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Spectral Properties of Discrete Schrodinger Operator
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1. Introduction .
In this paper we study discrete Schrodinger operators on [2(Z,.), defined by

(He)(n) = ¥(n +1) + ¥(n — 1) + V(n)p(n),
¥(0) cos? + (1) sind = 0, (—g <P < g) (1.1)

where the potential V' = {V(n)}32, is a sequence of real numbers. Since, for the
above discrete operator, the delta function §; := (011, 612, ...) is cyclic, the spectral
problem reduces to the study of the single spectral measure p = ps . In [1] Jito-
mirskaya and Last have shown a-continuity properties of the spectral measure by
extending the Gilbert-Pearson theory on the subordinate solutions. Estimating the
a-continuity, that is, specifying the absolute continuity of y for the a-dimensional
Hausdorfl measure gives information about the dynamical properties of the asso-
ciated quantum systems (see [2]). Here we consider the sparse barrier type po-
tential, which vanish for all n outside a sparse sequence of points {L,} such that
[V(L,)| = oo as n — oo. In [1] they have estimated the upper and lower bounds
of the Hausdorff dimension of its spectrum in the special case where L, = 2"" and

V(L) = V(k) =0if k & {L : n=1,2,...}. They have shown that the Haus-
dorft dlmens1on of the spectrum in (— 2 ,2) takes the value between a and 2a/(1+a).
In this paper we extend their results to the case where the sequence L, satisfies
the growth condition:
K\L; < Lpy < KoLy,

for some positive constants x, K;, K, and we specify the bounds of the Hausdorff
dimension of the spectrum by using these constants. We note that these sparse
sequences can be obtained by using recurrent properties of some quasi-periodic sys-
tems (cf. [3], [4] or [7]). Here we introduce the following quasi-periodically recurrent
potentials

1=a \
V(n) = n7% xpn-a+m(llnll),
where x is a characteristic function and ||yn|| = inf;cz |yn — | and 3 is a parameter,

given by the algebraic properties of vy, which specifies the level of rational approx-
imation properties. In our previous papers ([5], [6], [7]) we classify the class of



irrational numbers according to rationally approximable properties by calling them
a-order Roth or a-order (weak) Liouville numbers. If the irrational number vy is a -
order Roth and also, a 8-order Liouville number, then we can estimate the Hausdorff
dimensions of the spectrum by using the parameter 3 and some related constants
associated with the continued fraction expansion of 4.

Our plan of this paper is as follows: In section 2 we introduce some results on
the theory of subordinate solutions and in section 3 we consider the spectrum of the
operators with the potentials direclty given by using sparse sequences. In section
4 we study the quasi-periodically recurrent potentials and estimate the Hausdorff
dimension of the spectrum. In the last section (Appendix) we introduce definitions
and examples of a-order Roth numbers and a-order (weak) Liouville numbers.

2. Subordinacy and a-continuity

First we introduce some results on the theory of subordinacy in [1]. Consider the
corresponding Schrodinger equation

u(n + 1) + u(n — 1) + V(n)u(n) = Eu(n), (2.1)
then a solution u of (2.1) is called subordinate if

i ez _
L-oo ||v||L

for any other solution v of (2.1), where || - ||, denotes the norm of the solution over
a latice interval of length L:

12
lull = {3 [u(n)]? + (L — [L])|u([L] + 1)[2}/2

n=1

where [L] denotes the integer part of L.
Given E € R, let u; be a solution of (2.1) with the boundary condition

’U.I(O) = 0, ul(l) = 1,
and let uy be a solution of (2.1) with the boundary condition
Ug(O) = 1, U2(1) =0.

Define the transfer matrix U, (F) = T,,(E)T,.—1(E)... T1(E), where

T.(E) = ( E—lV(n) —01 )
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The matrix ¥, (E) transfers the solution of (2.1)

( U(Z(:)l) ) = n(E) ( Z§é§ ) | (2.2)
) wE=(m0ED o) e

We need the following two theorems in [1].

Theorem A. Let E€ R anda € (0,1). Then-

 W(E-eE+e)) _
lim sup 2e) =

if and only if

lim inf ﬂ}fﬂg =0
Lo Jlugl|f,

where 8 = a/(2 — a).

Theorem B. Suppose that for some 3 > 1 and every E in some Borel set A,

. 1 & .
lim sup 75 n; 1T (E)|* >0, (2.4)

and let & = 2/(1 + B). Then, for every € > 0, the restriction u(AN-) is (a + €)-
singular.

3. Dimension of spectrum

First we estimate Hausdorff dimensions of the spectrum oy, of the discrete
Schrodinger operator Hy with a sparse type potential, following the argument in

[1].

Theorem 1. For constants a € (0,1), &, LeN:x >1/a,L >2, Zet
L,=LF, n=1,2,..
and define

V(L,) = L, . ,
Vk)=0, k¢&{L,: n=12.} (3.1)

125



Then we have

a—;éTU—aygDﬂmﬁﬂbQﬂng1+a_z;a_ay (3.2)

Next we consider the generalized case where the sequence of positive integers L,
satisfies the following growth condition: there exist constants K, K, : K > K; > 1
and a positive real number £ > 1 such that .

KiL® < Loy < KoL~ | (3.3)

Theorem 2. Let L, be a sequence of integers which satisfies (5.3) and real numbers
1-—
a} + 1 where

1
a, k satisfy 0 < a < 1, kK > max{—,
% -

_ log K1 + k(k — 1) log L,
"= log Ky + w(k — DlogL;"

Define the potential V(n) by (3.1). Then the Hausdorff dimension of the spectrum
on, of the discrete Schriodinger operator Hy satisfies

&= {r + (1= a2

W < Dip(on,N(-2,2))

2a
S The—{S+0-ni-a)

(3.4)

1 -

Remark 1. It follows from the conditions, sk > 5 +1 and Kk > l——q-l- + 1, that
. ’r’a

the upper bound in (3.4) is less than one and the lower bound in (3.4) is positive,

respectively.

4. Quasi-periodically recurrent potential

Next we consider the case where the potential V'(n) is given by quasi-periodically
recurrent system:

V(1) =0, V(n)=n% xga-aw(lml), n=2,3,.., (41)

where 0 < a < 1,8 > 0, x is a characteristic function; x4(z) =1 (z € A), xa(z) =
0 (z € A) and ||yn|| = infiez |yn — I|. First we consider the case where the irrational
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frequency v : 0 < 7 < 1 is a B-order Roth number; there exists a constant 8 > 0
such that, for every a > 3, there exists ¢, > 0, which satisfies »

Iy - —| —qz,f_a Vp,q €N,

and furthermore, §-order Liouville number, that is, for the Diophantine sequence

{n;/m;} of 4, .
‘ J
'7 - I < m2+,3

m;
J .
holds for some ¢ > 0. These conditions are equivalent to the following inequality
conditions: there exist positive constants K, K, such that

1+, 1+
Klmjfﬂ §’mj+1 S szj A ‘ (42)

holds. (See Lemma Al and A5 in Appendix.) ,

Let {a,} be the partial quotients of the continued fraction expansion of ~+ and
denote its Diophantine approximation by {n;/m;}. For the qua81-per10d1cally Te-
current potentials we consider the special but typical case, a,., = mP, where 7 is
a [-order Roth number and, also, a 3-order Liouville number. Define Lj = m;, if
my # 1 and L;j :=mjiq, if m) = 1.

i : 1 . ,
Theorem 3. Let3eN:3> max{%, _17a_a}’ where

B(B+1)log L,
log(1 + z7er) + B(8 + 1) log Ly

17:

and assume that the quotients of the continued fraction expansion of the irrational
frequency ~y satisfies
Qp41 = mga n = 1 2

Then the Hausdorff dimension of the spectrum oy, of the discrete Schrodznger oper-
ator Hy with the quasi-periodically recurrent potential V(n) defined by (4.1) satisfies

( —n)a

a— { + (1 - )a} Dh(aHo n (_2’ 2))

2a
[+a-G+I-}-a)

(4.3)

Next we consider the case where 7 is a weak Liouville number (see 'Appen'dix
on details). Consider a subsequence of positive integers {k;} and, to simplify the
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argument, assume that ko = 1, kj;1 — k; = M, j =0,1,2,.., for some positive
constant M. Let {a,} be the partial quotients of its continued fraction expansion of
~ and {ng/m} be its Diophantine approximation sequence. Then we assume that

Almfj < a’ﬁj+l < (A2 - l)mfj,
A <ap <A -1, if kg{kj+lij=1,2,...} (4.4)

for some positive real constants Aj, As, 8. Define L; = my,, then, since

1+ 1+
Almkj+1—1 S mkj+1 S A2mkj+1—17 ey Almkj ? S mkj+1 < A2mkj ﬂ)
we have
M 71+ M i+
AMLYP < Ly < AY LT, (4.5)

which yield that v is a S-order weak Liouville number and a B(8 + 3)-order Roth
number. (See Lemma A7 and A2 in Appendix.)

Theorem 4. Under the above conditions for 7y, let Ay > 1,A; > 2 and let
11—«

B > max{—, ——}, where
n na

Mlog A, + B(6+ 1) log L,
n= , (4.6)
Mlog Ay + B(6 + 1) log Ly
and assume that
P> A +1. (4.7)

Define the discrete Schrodinger operator Hy with the quasi-periodically recurrent po-
tential V(n) defined by (4.1) for n > L, and

V(n)=0, n=12,..,L -1
Then the Hausdorff dimension of the spectrum oy, satisfies

a-— {% +(1- n)a}l—_i(ll_-_anm < Dn(on, N(-2,2))
2

l+a—{z+(1-n}1-a)

(4.8)

Remark 2. Following the argument in the proof of Theorem 4 in the case my, :=
mo=1, j=0,1,2,..., we can show that

V(n) = 0, n= 2, ...,Ll -1
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under the condition m2 > A, + 1 instead of (4.7). This condition is satisfied if
A’? > A, + 1 for sufficiently large § and A; > 1, since my > as > A;.

Remark 3. We have 7 ~ 1 in the case where L; >> 1 or § is sufficiently large.
Then we can estimate the dimension

a- %(1 - a) S Dh(UHo ( =2,2)) < -

- 1+a——(1—a') |

5. Appendix: Roth numbers and weak Liouville numbers

Here we start with the following well-known classes of irrational numbers:

(i) an irrational number 7 is called Constant type if there exists a constant ¢y > 0
such that ‘ »
r=Z1>2 (5.1)
q q2
for every positive integers r, g.
(ii) an irrational number 7 is called Roth number type if for each € > 0, there exists

c. > 0, which satisfies
Ce

=L > (5.2)

q q2+e
for every positive integers r, q.

In our previous papers ([6], [7]) we introduce a new class of irrational numbers,
which contains the class (ii):
(iii) 7 is called an a-order Roth number if there exists a constant a > 0 such that
for every 8 > a, there exists ¢z > 0 such that

A C
Ir—2lz 25 (5.3)

for every positive integers r, q.

These above conditions are classified by the rational (badly) approximable prop-
erties of the irrational number 7. On the other hand, the irrational numbers, which
have extremely good approximable property by rational numbers, are called Liouville
numbers.

Consider the continued fraction of the number 7:

= : (a; € N) (5.4)

a3+_



and take the rational approximation as follows. Let mg = 1,n =0,m_, =0,n_; =1
and define the pair of sequences of natural numbers by

m; = a;M;—1 + M;_2, (55)
n; = aQ;N;—1 + Ni—a, 2 > 1. (56)
Then the elementary number theory gives the Diophantine approximation {n;/m;},
which satisfies
1 n; 1 1

<|tT——|< < —. 5.7
mi(mit1 + m;) | mil MmiMiy,  m? (5.7)

Here {n;/m;} is the best approximation in the sense that
n; T
- —=|<|r—= 5.8
<=5 (58)
holds for every rational r/p: p < m;, and, furthermore,
i —r > .
inf [rm — 1| 2 |Tm; —n (5.9)

holds for every m : 1 < m < myy;.

The irrational number, which satisfies

1
IT— |< —, Vi
mt

1

is called a Liouville number. In our previous paper (7] we introduced a new class
of Liouville numbers, which have good approximable property by rational numbers,
but weaker than the above;

(iv) 7 is called an a-order Liouville number if there exist constants ¢, a > 0 such that

Ir — —| < m2+°‘ Vi (5.10)

Furthermore, considering some subsequence of the Diophantine approximation,
we can define the class of irrational numbers, which contains the class of (iv):
(v) 7 is called an a-order weak Liouville number if there exists a subsequence {ms;} C
{m;}, which satisfies

nkj (4
T — <
I mkj l mi;{-a

for some constants ¢, a > 0.

For the case of the constant type (i), it is well known (cf. [8]) that the uniform
boundedness of the sequence {a;} is equivalent to the property (5.1). For the a-order
Roth numbers we can show the following equivalent conditions.
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(R1) There exist constants ag, K > 0:
mi < Kmite, vj. (5.11)

J

Lemma Al. 7 is a Roth number with its order ay if and only if T satisfies the
condition (R1).

Furthermore, we can obtain a sufficient condition by using the growth rate of
some subsequences {my;}.

(R2) There exists a subsequence {my,} which satisfies
Miy,, < Kmt®, V5. (5.12)
for some constants 3, K > 0.

We can obtain the following lemma.

Lemma A2. If Hypothesis (R2) is satisfied for an irrational number 7, then T is
a Roth number with its order

ap = B(B + 3). RS , (5.13)

In [6] we have given a sufficient condition for an a-order Roth ‘numbér, using the
partial quotients of the continued fraction expansion.

Lemma A3.([6]) Let {a;} be the partial quotients in the continued fraction expansion

of T. Assume that, for a given constant € > 0, there exists a constant C. > 0, which

satisfies , ‘ ‘
a'j+la§ < Ce(aj—10j—2++-a1)°, Vi

Then we have
where c. = 1/(16C,).
Here we introduce another sufﬁcient condition for a-order Roth numbers.

Lemma A4. Let {a;} be the partial quotients in the continued fraction expansion
of . Assume that there exists a subsequence {ax,;}, which satisfies that, for a given
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constant € > 0, there ezists a constant C, > 0 such that

(akj+1 + 1)(akj + 1)2(akj_1 + 1)2 s
e (akj-1+2 + 1)2(akj—1+1 + 1)2
S Ce(ak-_lakj_l—l M al)ei vj'

Then we have

For the a-order Liouville numbers we have given the equivalent condition in [7].

(L1) There exist constants a;, L > 0:

mipr > Lml*t V. (5.14)

Lemma A5.([7]) 7 is a Liouville number with its order o, if and only if T satisfies
the condition (L1).

Obviously, (L1) is equivalent to the following condition on the partial quotients
in the continued fraction expansion of 7.

(L2) There exist constants a;, L’ > 0:
ajy1 > L'mj?, Vj. (5.15)
For an a-order Liouville number we have shown the following lemma.

Lemma AG6.([7]) If the partial quotients in the continued fraction ezpansion of T
satisfies
ajy1 > Loa?'H, \/]

for some 3 > 0 and Ly > 2°+!, then T is a Liouville number with its order B.
For the weak Liouville numbers we can show the following equivalent condition:

(WL1) There exist constants a;, L > 0:

My, > Ly F ™, Vj. (5.16)



Lemma A7. 7 is a weak Liouville number with its order a; if and only if T satisfies
the condition (WL1).

Obviously, (WL 1)is eqﬁi’valent to the following condition on the partial quotients
in the continued fraction expansion of 7.
(WL2) There exist constants ay, L' > 0:

Furthermore for. a weak Llouvﬂle number ‘we can show the following lemma.

Lemma AS8. Assume that the partial quotlents {a;} in the contmued fraction
expansion of 7 has a subsequence {ax,}, which satisfies

iy 41 = (@ + 1P (00— + 1P o (ary11 +1)Pak 1 (5.18)

for some 8 > 0, then 7 is a weak Liouville number with its order £.
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