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1. DIFFERENTIAL EQUATIONS SATISFIED BY FUNCTIONS ON GRASSMANNIANS

The Grassmann manifold is defined as follows.
= {k-subspaces in F"}, F=R, C, H
11 o Tk
M°(n,k;F) =< X = Lo : | € M(n,k;F); rank X = k
Tpn1 - Tnk
= M°(n, k;F)/GL(k,F) '

Here the column vectors x,, (v = 1,..., k) of an element X in M(n,’vk; F) are linearly
independent vectors in a k-subspace of F".
Then we note that

) 1 F= R,
dimg X} = (nL —k*=(n—k)k)x<{2 C,
4 H
P YF) =X} =F*/F*: A projective space
The group G' = GL(n,F) acts on X} (by ‘left) and then
XP =GL(n,F)/Pen (= O(n)/O(k) x O(n—k) ifF=R).

Fln 3= {” B (gyl go) 91 € GL(K,F), g, € GL(n—k,F), y € M(n'—"k,k;iF)}'

Consider the space of hyperfunction sections of a line bundle over the Grassmann
manifold. Fix A = (A1, \;) € C2. L

B(G/PyniLn) = {f € B(G); f(zp) = f(z)|det g:>|det g|**, Vp € Piyn}
(=B(O(n)/O(k) x O(n—k)) if F=R) ‘
={f € B(M°(n,k;F)); f(Xg1) = f(X)|det :|*, Vg1 € GL(k,F)}
(under the correspondence G 3z — ‘z~! = X € M°(n, k;F))

To study the differenatial equations satisfied by B(G /Py n; Ly) we give a notation
related to the Lie algebra of GL(n,C) as follows: :
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g : = CQ® Lie(G) (~ M(n,C) if G = GL(n;R))

(Xf)(z) = dif(:l:etx)h=0 (Eij = Zz”‘éf_j’ (zi5) € G)
v=1 v

t
(Lxf)(@) = 512

m "

U¢(g) := (@@"g) [(X®Y -Y®X —¢[X,Y])
k=0

: Homogenized universal enveloping algebra

Us(g) ~U(g) :=UNg) (X @ eX)ife#0. S(g):=U"g)
A:p (:=C®Lie(P)) = C
Je() =) US(8)(X — A(X))
Xep

Note that J,(A) := J;y()) is the left ideal of U(g) which kills B(G/Px,a; La) by
identifying U(g) with the ring of left invariant differential operators on G.

If we identify U(g) with the ring of right invariant differential operators, the
ideal killing B(G/Px n; Ly) is given by

Ig(A) == () Ad(9)J5(X) (two sided ideal of U(g))
geG

with € = 1 through the anti-automorphism (X — —X, XY — (-Y)(-X)).
Namely

M;()) :=U*(g)/J;(2) (a generalized Verma module of the scalar type)
I5(X) = Anngeg)(Mg(A)) if e #0.

Problem: Give an explicit construction of the generator system of I5(A)!

Idea: Consider the case when ¢ = 0 and quantize it!.

We will identify g and g* by (X,Y) = Trace XY
Then JJ(A) is the defining ideal of the set

A1 0
Apy = {X = ( ;/" /\2]n_k) ;Y e M(n— k,k;C)}

and our problem is to find the generator system of the defining ideal of the closure
of the conjugacy class of a matrix in M(n;C).
f€Ad(9)J)(A), Vg €G & f(Ad(9)Apx) =0, Vg €G.

Method I (minors, elementary devisors):
rank(X — A;) <n—k = det(X — A1) € I3(N)
with I = {#1,...,ip—k+1}, J = {j1,--- s Jn-k+1}-
I9(A) = (det(X — Ay)1y,det(X = Ao)prgr; #I=#J =n—k+1,
#I =#J =k+1) if A\ # Ao

=> elementary divisors + quantization (which means ¢ = 0 — 1)!
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Theorem 1. Suppose 2k <n. If A\; — Ay & {ke,--- ,(n — k)e}, then

I = (det (Biyj = i+ (= 1+ k= 100855 ) cpocnmians
12v3n—k+1

det (Eif‘jf; - (/\2 + (l/ - I)E)J’LJL)1§5§:1}>

If M — Az € {ke, - ,(n — k)e}, then

() = t - k — d; ,
KO0 = (G4 (Bu = (4w 0k 10 5 )igsgnainileg

~det ( E;/ | it = (Az + (V - 1) )6,: il
e (B higsin)
Here det (A;;) = 5 sign( )Aa(l)lAa(2)2 . and.] = {»ir, .,..f,i,,;k_l} etc.
A similar result also holds in the case when 2k > n.. : :
Remark 1. i) The action of G on the space of the (C—span of the above (Capelh
type) generators does not depend on e. Hence thie C-span’is a G-module.
ii) This theorem is generalized for any parabolic p of g, and any A by [03].
iii) e = XA = 0 (= nilpotent varlety) conjectured by Tanisaki, proved by Weyman

[We] (by Kostant with moreover p is a Borel subalgebra)
iv) In the case when g = 0,,, a similar constuction is done by [Od] (together with

quantized Pfaffians). - ‘ , ; N AL
Method II (minimal polynomials) : S LR

The minimal polynomial of X € A, x is q(z) = (= - )(:c‘— Az) and if e = 0 and

z\lgéz\g,wehave AT B

Ig(,\) (9(X)ij, Trace X — kA= (n—k)dg; 1<i<n, 1< < n).

Theorem 2. Putting q;( )=(z=X)(z - /\2 - kc) we have
I (A) = (¢°(F)ij, Trace F — kX — (n— k)Ag; 1< i < m, 1<j<n)

o M;()) has a regular infinitesimal character (e # 0),
AL # A2 ' (e=0).
Here F = (E;;) € M(n;g) C M(n;U(g)).

Remark 2. This theorem is generalized in the case of any generalized Verma
module M;(A) of the scalar type for any reductive Lie algebra g (with some condi-
tion for A). The minimal polynomials are explicitly given by [00] attached to any
finite dimensional faithful completely reducible representation of g.

In the case of the classical Lie algebra g defined by g = gl} with an involution o,
we may naturally choose F = (E;; + o(Ei;)) € M(N;g) (natural representation),
which is studied by [05]. '

Theorem 3. Let b be a Borel subalgebra of g with b C p.
Put J(A) := 3 5 cp US(8)(X — A(X)). Then
Jo(A) = JE(A) + I5(N) (GAP)
if X is regular with € # 0 (or the centralizer of ) is contained in p with € = 0).

Remark 3. i) M(}) := U(g)/J(}) is the usual Verma module and M, ()) is its
quotient. ‘
ii) The necessary and sufficient condition for (GAP) is obtained for any p of gl,, by
[03].

iii) Theorem 3 holds for the two-sided ideal constructed by the minimal polynomial



for the natural representation if g is classical (with some more (possible) exceptional

values for ) if g is exceptional). See [05] and [0O].

2. APPLICATIONS TO INTEGRAL TRANSFORMATIONS

2.1. Penrose Transformations.

Gc: a complex reductive Lie group with a real from G

Pg: a parabolic subgroup of G¢

V: a G-orbit in G¢/Pc

O,: a holomorphic line bundle over G¢/Pc

The image of any G-map: Hy (0,) — {functions} satisfies the system of differential
equations which we constructed because the ideal is two-sided.

2.2. Poisson transformations.

G: a connected real semisimple Lie group with finite center

K: a maximal compact subgroup of G

P: a parabolic subgroup containing a minimal parabolic subgroup Pnin

Py: B(G/PiLy) — (C B(G/Pmini[n) —) A(G/K; My).
fe N = [ Sflabd

Here M, is a maximal ideal of the ring of invariant differential opera,tors on G/K
and A(G/K; M ,\) is its solution space.

_Then if P is bijective (& e(/\) # 0 by [K-]: this condition due to [Hl]) and
(GAP) is vahd the image of P, is characterized by our system because (GAP)
assures that the function in B(G/ Ppmin; L») satisfying our system is in B(G/P; L A)-
In paticular, these assumptions are satisfiled for any G and P if A = 0.

Remark 4. i) If G is classical and P is maximal, then our system defined from
the minimal polynomial is of order two or three.
ii) The images of D', C* and L” are also characterized. The case of L? is studied

by [BOS].
3. RADON TRANSFORMATIONS ON (GRASSMANIANS

Integrate the functions on ¢-subspace in F* over k-subspaces (k > f):

RE: B(XP) 3 ¢ (RE4)(9) = o(gk)dk € B(XR).

/O(k)'/ou)xoue—z)

This is studied by Funk(1916), Gelfand, Helgason, Grinberg, Gonzalez, Kakehi
etc.(cf. Helgason’s Book [H2]). ‘
For simplicity we assume [F = R.

Fact: R is lifted up a G-map: RE : B(G/Puin; Lik,0)) = B(G/Pin; L,0))

Theorem 4 ([03]). Suppose 0 < £ <k <nand£+k < n.
Then RY is a toplogical G-isomorphism onto the solution space of the system:

{Q((l’.g)}é}%rl:) € B(Mo(nl k)IR)))

®(zg) = |det g|"*®(z) for g € GL(k,R),
7]

L. )1<u<t+l
az'u-?v 12VZ£+1

det( B(z) =0 (Capelli type)

for 1511<---<i¢+1§n, 1Sj1<'--<j[+1 Sk}
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Remark 5. i) B can be replaced by D', C* etc.
ii) The above det(-) can be replaced by a single higer order equation (cf. [Ka]).

Lemma (Generalized Capelli identity, [03]). If [ 333:] = c&,éﬁ, then

det (Z Tyip 7 8 +e(m — e)‘Sika) 1<k<m

Zuje 1243m

9
= Z det (z”x’iq)1<p<m det(ax )1<p<m
1S11 < <KVm<n 1243m Vpiq 13¢2

for I = {i1,...,im} and J = {j1,...,jm}.
Remark 6. If m > n, the above equals 0. (m = n = Capelli identity [Ca]).

4. HYPERGEOMETRIC FUNCTIONS

P: a parabolic subgroup of a real reductive Lie group G

Qj: closed subgroups of G so that Q;\G/P have open cosets (j = 1 2)

A, pj: characters of P, Q;, respectively.

¢1: a function on G with ¢;(gq1zp) = p1(q1)A(p)¢1(z) for g3 € Q1 and p € P

#2: a function on G with ¢32(g22p) = pi1(g2)A*(p)P2(x) for g2 € Q2 and p € P
(/\‘ =—\—- 2pp) . .

Definition (Hypergeometric functions, [03]).

Dy, ,0.(z / ¢1(zk)d2(k)dk (= / o(k)da(z dk)

Remark 7. i) Equations satsified by ®(z): left action of @, rlght action of Q2
and our system for B(G/P; Ly). = the total system of differential equations.
il) @1 = Q2 = K = (zonal) spherical functions (ex. Lauricella’s Fp etc.)

P = Py p, Q2 Py A= (k,0), p2 = (=£,0), ¢2 is the kernel function of RE.

Theorem 5. Let H be a connected subgroup of GL(n,R) such that (Hc x
GL(£,C),C" ® C*) is a prehomogeneous vector space (< 3 an open orbit). Then
the soutions of our total system are our hypergeometmc functzons (z e. zntegral trans-
forms) of the relative invariants on M°(n,{;R).

Example (Gelfand s Hypergeometric functions, [Ge2]) =1

H=GL(1,R), -x GL(1,R)4 and p; = (al, , Q) w1th Z] =1 aj = —k.
n @5
®(a,z) =/ H Zt zj,| w (Hypergeometric functions).
o t34- +t§=1 =1 lv=1 + co :
Our total system is (®(x1,--- ,Xx) is an even function for column vectors x,,) o

k
E:c,-j—(?f =o;® for1<i<n (H-action)
ij

Z :L‘m--?g- =—£6;;® for1<i, j< k (GL(k,R)-action)
J ' ’ v

8%® 520

axilhxiah axizhmhh

Cfor1<4; < iz <n, 1 < J1<j2<k (Capelli type).

Remark 8. i) n =4 and k = 2 in Example = Gauss Hypergeometrlc functions.
ii) If the prehomogeneous vector space has finite orbits in M°(n, £; C), then the total
system is holonomic (cf. [Ta)]).
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5. TwisTED RADON TRANSFORMATIONS

Consider
RE/S : F(G/K) > FGIH), 1= REEN@ = [ fah)dn

with a certain function space F.
What happens if Hy := gHg™! (is twisted) with g € G 7

Example.
G = SO(3) and K = H = SO(2).

If § corresponds to the zero of a zonal
spherical function, the twisted Radon
transform has a kernel corresponding
to the spectral parameter of the zonal
spherical function.

Other § = Small divisor, Diophantine
approximation. . .

What is the good value of 6 ?

Problem. H,/K N Hy is totally geo-
desic submanifold of G/K = 7

We have an affirmative answer in some examples:
»=G/K, G=U(nF), K=U(2,F)xU(n-2F)
Xr = G/H, G=U(nF), H=U(kF) xU(n-kF)

5L
-

I
Ipn-2 = ( 2 —In—2), hoik-ta-k-1:= Ir—1

—in-k-1

K = {g €qG; 9= I2,n—2gI2,n-2} ‘
H= {9 €G;9= Il,l,k—l,n—k-1.911,1,k-1,n-k-1}
= H/HNK =P~1(F) x P*~*~1(F) C X3 (totally geodesic).

Theorem 6 [Kurita-O, in preparation]. Suppose 2 <k <n—2.
The above twisted Radon transformation

R : B(G/K) > f— (Rf)(z) = /H . f(zh)dh € B(G/H)

is a topological isomorphism onto the image of the non-twisted Radon transforma-
tion if n # 2k. If n = 2k, the odd functions are in the kernel and the same result
holds on the even functions.

Remark 9. n = 4 and k¥ = 2 and F = C = the simplest non-trivial case,
H/KNH=P(C)xP(C) and R : B(X3/Z;) ~ B(X3/Z,).
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