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On Inherited Properties and Scalarization
Algorithms for Set-Valued Maps”

B AS AP EREIEHRE 3R 1% (Zhang, Bing Jang)!
FBASAEB B AEIEHRE RIS (Nishizawa, Shogo)?
B ASERE KEISMRE AP &’ (Tanaka, Tamaki)’

1. Introduction

This paper consists of two parts which are several inherited properties of set-valued maps
and scalarization algorithms for their maps.

Firstly, we present certain results on inherited properties on convexity and semicon-
tinuity. Convexity and lower semicontinuity of real-valued functions are useful properties
for analysis of optimization problems, and they are dual concepts to concavity and upper
semicontinuity, respectively. These properties are related to the total ordering of R*. We
consider certain generalizations and modifications of convexity and semicontinuity for set-
valued maps in a topological vector space with respect to a cone preorder in the target
space, which have motivated by [3, 4] and studied in [1] for generalizing the classical Fan’s
inequality. These properties are inherited by special scalarizing functions;

inf{hc(z,y; k) : y € F(z)} (1.1)

and
sup{hc(z,y;k) : y € F(z)} (1.2)

where he(z,y;k) = inf{t : y € tk — C(z)}, C(z) is a closed convex cone with nonempty
interior, z and y are vectors in two topological vector spaces E, Y, and k € intC(z).
Note that hc(z, -; k) is positively homogeneous and subadditive for every fixed z € X and
k € intC(z), and moreover —hc(z, —y; k) = sup{t : y € tk + C(z)}.

Secondly, we develop computational procedures how to calculate the values of scalar-
izing functions (1.1) and (1.2). In order to find solutions in multicriteria situations, we use
some types of scalarization algorithms such as positive linear functionals and Tchebyshev
scalarization. The function h¢(z,y; k) is regarded as a generalization of the Tchebyshev
scalarization. By using the function, we give four types of characterizations of set-valued
maps.

*This work is based on research 13640097 supported by Grant-in-Aid for Scientific Research from the
Ministry of Education, Science and Culture of Japan.
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2. Inherited Properties of Set-Valued Maps

The aim of this section is to investigate how the property of cone- convexity [resp., cone-
concavity] is inherited into scalarizing functions (1.1) and (1.2) from set-valued maps, and
how the property of cone-semicontinuity is inherited into such scalarizing functions from
set-valued maps. Let E and Y be topological vector spaces and F, C : E — 2¥ two
multivalued mapping. Denote B(z) = (intC(z)) N (25 \ S) (an open base of intC(z)),

where S is a neighborhood of 0 in Y. To avoid confusion for properties of convex1ty, we
consider the constant case of C(z) = C (a convex cone) and its base B(x) = B firstly
and he(z,y;k) = ho(y; k) := inf{t : y € th — C’} We observe the following four types of
scalarizing functions:

wo(z; k) == sup ho(y;k),  v5(z;k) := inf ho(y;k);

yEF () YyEF(z)
—g" (z;k) = sup —ho(~y;k), —o5F(z;k) = inf —he(—y;k).
yEF(x) YyEF(z)

The first and fourth functions have symmetric properties and then results for the fourth
function —pF (z; k) can be easily proved by those for the first function p%(z; k). Similarly,
the results for the third function —yg"(z;k) can be deduced by those for the second
function ¥&(x;k). By using these four functions we measure each image of set-valued
map F' with respect to its 4-tuple of scalars, which can be regarded as standpoints for the
evaluation of the image.

To begin with, we recall some kinds of convexity for set-valued maps.

Definition 2.1. A multifunction F : E — 2Y is called C-quasiconvez, if the set {zre E:
F(z) N (a— C) # 0} is convex for every a € Y. If —F is C-quasiconvex, then F is said to
be C-quasiconcave, which is equivalent to (—C)-quasiconvex mapping.

Definition 2.2. A multifunction F' : E — 2¥ is called (in the sense of [4, Definition 3.6))

(a) type-(v) C-properly quasiconvez if for every two points z,,z, € X and every A € [0, 1]
we have either F'(Az; + (1 — A)z2) C F(z1) — C or F(Az1 + (1 — A)x3) C F(z,) — C;

(b) type-(iii) C-properly quasiconvez if for every two points z;, z, € X and every A € [0, 1]
we have either F'(z1) C F(Az; 4 (1 — A)z3) + C or F(z3) C F(Az; + (1 — M)z,) + C.

If —F is type-(v) [resp. type-(iii)] C-properly quasiconvex, then F is said be type- (v)
[resp. type-(iii)] C-properly quasiconcave, which is equivalent to type-(v) [resp. type- (iii)]
(—C)-properly quasiconvex mapping.

Definition 2.3. A multifunction F : E — 2Y is called type-(v) C-naturally quasiconver,
if for every two points z;,z, € X and every A € [0,1] there exists x4 € [0,1] such that
F(Az1+(1-A)zg) C pF (x1)+(1—p)F(z2)—C. If —F is type-(v) C-naturally quasiconvex,
then F'is said to be type-(v) C-naturally quasiconcave, which is equivalent to type-(v)
(—C)-naturally quasiconvex mapping.

Theorem 2.1. (Inherited convexity (1))
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(i) If the multifunction F : B — 2Y is type-(v) C-properly quasiconvez, then the function

infrep o5 (2; k) = infxep Supyep() he(y; k) is quasiconver, and especially p5(z; k) is
also quasiconvez;

(i) If the multifunction F : E — 2Y is type-(iii) C-properly quasiconcave, then the func-
tion p&(z; k) = supycp(z) he(y; k) is quasiconcave; . :

(iii) If the multifunction F : E — 2Y is type-(v) C-properly quasiconcave, then the func-
tion YE(x; k) = infyep(z) ho(y; k) 18 quasiconcave;

(iv) If the multifunction F : E — 2Y is type-(iii) C-properly quasiconver, then the function
E(z; k) = infyep(z) hc(y; k) is quasiconver. ,

Proof. To prove (i), by definition, for every z;,z, € X and A € [0,1] we have either
F(Az, + (1 — Nzg) € F(z1) — C or F(Azy + (1 — M)z2) C F(z2) — C. Assume that
F(Azy + (1 — A)z2) C F(z,) — C. Then

iz + (1= N)z2) = élelg sup {hc(y; k) |y € F(Azy + (1 — A)x2)}
< inf sup {ho(y: )|y € Flaw) — C}
inf sup hc(y —c k)

keB yeF(gﬂ :
c€
inf sup (hc(y;k) + he(—c;k)) (by subadditivity of hc(-; k))

kEB !IGF(=1)
ceC

IA

I

inf sup hc(y; k)
kEByeF(xl)

fi(z1)
max {fl(l'l),vfl(h)} .

Analogously we can prove the other case when F(Az; + (1 — A\)z2) C F(z2) — C.

Next, to prove (ii), we assume that for every z;,zo € X and A € [0,1] F satisfies
either F(z,) C F(Az; + (1 — A)z2) — C or F(z2) C F(Az; + (1 — A)z2) — C. Assume that
F(z,) C F(Az; + (1 — A\)z2) — C, then

pe(z1;k) = sup{hc(y;k) |y € F(z1)} ,
< sup{hc(y;k) |y € F(Az1+ (1 — A)z2) — C}
sup  he(y —c k)

yeF(Az) +(1-X)=3)
ceC

IN

< sup (he(y; k) + he(—c; k)) (by subadditivity of hc(-;k))
yEF(Az}:g-él—A)::z)
< sup . hc(y;k)

yeF(Az1+(1-A)z2)
= wg()\zl + (1 = A)z2; k),

and hence o ' '
min {(pg(:vl; k), p&(z2; k)} < @&z + (1 = N)zo; k).

Analogously we can prove the other case when F(z3) C F(Az; + (1 — A)z2) — C.
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To prove (iii), we assume that for every z;,z, € X and A € [0,1] F satisfies either
F(Azi + (1 = Mzg) C F(z1) + C or F(Az; + (1 — MNag) C F(z3) + C. Assume that
F()\il,']_ + (1 — /\).’13‘2) C F(.’L‘l) + C. Then ‘

VEAT + (1 - A)zo; k) =
>

I\

iV

v

and hence

inf {hc(y; k) |y € F(Az1 + (1 — N)z2)}
inf {hc(y; k) |y € F(z:) + C}
inf ) he(y + ¢ k)

YyEF(z)
ceC

inf (ho(y; k) — ho(—c; k) (by subadditivity of h(-;K))
cEC’l ’

inf he(y; k
yEan(zl) C(y )

Y6 (215 k)
min {zbg(l‘l; k), Y& (z3; k)} ’

min {$f (z1; k), ¥& (22 k) } < ¥E 21 + (1 — Vo k).

Analogously we can prove the other case when F(Az; + (1 — \)z3) C F(x3) +C.

At last, to prove (iv), we assume that for every z1,z, € X and A € [0,1] F(z,) C
F(Azy + (1 — Nz2) + C or F(zz) C F(Az; + (1 — A\)zp) + C. Assume that F(z,) C
F(Az1 + (1 — A)xz3) + C. Then :

Y& (zi; k)

inf

= inf {hc(y; k) |y € F(z1)} ‘
> inf {hc(y;k) |y € F(Az1 + (1 = A)z3) + C}

he(y + ¢ k)

yEF(Az ] +(1-A)zp)

ceC
> inf
yEF(Az) +(1-A)zy)
ceC
> inf

(he(y; k) — he(—c; k) (by subadditivity of hc(+;k))

he(y; k)

YyEF(Az1+(1-A)z2)

I

and hence

Yo (Az1 + (1= N)zs; k),

Yoz + (1= Nag; k) < max {9f (15 k), 98 (221 K) } .

Analogously we can prove the other case when F(z3) C F(Az; + (1 — A)zy) + C. |

Corollary 2.1.

(i) If F: X — 2Y is type-(v) C-properly quasicohcave, then the func‘tion

falw) i= sup(~¢" (z; K)) = sup inf {—ho(—y; k) |y € F(z)}

is quasiconcave, and especially —<paF (x; k) is also quasiconcave;

(ii) If F: X — 2Y is type-(iii) C-properly quaéz’convez, then the. fun‘ction
—pg" (z;k) = inf {~ho(~y; k) |y € F(z)}

18 quasiconvez for any k € int C;
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(iii) If F: X — 2Y s type-(v) C-properly quasiconvez, then the function
— " (k) = sup {—he(~y; k) |y € F(z)}
is quasiconvez for any k € intC;
(iv) If F: X — 2Y is type-(iii) C-properly quasiconcave, then the function
— 5" (@3 k) = sup {~hc(-y; k) |y € F(z)}
is quasiconcave for any k € int C. ' '

Theorem 2.2. (Inherited convexity (2)) If the multifunction F : E — 2¥ is C-
quasiconvez, then for every k € B the function

V& (z; k) = inf {hc(y; k) |y € F(z)}
1S quUasiConver.

Proof. By the definition of 95, for every € > 0 and x,,72 € X there exist z; € F(z;),t €
R such that for each i = 1,2 z; — t;k € —C and t; < £ (z; k) +¢. Since $1k—C C s2k — C
for 51 < s3(s1,52 € R), we have

z; € tik — CcC max{tl,tg}k - C.

Hence, by the C-quasiconvex of F, for every A € [0, 1] there exists y € F(Azy + (1 — A)zz)
such that y € max {t;,t2} kK — C. which means

ho(y; k) < max{ty, 12}
< max {y§(z1; k), ¥5 (22 ) } +e.
Therefore, we have
PYE(Az1 + (1 — N)zo; k) = inf {he(y; k) |y € F(Az1 + (1 - Az2)},
and since £ > 0 is arbitrarily small, we obtain

YE(Azy + (1 — N)z2; k) < max {¢g(xl;k),¢g(x2; k)} .

Corollary 2.2. IfF: X — 2Y is C-quasiconcave, then for every k € B the function
— 95" (z; k) = sup {~hc(-y; k) |y € F(z)}
S quasiconcave.

Theorem 2.3. (Inherited convexity (3)) If the multifunction F': E — 2Y is type-(v)
C-naturally quasiconvez, then for every k € int C the function

oE(z; k) = sup {hc(y; k) |y € F(z)}

S quasiconves.
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Proof. By definition, for every z;,z, € X and every A € (0,1) we have

F(Azy + (1 — Nag) C pF(z1) + (1 — p)F(zq) — C.

li

oo (Azy + (1 = N)z2; k) sup {hc(y; k) |y € F(Az1 + (1 — A)z2)}

< sup{hc(y;k) |y € uF(z1) + (1 — p)F(z2) — C}
= sup ho(py + (1 — pwy2 — ¢ k)
y) €EF (=)
yzc;g‘(rz)
< sup (he(pyi; k) + he((1 — w)ya; k) + he(—c; k)
ey
ceC
< sup (whe(yi; k) + (1 = p)he(ya; k)
N ere)
< u sup he(yi; k) +(1—p) sup he(yask)
Y1EF(z1) y2€F (z2)
= ppa(T; k) + (1 — p)ea(w2; k)
< max{gog(ml;k),gog(xg;k)}.

Corollary 2.3. If F : E — 2¥ is type-(v) C-naturally quasiconcave, then for every
k € int C the function

—pg" (z; k) = inf {~hc(-y; k) |y € F(x)}
1S quasiconcave.

Next, we proceed to observe another inherited property on set-valued maps. We in-
troduce two types of cone-semicontinuity of set-valued mappings, which are regarded as
extensions of the ordinary lower semicontinuity for real-valued functions; see [3].

Definition 2.4. Let £ € E. The multifunction F is called C(Z)-upper semicontinuous at
Z, if for every y € C(2) U (—C(Z)) such that F(zy) C y + intC(&), there exists an open
U 3 zo such that F(z) C y + intC(Z) for every z € U.

Definition 2.5. Let £ € F. The multifunction F is called C(£)-lower semicontinuous at
o, if for every open V such that F(zo) NV # 0, there eXISts an open U 3 z such that
F(z)N(V +intC(z)) # 0 for every z € U.

Remark 2.1. In the two definitions above, the notions for single-valued functions are
equivalent to the ordinary notion of lower semicontinuity of real-valued ones, whenever
Y = R and C = [0,00). When the cone C(£) consists only of the zero of the space,
the notion in Definition 2.5 coincides with that of lower semicontious set-valued mapping.
Moreover, it is equivalent to the cone-lower semicontinuity defined in [3], based on the fact
that V +intC(z) = V + C(Z); see [5, Theorem 2.2].
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Proposition 2.1 ([1, Proposition 3.1]) If for some xo € E, A C intC(zo) is a compact
subset and multivalued mapping W (-) := Y \ {intC(-)} has a closed graph, then there exists
an open set U > xy such that A C C(z) for every z € U. In particular C is lower
semicontinuous.

We shall say that (F, X), where X is a subset of E, has property (P), if

(P) for every z € X there exists an open U 3 z such that the set F(UN X) is precompact
in'Y, that is, F(U N X) is compact.

Theorem 2.4. (Inherited semicontinuity (1); see (1, Lemma 3.1]) Suppose that mul-
tifunction W : E — 2Y defined as W(z) =Y \ intC(x) has a closed graph. If the multi-
function F is (—C(z))-upper semicontinuous at z for each x € E, then the function fi|x
(the restriction of
z):= inf sup h(k,z,y).

hi(z) = inf Sup (k,z,9)
to the set X ) is upper semicontinuous, if (F, X) satisfies the property (P). If the mapping
C is constant-valued, then f, ts upper semicontinuous.

Theorem 2.5. (Inherited semicontinuity (2); see [1, Lemma 3.3]) Suppose that mul-
tifunction W : E — 2Y defined as W(z) =Y \ intC(z) has a closed graph. If the mul-
tifunction F is —C(z)-lower semicontinuous at z for each x € E, then the function fa|x
(the restriction of
= inf inf h(k,z,
f>(z) keB(z) yeF(z) (k,,9)

to the set X ) is upper semicontinuous, if (F, X) satisfies the property (P). If the mapping
C 1is constant-valued, then f, ts upper semicontinuous.

Other results on inherited semicontinuity are observed in Lemmas 3.1 and 3.2 of [2].

3. Scalarization Algorithms for Set-Valued Maps

To give computational procedures how to calculate the values of inf{hc(z,y; k) : y €
F(z)} and sup{hc(z,y;k) : y € F(z)} practically, we restrict finite dimensional cases
(Y = RP) and we consider the constant case of C(z) = C (a convex cone) and hc(z, y; k) =
he(y; k) :=inf{t: y € tk — C}.

Tchebyshev scalarization is one of the main tools in the multiobjective optimization
problem. In this paper we consider four kinds of scalarizations ¢¢, ¥¢, —gF, -5t
for some multiobjective optimization problems. They are regarded as generalization of
Tchebyshev scalarization. Our proposed algorithm is based on some properties stated in
the previous section, basically those of positively homogeneous and subadditive play key
roles.

Moreover, if the set-valued image F(z) is a simplex (a convex hull generated by finite
vectors), called “polyhedron,” such as co{y,...,ym}, we obtain

(1 (») (1) »)
Ly ¥y Y _ el — i d Y Y
hC(ysk)_max{k(l),“-:k(p)}) h’C( y)k)_mln{k(l)a"-ak(p)}a
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and then we can calculate

i 0 0
k) — J
ooz, k) = Max max , o,
0 | o
i

—_ —F . -—_ n =4
Yo' (z; k) = max min 2,
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