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A note on interval games and their saddle points
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Abstract
In this note, we consider the interval matrix game which is an interval generation

of the traditional matrix game. The saddle-points of the interval matrix game are
defined and characterized as equilibrium points of corresponding non-zero sum para-
metric games. Numerical examples are given. Also, these results are extended to
the fuzzy matrix games. '
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1 Introduction and notations

In usual matrix game theory(cf. [15, 16]), all the elements of the payoff matrix are
assumed to be exactly given. But in a real application, we often encounter the case
where the information on the required data includes imprecision or ambiguity because
of uncertain environment.

In order to deal with such case, it is more reasonable to estimate the elements of the
payoff matrix by intervals. As for interval approaches to linear programming problem
and decision processes, refer, for example, to [2, 12] and [4] respectively.

In this note, we consider the interval matrix game which is an interval generation
of the traditional matrix game. The saddle points of the interval matrix game are de-
fined and characterized as equilibrium points of corresponding non-zero sum parametric
games. Also, these results are extended to the fuzzy matrix games.

In the reminder of this section, we shall give some notation on interval arith-
metics(cf. [8]) and some preliminaries related to preference relation on intervals.

Let R be the set of all real numbers and C the set of all bounded and closed intervals
in R. ,

Note that R C C by identifying r € R with [r,7] € C. We will give a partial order
%=, > on C by the following definition.

For [a, ], [¢,d] € C, [a,b] = [c,d]ifa = cand b 2 d, and [a, b] > [c, d] if [a, b] = [c, d]
and [a, b] # [c, d].
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The Hausdorff metric(cf. [5]) on C is defined by 4, i.e.,
6([a,b),[c,d]) :==]a—c|V|b—d| for [a,b],[c,d] € C,

where z V y = max{z, y}.

Let C; :={a € C| a = [a,b] = [0,0]} be the set of nonnegative intervals. Let C™
and C™*" be the set of all m-dimensional column vectors and m x n matrices, called
interval vectors and interval matrices respectively, whose elements are in C, i.e.,

C™:={a=(a1,as...,8n)" |a;€C(1<i<m)} and
C™":={A=(ai)|(ay;) €eC(1Si<m,1<j<n)}

We shall identify m x 1 interval matrices with interval vectors and 1 x 1 interval matrices
with intervals, so that C = C'** and C™ = C™!. Also, we denote by CT and CT*"
the subsets of componentwise non-negative elements in C™ and C™*"*. We equip C™*"
with componentwise relations <, <, >, >.

Similarly, we can define R™ and R™*" as the set of real m-dimensional column
vectors and real m x n matrices. Note that R™** c C™x",

For any A = (a;;) € C™*" with a;; = [a;;,a}], A will be denoted by A = [4~, A*],
where A~ = (a;;) € R™", AY = (afj) ER™" and [A7,AT| = {A€R™" | A~ g A X
At}

The following arithmetics are used in Section 2.

For A = (a,'j),B = (b,'j) € C™*" and X € R,

(1.1) A+B={A+B|A€ A and Be B}
(1.2) A ={)|A€ A},

where for C' = (¢;;) and D = (di;) € R™*"*,C + D = (ci; + dyj).
Observing A+ B = [A~ + B~,A* + B*] € C™*", For any given D C C,c € D is
called a minimal(maximal) point of D if

(1.3) {deD|d<(>)c} =0.

The set of all minimal(maximal) point of D will be defined by Min D(Max D)(cf. [6, 11,
14]).

Since the partial order < on C is equivalent to the vector ordering on R? with RZ
as the corresponding order cone, the following fact follows easily(cf. [1, 11}).

Lemma 1.1. Let D be a compact and convez subset of C. Then [a,b] € Min D(Max D)
if and only if there exists 8 € (0,1) such that fa+ (1 — B)b £ (2)Bc+ (1 — B)d for all
[c,d] € D. .

In Section 2, an interval matrix game is specified and their saddle points are char-
acterized as equilibrium points of the corresponding non-zero sum parametric game.
In Section 3, a fuzzy matrix game is investigated.
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2 Interval matrix games

The two person interval matrix game is defined by the mxn interval matrix A = (a;;) €
C™*" where player 1(maximizer) and player 2(minimizer) have m pure strategies {]
i=1,2,...,m} and n pure strategies {j |  =1,2,... ,n} and if player 1 and 2 select
i(1 £4i £ n) and j(1 £ j < m) respectively, the payoff of player 1 is estimated to be
In a; € C. 7

Let X and Y be the set of all mixed strategies for player 1 and 2 respectively, i.e.,

X ={z = (21,22, ... ,Tm)t € RT | Zmi =1} and
, P

Y={y=@v %) €RL| D u=1}
j=1

Then, for any selected pair (z,y) € X x Y the expected payoff for player 1 is estimated’
by ‘

(2.1) fz,y) == 1'Ay,

where
Tt Ay = Z ZiY;Qij-

By arithmetics in (1.1) and (1.2), for any [a, ], [c,d] € C, [a,b]4 +[c,d] = [a+¢,b+d]
and Aa, b] = [Aa, Ab](A 2 0). So, the following holds obviously.

Lemma 2.1. Foranyz € X and y € Y, it holds that
(2.2) f(z,y) = [a*A7y,z"ATy] € C.

Definition 1. (cf. [[6], [14]]) Let (z*,3*) € X x Y and A € C™". Then, (z*,y") is
said to be a saddle point of the interval matriz game A if the following holds:

(2.3) f(z*,y*) € Max f(X,y") N Min f(z",Y),

where for any (z,y) € X x Y, f(X,y) = {f(¢,y) | # € X} and f(,Y) = {f(z,%) |
y €Y}

We note that f(X,y) and f(z,Y) are compact and convex subset of C.
In order to characterize the saddle point of A, we introduce a parametric equilibrium

points.
For each 8 € (0,1) and A = [A~, AT] € C™", let A(f) = BAT + (1 - pB)A™.

Definition 2. For any 3,8’ € [0, 1], the point (z*,3*) € X x Y is said to be a (8,8')-
equilibrium point if the following (i)—(ii) holds:

(i) z**A(B)y = z**A(B)y* for all y € Y and
(ii) z*A(B")y* < = A(F')y* for all z € X.
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We note that the (3, 3)-equilibrium point (z*,y*) means that (z*,y*) is an optimal
pair for the conventional matrix game A(f), i.e.,

(2.4) ot A(B)y* < 2 A(B)y* £ z**A(B)y forall € X and yeY.

Also, every non-zero sum finite game has an equilibrium point(cf. [7, 16]), so that
for any 8, 8' € [0,1], a (8, B')-equilibrium point exists.
Applying Lemma 1.1 and 2.1, we have the following.

Theorem 2.1. A point (z*,y*) € X xY is a saddle point for the interval matriz game
A if and only if there exist 3, 8’ € (0,1) such that (z*,y*) is a (B8, B')-equilibrium point.

Proof. By Lemma 1.1 and 2.1, that f(z*,y*) € Min f(z*,Y) means that there exists
B € (0,1) satisfying

(2.5)  PzATy*+(1-B)z*A Ty < Bz**Aty + (1 - B)z**A"y forall yeY.
Obviously, (2.5) is rewritten as follows.

(2.6) z*A(B)y* £ z**A(B)y forall yeY.

which is corresponding with (i) of Definition 2.
Similarly, f(z*,y*) € Max f(X,y*) means that there exists 8’ € (0,1) such that

(2.7) o A(B)y* 2 ' A(B)y* for all z € X.

Thus, the proof is complete. g

The following results easily follow from Theorem 2.1.

Corollary 2.1. If the point (z*,y*) € X X Y is an optimal pair for the matriz game
A(B) (B €(0,1)), (z*,y*) is a saddle point of the interval matriz game A.

Corollary 2.2. For any A = ([aj;,a}]) € C™" with a; a;; = c independent of i
andj (1 <4< m,1 S j S n), the saddle point (z*,y*) of A s uniquely determined as
a optimal pair for the matriz game A~ = (a;;).

Proof. We note that A(f) is rewritten as A(8) = A"+8(A*—A"). So that if AT —A~ =
cE, A(B) and A(f') is essentially equivalent for any 3, 8’ € (0, 1), where all the elements
of E € R™" are 1. Thus, the statement of Corollary 2.2 follows obviously. g

The following is useful in finding the saddle point of the interval matrix game A.

Corollary 2.3 (cf. [13]). The point (z*,y*) € X XY is a saddle point for the interval
matriz game A € C™*" if and only if there ezist 3, ' € (0,1) such that (z*,y*) is point
of a solution to

A(B)y + A = z*A(B)ylm
Tt A(F) — ut = P A(B)y1L,
(2.8) Nz =0, fy=0
=1 yl,=1
z,A € RT, y,u € RY,

where 1, = (1,...,1) € R} and 1, = (1,... ,1)’ € R}.
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Remark. A (1, 0)-equilibrium point (z*,y*) € X x Y means that
(i) z**Aty > z**Aty* forall Ac Aandy €Y and
(i) 2'A"y* S z*A"y* forall A€ A and z € X.

This shows that (z*,y*) guarantees the best in the worst case. Thus, (1, 0)-equilibrium
point (z*,y*) will be called a pessimistic pair. By the same discussion as the above,
the (0, 1)-equilibrium point (z*,y*) will be called a utopian or optimistic pair.

3 Extensions to Fuzzy Games

In this section, the results in the preceding section will be extended to the multi-
dimensional fuzzy payoff games.

We write a fuzzy set on RP by its membership function 5 : R? — [0, 1] (see Novak [9]
and Zadeh [17]). The a-cut (a € [0,1]) of the fuzzy set s on RP is defined as

S5, ={z €RP|3(z) > a} (@ >0) and 3 :=cl{z € R?|5(z) > 0},
where cl denotes the closure of the set. A fuzzy set 5 is called convex if
Az +(1-Ny) 23(2) AS(y) =,y R, A€0,1],

where a A b = min{a,b}. Note that 5 is convex if and only if the o-cut 5, is a convex
set for all o € [0,1]. Let F(RP) be the set of all convex fuzzy sets whose membership
functions 5 : R? — [0, 1] are upper-semicontinuous and normal (sup,cg, 5(z) = 1) and
have a compact support. In the one-dimensional case n = 1, F(R) denotes the set of
all fuzzy numbers. Let C(R?) be the set of all compact convex subsets of RP.

The definitions of addition and scalar multiplication on F(RP) are as follows: For
s,7 € F(RP) and A > 0,

1 G+7@) = sup (5o AT(ea))
2) 0@ = { 0 12y Eem)

where 14(:) is an indicator. .
By using set operations A+ B :={z+y |z € A,y € B} and M := {Az | z € A}
for any non-empty sets A, B C RP?, the following holds immediately.

(3.3) (F+7)a=5a+7a and (A5)a =3 (a€[0,1)).

Let K be a non-empty cone of RP. Using this K, we can define a pseudo order
relation <z on RP by z <k v if and only if y — z € K. We introduce a pseudo order
<k on F(RP) (cf. [3]). Let 5,7 € F(RP). The relation 5§ <x 7 means the following (i)
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(i) For any z € RP, there exists y € R? such that z <x y and 3 < 7.
(ii) For any y € RP, ther exists z € R? such that z <y y and §> 7.
For any a € R? and d € C(RP), the product of a and d is defined as
(3.4) ad = {d*d | d € d}.
We note that ad € C.

Lemma 3.1. [8/ For any 5,7 € .'F'(]R”) S Xk T if and only if a5, < aF, for all
a € K* and o € [0,1].

Here, we consider the two person fuzzy matrix game defined by the m x n fuzzy
matrix A = (a;;) € F(RP)™*". For any z = (z1,%2,...,Zm)’ € X and y =
(¥1,¥2,--- ,¥n)" €Y, the expected payoff for player 1 is estimated (cf. [10]) by

(3.5) flz,y) =z'Ay =Y z.y;ay.
We note that f(z,y) € F(RP) and its a-cut is given by

(36) f(xa y)a = inyj&ij,a € C(Rp)1

where a;;, is the a-cut of a;;.

The saddle point of the fuzzy matrix game A is defined similarly as that of the
interval matrix game (see Definition 1 in Section 2).

For any a € RP, noting a@;;. € C, we denote aay;q by [a;;,(a),a ,(a)] and set
A (a) := (@ 4(a)) € R™" and A}(a) := (@ ,(a)) € R™". Here, for a € [0,1],8 €
(0, 1) and a € R?, we put

(3.7) Aaa(B) = BAZ(a) + (1 — B)AZ(a).

Then, the saddle points of the fuzzy matrix game A will be characterized in the follow-

ing theorem, whose proof is done by applying Lemma 3.1 and the ideas used in Section
2.

Theorem 3.1. A point (z*,y*) € X XY is a saddle point of the fuzzy matriz game A
if and only if there ezist two functions B, : [0,1] x K+ — (0,1) such that

(3.8) 1*t Ay 4(B(a,a))y 2 2% Aau(B(e,a))y*  and

(3.8) ' Aaa(B' (@, 0))y" S 2% A4,0(8' (2, 0))y*
foralla €[0,1) and a € K*.
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4 Numerical Example

Here, we give numerical examples.

[0,2], [1,3]

. __ (2, -2 +_(4 0 +_oa-_ (2 2
Noting that A —(0’ 1)amdA = (2, 3) and A A —(2, 2).Thus,

by Corollary 2.2, a saddle point (z*,y*) of A is unique and given by a optimal pair
for A"‘. After a simple calculation, we find that z* = (— é) Yt = (é -—) and

Example 1. Let A = <[2’4]’ [_2’0]) € C¥x2,

55 55
2 12
f(x*,y*) = |:_7 —:| .
‘ 50 ( [314]) [_g % 3, —§
Example 2. Let A = 13 with A= = |4 2| and A+ =
| | \[5 5] 1,2 \z !
1 3
4) a (ﬁ + 3 2,6 - =
3 2. Noting A = 2| foreach 8 € (0,1), we solve the para-
metric equation (2.8) and find tha.t the (8, 3')-equilibrium point (z*,y*) is given by
1 9-24 5—-28 5 .
Y= th
==Y ~ U212 ™
. . 286 — 154' — 156 + 75 6ﬂﬁ' - 350 — 35[3’ +75
fzy) = ]

(10-28)(10 - 26) ' (10— 26)(10 — 26
By Theorem 2.1, the set of all saddle points is specified by the set of all (3, §')-
equilibrium points. Some saddle points and their values are given in Table 1.

T* y* f(z*y")
ﬁ=%ﬂ’=% (-2%,%2) (;2;2) [%’%]
ﬁ=%ﬂ’—§ (23—6,%) (%%) [g_f’%]
5=50=5|Gs3) Goad lormas)
=20 =32 (pp) lamie

Table 1. Saddle points and their values.
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