Siegel 保型形式の様々な持ち上げに付随する Koecher-Maaß級数 (Koecher-Maaß Dirichlet series for various liftings of Siegel modular forms)

> 桂田 英典 (Hidenori Katsurada) 室蘭工業大学 (Muroran Institute of Technology)

1 Introduction

Let f(Z) be a Siegel modular form of weight k belonging to the symplectic group $\Gamma_n = Sp_n(\mathbf{Z})$. Then f(Z) has the following Fourier expansion:

$$f(Z) = \sum_{A} a_f(A) exp(2\pi i \ tr(AZ)),$$

where A runs over all semi-positive definite half-integral matrices over \mathbb{Z} of degree n and tr(X) denotes the trace of a matrix X. We then define the Koecher-Maaß Dirichlet series L(f,s) by

$$L(f,s) = \sum_{A} \frac{a_f(A)}{e(A)(\det A)^s},$$

where A runs over a complete set of representatives of $SL_n(\mathbf{Z})$ -equivalence classes of positive definite half-integral matrices of degree n, and $e(A) = \#\{A \in SL_n(\mathbf{Z}); {}^tXAX = A\}$. We remark that in case n = 1, L(f, s) is nothing but the Hecke L-series attached to f.

Now let F(W) be a certain lifting of f(Z). Namely let F(W) be a modular form with respect to Γ_m with some integer $m \geq n$ whose standard zeta function or spinor L-function is expressed by the standard zeta function or the spinor L-function of f(Z). Then we present the following problem:

Problem 1. Express L(F, s) in terms of Dirichlet series attached to f.

In this note, we consider the following two types of liftings, one the Klingen-Eisenstein lifting, and the other the Ikeda lifting. This work was partly collaborated with T. Ibukiyama.

2 Koecher-Maaß Dirichlet series for the Klingen-Eisenstein lifting

Let r, n and k be non-negative integers such that $0 \le r \le n \le k - r - 2$ and $k \equiv 0 \mod 2$. For a cusp form f of weight k belonging to Γ_r , define $[f]_r^n(Z)$ as

$$[f]_r^n(Z) = \sum_{M \in \Delta_{n,r} \backslash \Gamma_n} f(M < Z >^*) j(M, Z)^{-k},$$

where $\Delta_{n,r} = \{\begin{pmatrix} * & * \\ O_{n-r,n+r} & * \end{pmatrix} \in \Gamma_n\}$, and for $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_n$ let $M < Z >^*$ denote the upper left $(r \times r)$ -block of the matrix $(AZ + B)(CZ + D)^{-1}$ and $j(M,Z) = \det(CZ + D)$. We note that $[1]_0^n(Z)$ is nothing but the Siegel Eisenstein series $E_{n,k}(Z)$ of weight k. In [B], among others, Böcherer gave an explicit form of $L([f]_1^2, s)$ and $L(E_{2,k}, s)$. In [I-K1] we gave an explicit form of $L(E_{n,k}, s)$ for arbitrary n. We note that $L(E_{n,k}, s)$ is also regarded as the zeta function of prehomogeneous vector space. From this point of view, Saito gave a generalization of our result (cf. [Sa]). In relation to the above Problem 1 we should add one remark; in the explicit formula for $L([f]_1^2, s)$ by [B], a certain Dirichlet series attached to f appears. Böcherer obtained a functional equation for it from the general theory of the Koecher-Maaß Dirichlet series. This Dirichlet series is a modification of the Dirichlet series originally defined by Kohnen and Zagier [K-Z], and is of importance in its own right. Hence the following problem seems very interesting.

Problem 2. Investigate the analytic and arithmetic properties of the Dirichlet series related to f appearing in an explicit formula for $L([f]_r^n, s)$.

In this section, we give a resonable formula for $[f]_1^n$ when f is a cuspidal Hecke eigenform belonging to Γ_1 and n even. This also gives a certain generalization of Böcherer's result in [B].

Now to state our main result in this section, for the fundamental discriminant d of a quadratic field, let ψ_d denote the Kronecker character associated with d. Here we understand that $\psi_1 = 1$. For $l = \pm 1$, put

 $\mathcal{F}_l = \{D_0 \in \mathbf{Z}_{>0}; lD_0 \text{ is the fundamental discriminant of a quadratic field or } 1$

For an integer D such that lD > 0 and $D \equiv 1$ or mod 4, write $D = lD_0m^2$ with $D_0 \in \mathcal{F}_l, m > 0$, and put

$$L_D(s) = L(s, \psi_{lD_0}) \sum_{d|m} \mu(d) \psi_{lD_0}(d) d^{-s} \sum_{c|md^{-1}} c^{1-2s},$$

where $L(s, \psi_{lD_0})$ is the Dirichlet L-function attached to ψ_{lD_0} , and μ is the Möbius function. Write $L_D(s)$ as

$$L_D(s) = \sum_{e=1}^{\infty} \epsilon_D(e) e^{-s},$$

and for a cusp form $f(z) = \sum_{e=1}^{\infty} b(e) exp(2\pi i ez)$ of weight k with respect to Γ_1 put

$$L(f, D, s) = \sum_{e=1}^{\infty} \epsilon_D(e)b(e)e^{-s}.$$

We note that

$$L(f,1,s) = L(f,s).$$

Further for $l = \pm 1$

$$\mathcal{L}_l(f;\lambda,s) = \sum_D L(f,lD,\lambda)D^{-s},$$

where D runs over all positive integers such that $D \equiv l, 0 \mod 4$. This type of Dirichlet series was originally introduced by Kohnen and Zagier [K-Z]. Assume that f is a Hecke eigenform. Then we note that

$$\mathcal{L}_{l}(f;\lambda,s) = \frac{\zeta^{st}(f,2s+2\lambda-k)\zeta(2s)}{\zeta(2s+2\lambda-k)} \sum_{D_{0} \in \mathcal{F}_{l}} D_{0}^{-s} L(f,lD_{0},\lambda)$$

$$\times \prod \{ (1 + \psi_{lD_0}(p)^2 p^{-2s+k-1-2\lambda}) (1 + p^{-2s+k-2\lambda}) - \psi_{lD_0}(p) b(p) p^{-2s-\lambda} (1 + p^{k-2\lambda}) \},$$

where $\zeta(s)$ is Riemann's zeta function and $\zeta^{st}(f,s)$ is the standard zeta function of f.

Theorem 1. Let n be an even positive integer. Then, under the above assumption, we have

$$\begin{split} L([f]_{1}^{n},s) \\ &= 2^{ns}\alpha_{n,k}[\frac{L(f,k-n/2)}{\zeta^{st}(f,k-1)}\zeta(2s-1)\prod_{i=1}^{n/2-1}\zeta(2s-2i-1)\zeta(2s-2k+2i+2) \\ &\qquad \qquad \times \mathcal{L}_{(-1)^{n/2}}(f;k-1,s-k+3/2) \\ &+ (-1)^{n(n-2)/8}\frac{L(f,k-1)}{\zeta^{st}(f,k-1)}\zeta(2s-n+1)\prod_{i=1}^{n/2-1}\zeta(2s-2i)\zeta(2s-2k+2i+1) \\ &\qquad \qquad \times \mathcal{L}_{(-1)^{n/2}}(f;k-n/2,s-k+(n+1)/2)], \end{split}$$

where $\alpha_{n,k}$ is a constant depending only on n and k.

As for the proof, see [I-K2]. By the above theorem combined with the general theory of $L([f]_1^n, s)$ obtained by [M], we obtain

Corollary. Assume that $n \equiv 2 \mod 4$. Put

$$\mathbf{L}_{-1}(f;\lambda,s) = \pi^{(2\lambda-2k)(s+\lambda-1/2)} \zeta(2s+4\lambda-2k) \Gamma(s+\lambda-1/2) \Gamma(s+\lambda-1) \mathcal{L}_{-1}(f;\lambda,s).$$

Then $\mathbf{L}_{-1}(f; k-n/2, s)$ can be continued analytically to a meromorphic function of s in the whole complex plane, and has the following functional equation:

$$\mathbf{L}_{-1}(f; k - n/2, n + 1 - s - k) = \mathbf{L}_{-1}(f; k - n/2, s).$$

Remark. If n = 2, the two terms in the above formula coincide with each other, and unify in one term. This is nothing but Böcherer's result [B,

3 Koecher-Maaß Dirichlet series for the Ikeda lifting

Let f(z) be a normalized cuspidal Hecke eigenform of weight 2k - n with respect to Γ_1 . Assume that n and k - n/2 are even positive integers. Then Duke and Imamoglu conjectured that there exists a cuspidal Hecke eigenform $I(f)^n(Z)$ of weight k with respect to Γ_n such that

$$\zeta^{st}(I(f)^n, s) = \zeta(s) \prod_{i=1}^n L(f, s+k-i).$$

In [I], Ikeda constructed such a Hecke eigenform explicitly. Thus we call $I(f)^n(Z)$ the Ikeda lifting of f to Γ_n . Let \tilde{f} be the modular form of weight k-n/2+1/2 belonging to the Kohnen plus-space corresponding to f, and $E_{n/2+1/2}$ be the Cohen Eisenstein series of weight n/2+1/2. Let $L(\tilde{f},s)$ and $L(E_{n/2+1/2},s)$ be the Mellin transforms of \tilde{f} and $E_{n/2+1/2}$, respectively, and $L(\tilde{f},s)\otimes L(E_{n/2+1/2},s)$ be the convolution product. Let

$$ilde{f}(z) = \sum_{d_0} c(d_0) exp(2\pi i |d_0|z),$$

where d_0 runs over all integers such that $(-1)^{k-n/2}d_0 \equiv 0, 1 \mod 4$. Then we note that $L(\tilde{f}, s) \otimes L(E_{n/2+1/2}, s)$ can be expressed as

$$L(\tilde{f},s) \otimes L(E_{n/2+1/2},s) = L(f,2s)L(f,2s-n+1)$$

$$\times \sum_{d_0} c(d_0)d_0^{-s+(n-1)/2} \prod_p \{ (1+p^{-2s+k-1})(1+\chi_p((-1)^{n/2}d_0)^2p^{-2s+k-2}) - \chi_p((-1)^{n/2}d_0)p^{-2s+k-3/2}\alpha_p(1+p^{1/2-n/2}\alpha_p^{-1})(1+p^{-1/2+n/2}\alpha_p^{-1}) \},$$

where α_p denotes the Satake p-parameter determined by f.

Theorem 2. Under the above notation and assumption, we have

$$=2^{ns}\beta_{n,k}[L(\tilde{f},s)\otimes L(E_{n/2+1/2},s)\prod_{i=1}^{n/2-1}L(f,2s-2i)$$

 $L(I(f)^n,s)$

$$+((-1)^{n/2}+1)(-1)^{n(n-2)/8}\prod_{i=1}^{n/2}L(f,2s-2i+1)],$$

where $\beta_{n,k}$ is a constant depending only on n and k.

As for the proof, see [I-K3].

References

[B] S. Böcherer, Bemerkungen über die Dirichletreichen von Koecher und Maaß, Math. Gottingensis des Schrift. des SFB. Geometry and Analysis Heft 68(1986).

[I] T. Ikeda, On the lifting elliptic modular forms to Siegel cusp forms of degree 2n, preprint.

[I-K1] T. Ibukiyama and H. Katsurada, An explicit form of Koecher-Maaß Dirichlet series for Siegel Eisenstein series, preprint.

[I-K2] T. Ibukiyama and H. Katsurada, An explicit form of Koecher-Maaß Dirichlet series for Klingen's Eisenstein series, Manuskripte der Forschergruppe Arithmetik, Heidelberg-Mannheim, 12(1999).

[I-K3], An explicit formula for the Koecher-Maaß Dirichlet series for the Ikeda lifting, preprint.

[K-Z] W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip., Invent. Math., 64(1981), 175-198.

[M] H. Maaß, Siegel's modular forms and Dirichlet series, Lecture Notes in Math., 216, Berlin-Heidelberg-New York Springer 1971.

[Sa] H. Saito, Explicit form of the zeta functions of prehomogeneous vector spaces, Math. Ann. 315(1999) 587-615.

Muroran Institute of Technology, 27-1 Mizumoto, Muroran, 050-8585 Japan

e-mail: hidenori@mmm. muroran-it.ac.jp