering theory for NLS (see for instance [1-39] and
references therein), where the existence and asymptotic completeness of the wave op-
erators is the most basic problem. The problem is usually formulated as follows. Let
U(t) = exp(i(t/2)A) = F~1 exp(—i(t/2)|¢|*)F be the unitary group associated with the
free Schrodinger equation

1

Let vy (t) = U(t)¢4+ be a free solution with Cauchy data ¢, in a suitable space X. The
first half of the problem is the existence and uniqueness of solutions of NLS behaving as
vy in X as t — +oo. If that is the case, the map W, : ¢, — u(0) is well defined in X
and is called the wave operator for positive time. The wave operator for negative time
W_: ¢_ > u(0) is similarly introduced on the basis of the existence and uniqueness of
solutions of NLS behaving as v_(t) = U(t)¢-in X as t — —oco. We call ¢, asymptotic
states at oo and ¢ = u(0) an interacting state. The second half of the problem is
the existence of asymptotic states ¢4 at oo for a given interacting state ¢ in X in
the sense that the solution u of NLS with u(0) = ¢ behaves as vy (t) = U(t)¢p+ in X
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as t — +oo. If that is the case, the ranges of wave operators Wy are characterized as
Ran(W,) = Ran(W_) = X and we say that asymptotic completeness holds.

Asymptotic completeness is a much more difficult problem than the existence of wave
operators except in the small data setting. Regarding asymptotic completeness for large
data in the sense as above, we need sharp a priori estimates for solutions of NLS to impose
strong assumptions on the nonlinear interaction, such as admissible ranges of p and ~ and
some repulsivity condition.

In the case of NLS with power-type nonlinearity as above, the available results on
the existence of the wave operators are summarized as follows, where we assume that
p<1+4+4/(n-2)if n > 3 throughout.

(A1) In the energy space X = H' the wave operators exist if p > 1+ 4/n [11].

(A2) In the weighted energy space X = H'NF(H!) the wave operators exist if
p > Max(1+2/n,1+4/(n+2)) [4].

(A3) In the space X = H*NF(H®) with 0 < s, s’ < 2 the wave operators exist if

, 1+4/nifs' <1, orif s >1and A <0,
Max(1+2/n,1+44/(n+2s),s,s") < p < { 1+4/(n—2)if & >1and A >0 [8]
(A4) In the space X = H*NF(H?*) with 0 < s < 2 the wave operators exist if

p=1+4/(n+2s) and p > Max(1 + 2/n, s) [29].

(A5) The wave operators do not exist if p < 1+ 2/n in the sense that the convergence
U(-t)u(t) — ¢4+ in L? implies u(0) = ¢, = 0 [1, 32, 37].

We note that (A2) is a special case of (A3). The number p = 1+ 2/n is the borderline
where the usual framework of scattering as above breaks down and a special treatment is
required by taking long-range effect of nonlinearity into account |7, 32]. Therefore, in the
present setting the optimal result is provided by (A2) for n < 2 and by (A3) for n < 3.

As regards the asymptotic completeness, the available results are summarized as fol-
lows, where we assume that A > 0 and that p < 1 +4/(n — 2) if n > 3 throughout.

(B1) In the space X = H' the asymptotic completeness holds if p > 1 + 4/n [11, 27].

(B2) In the space X = H'NF(H') the asymptotic completeness holds if p > (n) =
(n+2+vn?+12n+4)/(2n) (18, 37, 38), or if p = y(n) for n # 2 [2, 4].

In the case of Hartree-type nonlinearity, the corresponding results available so far is
summarized as follows.
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(C1) In the space X = H' the wave operators exist and are asymptotically complete if
2 < v < Min(4,n) and A > 0 [13, 28].

(C2) In the space X = H'NF(H') the wave operators exist and are asymptotically
complete if 4/3 < v < Min(4,n) and A > 0 [16, 17].

(C3) In X = H'NF(H') the wave operators exist if 1 < v < Min(2,n) [31].
(C4) The wave operators do not exist in the sense of (A5) if v <1 [14, 16, 17].

The purpose of this talk is to present a sharp framework of function spaces where the
corresponding Strichartz estimates work and contribution of decay factors of the form
|t| =" keeps a scaling invariance up to the limiting case that has been excluded.

Theorem 1. Let s, s’ satisfy 0 < s', s < 2. Let p satisfy

1+4/nifs' <1, orifs >1and A <0
/ I p b
Max(1+2/n,s,s)<p<{ 1+4/(n—2)if & >1and A >0,
p>1+4/(n+2s).

Then for NLS with power-type nonlinearity the wave operators exist in the space X =
H N F(H®).

Theorem 2. Let p = y(n) and A > 0. Then for NLS with power-type nonlinearity
asymptotic completeness holds in the space X = H' N F(H").

Theorem 3. Let v = 4/3,n > 2, and A > 0. Then for NLS with Hartree type
nonlinearity asymptotic completeness holds in the space X = H' N F(H*).

Theorem 1 improves (A2)(A3)(A4). Note that NLS with p = 1 +4/(n + 2s) has a
scaling invariance in the homogeneous space F(H®) = |z|~*L?. Theorem 2 closes a gap in
(B2). Our method of the proof is independent of the pseudo-inversion (pseudo-conformal
transformation)

w(t, z) — (it) ™2 exp (i|z|?/2t) u(1/t,z/t)

that has been used in [4, 17, 29, 37, 38, 39] and provides a unified treatment regardless
of the spatial dimension n. Theorem 3 closes a gap in (C2).



108

Our method of the proof depends on:

(1) The treatment of regularity of functions in space directions in terms of the operators
U(t)ypU(—t) instead of F~'9F = (—iV). In particular, we adopt it in the Besov
style by way of the Littlewood-Paley decomposition, which enables us to make the
most of the power behavior of nonlinearity at the origin compatible with regularity
of fractional order.

(2) The treatment of integrability in time in terms of the Lorentz space instead of the
usual Lebesgue space. This enables us to make the most of decay factors such as
[t|~ up to the limiting case keeping up a scaling invariance.

(3) The treatment of the pseudo-conformal charge that is compatible with the frame-
work given by (1) and (2). This provides us with sharp a priori estimates for
solutions of NLS with repulsive interaction.

'To be more specific, for the existence of the wave operators we consider the integral
equations of the form

o0
u(t) = U@)s+i [ Ul—t)f(u(t))ds
t
= U(t)g+ +i(Gf(w) ().
We solve the integral equation by a contraction argument on a closed ball of a suitable
function space over the time interval [T,00) with T > 0 sufficiently large. For that
purpose we use the following Strichartz estimates, where the integrability and regularity

in space are measured respectively by the Lebesgue and homogeneous Besov spaces and
the integrability in time is measured by the Lorentz spaces.

Proposition. Let q,7,q;,7;,7 = 1,2, satisfy

0<2/g=n/2-n/r<1,
0<2/gi=n/2—n/r;< 1.

Let p € R. Then
| UC)e; L**(R; L'(R™) || < C |15 L*(R™) |,
| [tPM™ U ¢; L¥*(R; B,(R™) || < C || |zl°¢; L*(R™) |,

Il Gf(w); L*(R; L™ (R™)) || < C || f(u); L%(R; L'*(R™)) I, _
| [EPM TG f (u); L**(R; BY, ,(R™) || < C || |t M~ f(u); L%*(R; B, (™M) I,
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where M = M (t) = exp(i|z|?/2t) and p' is the dual exponent of p defined by 1/p+1/p' =
1.

The above integral equation is treated in a similar way as in [8] on the basis of the
proposition and the generalized Holder inequality [23] so that the resulting time integral in
[8] that just diverges in the critical case p = 1+4/(n+2s) is replaced by the finite Lorentz
(weak-Lebesgue) norm || [¢t|=*®~1); L&®|| with 1/ = s(p — 1). To make the contraction
factor sufficiently small, it suffices to notice that ||U(-)¢; L%? (T, 00; L7)|| — as T — co.
That is the essential idea for the proof of Theorem 1. For the proof of Theorem 2, we
regard the conformal identity as

d —v _ —v—1 ; - L2112
(7 P®) = —vt™ Y |(@ + it V)u(t); L°|I%,

where v = n(1+4/n —p)/2 and

22

P(t) = ||(z + it V)u(t); L|| + o

[Ju(t); L2+ [P,
This yields the a priori estimate
dt
[1£711(z + 4t V)u; L[] L 0 L¥(1, 00; —)]| < CP(1),

from which together with the Sobolev embedding and the generalized Holder inequality
provides the required a priori estimate in a space which constitutes admissible spaces for
the Strichartz estimates, provided that » < 1 — s, which is equivalent to p > y(n). For
details, see [30].
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