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1. Introduction

Let A be a C*-algebra with an identity 1. A positive linear map ® on A
is called a Schwarz map if it satisfies ®(a)*®(a) < $(a*a) for everya € A.
It is well-known that if A is commutative then every contractive positive
linear map is a Schwarz map. Robertson [11] has proved that, for a
sequence {®,} of Schwarz maps, the set {a € A : ®,(x) = z(n — oo) for
T = a,a"a,aa’} is a C*-subalgebra. As a corollary he also stated that for
a sequence {®,} of contractive positive linear maps on the commutative
C*-algebra C(X) of continuous complex valued functions on a compact
Hausdorff space X, the set {u € C(X) : @u(u) = u, ®n(|uf?) — |ul?}
is a C*-subalgebra. By identifying C,(X) with the subalgebra of C(X),
the Stone-Weierstrass theorem shows that this contains the Korovkin
theorem.

Let us recall that if B is a C*-subalgebra of C(X) and if for any point
z € X there is a f € B such that f(z) # 0 and if B separates X, then
B =C(X).

Limaye and Namboodiri[7] have shown that for a sequence {®,} of
Schwarz maps and a *-homomorphism ®, the set {a € A : ®n(a) —
®(a), ®,(a*a) — ®(a*a)} is a closed (not necessarily *-closed) subalgebra
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and that {a € A: ®,(z) = ®(z) for z = a,a’a,aa"}, the intersection
of this subalgebra and its adjoint, is a C*-subalgebra. By the Kadison
theorem a contractive positive linear map ® satisfies {®(a)*, ®(a)} <
®({a*,a}) for all a € A, where {,} is the Jordan product, i.e., {z,y} =
Ty + yz.

Limaye and Namboodiri [8] have shown that, for a sequence {®,} of
positive linear maps and a *-homomorphism @, the set {a € A : ®,(a) =
®(a), ®,({a*,a}) = ®({a*,a})} is a *-closed, norm closed subspace which
is also closed with respect to the Jordan product.

A continuous real valued function f(t) on [0, 00)is called an operator
monotone function if f(a) > f(b) whenever a > b > 0, a,b € A. This
function is characterized as follows: f is an operator function on [0, co0) if
and only if f has an analytic extension f(z) to the upper half plane such
that Im f(z) > 0 for Im z > 0. Therefore if f is an operator function,
then so are f(+/%)? and f(1/t)~1. t*(0 < p < 1) and log(t+1) are operator
monotone functions. It is well-known that an operator monotone function
is increasing and concave. '

The aim of this paper is to give estimates of the norms related to
schwarz maps and to extend Korovkin-type theorems by using operator
monotone functions. These estimates seem to be very useful for studying
Korovkin-type theorems in a non-commutative C*-algebra; for instace we
will give a quite simple proofs for many results given above.

2. generalized Schwarz maps.

Let A be a C*-algebra with a unit 1. A linear map ® is called a Schwarz
map if ®(a)*®(a) < P(a*a) for every a € A, and a positive linear map ¥
with ¥(1) < 1 was called a Jordan-Schwarz map in (3], since it satisfies
{¥(a)*,¥(a)} < ¥({a*,a}) as we mentioned in the previous section. To
investigate two cases given above all at once and to extend them, we
consider the following binary operation o in A :

(i) (cz+PBy)oz=a(zoz)+pB(yc2) (a,B€C,z,y,z€A);

(ii) (zoy)* =y*oz*;
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(iii) z* 0z >0;
(iv) there is a real number M such that ||z o y|| < M||z||||y|l;

(v) (zey)oz=zo(yoz)

(v)’ (zxoy)=(yoz) and aoa = a® for a =a.

One may regard this binary operation as the ordinary product or the
Jordan produt.

Beckhoff [3] called a *-closed and norm-closed subspace of .A which is
also closed with respect to the Jordan product a J*-subalgebra of A.

We call a linear subspace B C A a o-subalgebra if x oy € B, whenever
z,y € B, and o*-subalgebra if B is a o-subalgebra and *-closed.

If a o*-subalgebra is complete, that is norm-closed, then it is called a
complete o*-subalgebra .

Definition. A linear map ® : A — A is called a generalized Schwarz
map w.r.t. o if ® satisfies

O(z*) = &(z)* and ®(z*) o &(z) < ®(z* o x) for every z € A.

We remark that a generalized Schwarz map ® is not necessarily positive
(that @ is positive means ®(a) > 0 whenever a > 0).

Definition. A generalized Schwarz map ® w.r.t. o is called a *-
homomorphism w.r.t. o if ®(x)* o ®(z) = ®(z* o z) for every x € A.

Let us note that if ® is a *-homomorphism w.r.t o, then by a polariza-

tion
3
dr* oy = Zi"(i"w +y)* o (i"z +y),
n=0

we deduce ®(z) o ®(y) = ®(z oy) for every z,y € A. It is clear that if
o is the original product in A, then a *-homomorphism w.r.t. o is a *-
homomorphism in the ordinal sense, and that if o is the Jordan product,
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then a *-homomorphism w.r.t. o is a C*-homomorphism in the ordinal
sense. A bounded linear functional ¢ of A is called a state if ¢ is positive
and ¢(1) = 1.

Theorem 2.1. Let ® be a generalized Schwarz map w.r.t. o on A.
Forz,y € A set

X = ®(z* o z) — B(z)* 0 B(z) > 0,
Y:=9(y oy) — 2(y)* 0 B(y) > 0,
Z = ®(z* o y) — B(z)* o B(y).
Then we have

16(2)] < ¢(X)tg(Y)} 1)

for every state ¢ € A'. Further we have
1
SZI < IxIFy )4 (2)

Proof. For every complex number «, we have
0 < &((z+ay)*o(z+ay))—B(z+ay)* 0d(z+ay) = X +aZ+aZ+|ef?Y,
from which it follows that
0 < ¢(X) + 2Re ap(Z) + |a|?¢(Y) for every state ¢ € A'. Thus we can
easily get (1). Since sup{¢(Z) : ¢ is a state of A} is the numerical radius
w(Z), from (1) we obtain w(Z) < w(X)Tw(Y)%.
It is well-known that 3||a|| < w(a) < ||a|| for every a € A.
Thus we obtain (2). O

From the inequality (2) we can e'asily prove results mentioned in the
first section.

Proposition 2.2. Let {®,} be a sequence of generalized Schwarz maps
w.rl. o on A with ||®,|| < 1, and ® a *-homomorphism w.r.t. o on
A with ||®]| < 1. Then the set D := {z € A : ||®,(z) — &(z)|| —
0, ||®a(z* 0 2) — B(z* 0 z)|| = 0 as n — o0} is a complete o-subalgebra.



Proof. Suppose ¢ € D. From the definition of o, it follows that
0 < [|@n(2)* © Pn(z) — 2(2)* 0 2(z)|]
< M||@a(2)* — @(2)°|| [|8()|] + M||®a(2)*]| ||8a(z) — 2(2)]| = O.
This and :

®,(z* 0 z) = B(z* 0 z) = P(x)* 0 (z)
imply
||@n(z* 0 ) — ®p(z)* 0 Dp(z)|| > 0 (R — 00).
Thus for every y € A, in virtue of (2) we get
||@a(z* 0 y) — Ba(2)* © Bu(y)l| >0 (n = 00),
which implies that
O (2* 0 y) = &(z)* 0 ¥(y) if = € D and 2n(y) = 2(y)-

From this one can see that zoy € D if ¢,y € D. Since {®,} is uniformly
bounded, D is complete. O

Corollary 2.3. Under the above condition the set DND* is a complete
o*-subalgebra.

Remark. Since every bounded linear functional on A is a linear combi-
nation of at most four states of A, a sequence {a, } of A weakly converges
to a if and only if ¢(an) — #(a) for every state ¢. By using (1) we can
see that
D; :={z € A: ®,(z) = &(z) (W), Bn(z* 0 z) = (2 0 2) (w)}
is a complete o-subalgebra, and hence that Dy N Df is a complete o*-
subalgebra.

Proposition 2.2, Corollary 2.3 and Remark were proved in (7] [8] [11]
when o is the original product or the Jordan product in A, but the above
proof seems to be simple.

We denote the o*-subalgebra of A generated by a subset S of A by
J*(8,0) or simply by J*(S). We define the Korovkin closure Kor4(S)
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of a subset S C A as follows : Kor4(S) is the set of all z € A such
that for every sequence {®,} of positive generalized Schwarz maps w.r.t.
o with ||®,|| < 1, ®,z — = whenever ®,a — a for every a € S. Here
the convergence means convergence in the norm topology. From this
definition the next follows :

Lemma 2.4. Kors(S) C Kora(T) if S CT. Kora(S) C Kor(T) if
S C Kor(T).

Corollary 2.5. For a subset S C A, we have

J*(S) C Kora(S:), where 8, :=SU{z*oz:z2€ S}U{zoz*:z € S}.
3)

Proof. Fix a sequence {®,} of positive generalized Schwarz maps w.r.t.
o with [|®,|] < 1 such that ®,(t) — ¢ for every t € S;. We have only to
show ®,(t) — t for every t € J*(S). By Corollary 2.3, the set {x € A :
@, () = z,Pn(z* 0 ) = z* 0 2, D, (T 0 2*) = T 0 7*} is a o*-subalgebra.
Since it contains S, it contains J*(S) too. Thus we have ®,(t) — t for
every t € J*(95). O

Theorem 2.6. Let f be an operator monotone function on [0, co) with
£(0) =0 and lim; o f(z) = 00. Set g = f~1. Then for a subset S of A
we have

J*(S) C Kora(S2), where Sz :=SU{g(z*oz) : 2 € S}U{g(zoz*): z € S}.

(4)

Proof. Let {®,} be a sequence of positive generalized Schwarz maps
w.r.t. o with ||®,|| < 1 such that ®,(t) — t for every t € S,. It was
shown in [4] [5] that

@n(f(a)) < f(®@n(a)) for every a >0, (5)
which implies
0 < ®,(z* 0 T) — ()" 0 Bp(x) < f(®n(9(z* 0 7)) — B, (7)* 0 Bn(z)
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for every z. From &,(g(z* o 7)) — g(z* o z), it follows that f(®n(g(z* o
z))) = z* oz. Thus the right side of the above inequality converges to 0,
from which it follows that

lim ®,(z* o z) = lim ®,(z)* o Pn(z) = 2* 0 3.

Similarly we can get im ®,(z o 2*) =z o z*.

Thus we have shown that ®,,(t) — t for every ¢ in S; which was given in
Corollary 2.5, that is, we have shown S; C Kor4(S2). By (3) and Lemma
2.4 we have J*(S) C Kor4(S;) € Kor(S2). Consequently we get (4). O

Theorem 2.7. Let g be a function given in Theorem 2.6. For a finite
set S ={s1,...,8n}, we have

J*(S) C Kor4(S3), where S3=SU {g(Z(s}‘ os;+s;08;))}. (6)

i=1

Proof. Let us take an arbitrary sequence ®, of positive generalized
Schwarz maps w.r.t o with ||®,|| < 1 such that {®,(¢t)} — t for every
t € Ss.

For each ¢

0 S Qn(sz o] S,‘) - <I>n(s,~)" o (I>n(s,-) S Z{@n(s;‘ o Sj) - <I>,,(s,-)* o q)n(Sj)}

j=1

< <I>n(Z:($§ °8;+3;08;)) — Z{‘I’n(sj)* © Pn(s;) + Pn(s5) © n(s))"}

< F(@n(g(D_(s; 085+ s508}))) — Z{‘Pn(sj)* 0 By (s;) + Pn(sj) © Bn(s5)"}-

i
Since the right side converges to 0, ®,(s} o s;) converges to sj o s;.
Similarly we can see that ®,(s; o s}) converges to s; o s;. Thus we have
shown that S; := SU {s*os:s€ S}U{sos*:s5€ S} C Kora(Ss).
By (3) and Lemma 2.4, we get (6). O
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Theorem 2.8. Under the same assumption as Theorem 2.6, we have

J*(S) C Kora(SU{g(z* oz +z01*):x € S}). )

Proof. By substituting z for s; in the inequalities of the proof of The-
orem 2.7, we get

0 D, (z* 0 z) — Bp(z)* 0 By(2)

<
< f(®.(9(z* oz + 2 02°))) — {Pn(2)* © B, () + Pn(z) 0 B, (2)*}.

Thus in the same fashion as Theorem 2.6 we can get (7). O

In the above three theorems we needed conditions f(0) = 0, f(co0) = oo
in order that f~! = g is defined on [0, 00)and that (5) is valid for every
positive map. However, when we consider the case of 1 € S, we can loose
the condition f(0) = 0.

Theorem 2.9. Suppose 1 € S C A. Let f be an operator monotone
Junction defined on [0,00) such that f(0) < 0, f(co) = co. Set g = f~1.
Then we have
J*(S) C Kor(Sz), where S; = SU{g(z*oz)|z € S}U{g(z0z*)|z € S}.

Proof. Let us take an arbitrary sequence {®,} of positive generalized
Schwarz maps w.r.t o with ||®,|| < 1 such that ®,(t) — ¢ for every t € S,.
By (5) we get

Dn(f(a) — £(0)1) < f(#n(a)) — f(0)1 for everya >0,
and hence

®n(a) = Pn(f(9(a))) < F(Pa(g(a))) — F(0)(1 — @n(1)).
From this, for every = € S we deduce

0 < ®,(z"oz)— By(2)" 0 By(2x)
< f(®a(g(z* 0 2))) — £(0)(1 — @n(1)) — Bn(2)" © Bu(2).
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Since the bigger side in the above converges to 0, we obtain that ®,(z*o
z) — z* o z. Similarly we can get ®,(z 0 z*) = z o z*. By (3) we get
J*(S) C Kora(Sz)- O

In the same fashion as the above proof, we can easily extend Theorem
2.7 and Corollary 2.8 to the case of 1 € S as follows :

Theorem 2.10. Let S = {s;,...,8,} be a subset of A and include
1. Let f be an operator monotone function defined on [0,00) such that
f(0) < 0. f(co) = oo. Set g = f~1. Then we have J*(S) C Kor4(Ss),
where S3 = SU{g(3_1_,(s} 0 8; +s; 0 5}))}.

Corollary 2.11. Under the same assumption as Theorem 2.9, we have
J*(S) C Kora(SU{g(z*ox+z0z*):2€S}).

Remark. In the above theorems we studied not the universal Ko-

rovkin closures (the definiton is given below) but the Korovkin closures,
that is, the case where ®, — 1 instead of ®, — ®. To get the same
conclusions for ® as theorems, we would have to assume that ® is *-
homomorphism w.r.t. o and *-homomorphism in the ordinary sense be-
cause of ®(g(a)) = g(®(a)); we thought it is a bit complicated assump-
tion. If a binary operation o is the ordinary product or the Jordan prod-
uct, then *-homomorphism in the ordinary sense is a *-homomorphism
w.r.t. o too. Now we consider this case. Let us define the universal
Korovkin closure Kor%(S) of a subset S C A as follows : Kor%(S) is
the set of all z € A such that for every *-homomorphism & and for ev-
ery sequence {®,} of positive generalized Schwarz maps w.r.t. o with
||®.]] £ 1, &,z — &z whenever P,,(a) — ®(a) for every a € S. When
o is the ordinary product or the Jordan product, it is not difficult to see
that we can substitute Kor%(S) for Kor4 in the above theorems.

At the end of this section we consider the case where o is the ordinary
product, and we extend the Robertson’s theorem in a visible form :

Theorem 2.12. Let {®,} be a sequence of Schwarz maps and @ a
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*-homomorphism, and let f be an operator monotone function on [0,00)
with f(0) = 0, f(oco) = oco. Set g = f~!. Then the set C :={a € A :
P, (z) = ®(z) for z =a, g(a*a), g(aa*)} is a C*-subalgebra.

Proof. That ®,(a) converges to ®(a) implies $,(a)*®,(a) = P(a)*®(a),
and that ®,(g(a*a)) converges to ®(g(a*a)) implies

f(®n(g(a*a))) = f(2(g(a"a))) = P(a*a) = ¥(a)*®(a).
Thus we have f(®,(g(a*a))) — ®,(a)*®,(a) — 0. From (5) it follows that
0 < ®,(a*a) — Pn(a)*P,(a) < f(Pn(9(a*a))) — ®n(a)*®.(a).

Hence we get ®,(a*a) — ®(a*a). Similary we can get ®,(aa*) — ®(aa*).
Thus C C DN D*, where D is given in Proposition 2.2. Conversely, since
D N D* is a C*-subalgebra (Corollary 2.3), D N D* C C. Consequently
C is a C*-subalgebra. 0O

3. Korovkin sets in C(X).

Let X be a compact Hausdorff space and C(X) a C*-algebra of all com-
plex valued continuous functions . Though we treat only complex alge-
bras, the results which will be gotten for complex algebras in this section
hold for real algebras too. Since a positive linear map ® on C(X) satisfies
|®(f9)I> < ®(|f*)®(|g]*), ® is a Schwarz map with respect to the or-
dinary product if (1) < 1. A subset S of C(X) is called a Korovkin
set if Kex)(S) = C(X). Here K¢(x) is the set of every z € C(X)
which satisfies that ®,(z) — z for every sequence of Schwarz maps
(i.e, 0 < ®,,9,(1) < 1) such that $,(s) — s for all s € S. C*(S)
stands for the C*-aubalgebra generated by S.

Theorem 3.1. Let f be an operator monotone function defined on
[0,00) such that f(0) < 0, f(oo) = oo, and set g = f~1. Then for a
subset S of C(X)

C*(S) € Kepx)(SU{g(|uf?*) : w € S}) -if f(0) =0,0r 1 € S.

66



Proof. This follows from Theorems 2.6, 2.9. O

Theorem 3.2. Let f be an operator monotone function defined on
[0,00) with f(0) < 0, f(oo) = oo, and set g = f~1. If a finite subset
S = {uy,...,um} € C(X) separates strongly the points of X, then SU
{g(Jwa)? + - -+ + |um|?)} is @ Korovkin set if f(0) =0, or1 € S.

Proof. By Theorems 2.7, 2.10, we have C*(S) C K¢ (S U {g(Jui|> +
oo+ |um|?)}) if f(0) =0or 1 € S. From the Stone-Weierstrass theorem
C*(S) = C(X) follows. ' O

In [9], the above theorem was shown in the case where g(t) = t. The
forms of Korovkin sets given above include many Korovkin sets in Ap-

pendix C of [1].
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