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On Some New Ideas and Algorithms for
Independent Component Analysis

Pando Georgiev! and Andrzej Cichockit

Abstract

For every integer p > 4, even, we consider a specific optimization problem OP(p) arising
from the blind source extraction problem (BSE) and prove that every local maximum of OP(p)
is a solution of (BSE) in sense that it extracts one source signal from a linear mixture of
unknown statistically independent signals. We construct an algorithm for solving OP(p) with
rate of convergence p—1. We propose new sufficient conditions for separation of source signals,
stating that the separation is possible, if the source signals have different autocorrelation or
cumulant functions (depending on time delay). We show that the problem of blind source
separation of signals can be converted to a symmetric eigenvalue problem of a generalized
cumulant matrices if these matrices have distinct eigenvalues. We propose new algorithms,
based on non-smooth analysis and optimization theory, which disperse the eigenvalues of these
generalized cumulant matrices.

1 Introduction

The problem of independent component analysis is formulated as follows: we observe sensor

signals (random variables) x (t) = [z1(£),...,Zm (t)]7 and want to represent them as linear
mixture of random variables s (t) = [s1(t),...,sn (t)]7, which are independent, as much as
possible:

x(t) = As(t) 20, ey

where A is n X n non-singular matrix.

The problem of blind source extraction (BSE), which we shall consider, is formulated as
follows: for given source signals (random variables) x (t) = [z1 (), ..., Zm (t)]7 and knowing that
they are obtained as a linear mixture (1), the task is to find s(¢) and the matrix A. In general this
is impossible, but if s;,7 = 1, ..., n are statistically independent and A is nonsingular, then this is
possible up to permutation and scaling, i.e. we can obtain ADP, where D and P are unknown
diagonal and permutation matrices respectively. Therefore, we can obtain d;sp,(t), where p; is'a
permutation of {1,...,n} (unknown) and d; are scaling coefficients (unknown).

The literature about independent component analysis and BSE problem is huge (see for
instance [16] and references therein).

Here we generalize the algorithm of Hyvarinen and Oja [17] and prove rigorously its con-
ditions for convergence. Even as a mathematical problem this algorithm is interesting, since it
provides an example of an algorithm with arbitrarily fast convergence (defined in the beginning).

Define the function ¢, : R" — R by ¢,(W) = cum,(wTx) where cum, means the self-
cumulant of order p (see [22] for definition and properties of the cumulants). Consider the
maximization problem

OP(p): maximize |¢,(W)| under constraint ||w| = 1.

We shall see that this maximization problem has interesting properties, namely, it has exactly
n solutions wj, ..., w,, which are orthonormal. We can recover the original source signals up to
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sign and permutation: y;(t) = wix(t) = £s,,(t),7: € {1,...,n}. We construct an algorithm for
finding w1, ..., Wy, one by one, which has rate of convergence p — 1.
We note that the idea of maximizing of cumy(w7x) in order to extract one source from a

linear mixture is already considered in [9].
We need the following lemma, which is generalization of a lemma i in [9] (considered there

the case p = 4).
n

Lemma 1 Consider the optimization problem: minimize (mazimize) E kivf
i=1

subject to ||v|| = ¢ > 0, where p > 2 is even, where v = (v, ..., Un).

Denote It = {i€ {1,...,n} : k; >0}, I ={i€ {1,..,n} : k; <0} and e; = (,...0,1,0,...,0),(1
is the i—th place). Assume that It #0 and I~ # 0.

Then the potrits of local minimum are ezactly the vectors m = *ce;, 1 € I and the points
of local mazimum are e:z:actly the vectors M * = = fce;,j €T +.

Proof. Applying the ‘Lagrange multipliers theorem for a point of a local optimum v =
(71, ..., Um), We write: '

kip? ! - 22w =0,i=1,..,m, (2)

where ) is a Lagrange multiplyer.
Multiplying (1) by 7; and summing, we obtain:

pfopt. = 2AC2,

where fop. means the value of f at the local optimum. Hence
p ' :

From (1) we obtain
Bi(tipo? 2 — %fopt.) =0
whence ‘ . . »
v; is either 0, or * ({%)"Tﬁ . (4)
- Case 1. Assume that k;, < O for some index ip and 7 is a local mlmmum Then obviously
floc min. < 0. According to the second order optimality condition [1], a point 20 is a local minimum
* RTL"(z%h >0 Vhe K(z°) = {h:hTz® =0},h #0,

where n
Lz) =Y kiad = Mlall® - &)
i=1
is the Lagrange function. |
In our case, by (2) and (3) we obtain

WL @h = 3 (plp - Dka?~? — 22)h2 (5)
1—1

= 2 floc min. [(P 2) Z h2 E h2]

iel gl
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where I is the set of those indeces ¢, for which 7; is different from 0.
We shall check this second order optimality -condition for the pomts m .-We have

, oy )—{h hig = 0}, , ,‘ .
therefore, for h € K (mi ) h # 0 we have
CRTLAmER > 0L

since h;, = 0 and fipe.min.-< 0.

By (4) it follows that any other vector w1th at ]east two nonzero elements is not 8 Tocal
minimum.

Case 2. Assume that k; > 0 and o is a local ma.ximum. We apply Case 1 to the function
—f and finish the proof .

Theorem 2 Assume that the matriz A n ( 1 ) is orthogonal Then

(a) the mazimization problem OP(p) has exactly n solutions w1, ..., Wy, which are orthonom
mal;

(b) We can recover the original source. szgnals up to sign and permutatwn yi(t) = wlix(t) =
+s.,(t), 1 € {1,...,n}. _—

Proof. Consider the maximization problem:
(DP(p)) maximize [¢(c)|

under constraint ||c|| = 1,

where v,(c) = cum, > ; ¢;5;.

It is easy to see that the problems (DP(p)) and OP(p) are equivalent in sense that wy is

a solution of OP(p) if and only if cg = Awy is a solution of (DP(p)). By the propertles of the
cumulants [5], we have P

Yp(c) = cum, (f_: c,~s,-> = i cfcump(sz),
o i=1,

=1 -

i
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Applying Lemma 1 we obtain that (DP(p)) has n selutions, which are exactly the vectors
+e; with £1 in i—th place and 0 in the other places. Now the conclusion of (a) is evident.
(b) The assertion is evident. =

2.. Algorithm with high order cohvergehbe speed

T T

Denoting y = w'x, ¢ = ATw we have y = cTs = 31, ¢;s.
Consider the following algorithm: I

(l)fllczf;{(w(l—1))j|’_ 1=12., (6)

where ¢p(w) = cump(w x) A

Theorem 3 Assume that s; are statzstzcally mdependent zero mean signals. Let p > 4, even, be
1
gwen cump(s,) 75 0,i'=1,..,n and’ let I(c) arg max c,lcump(sz)v- Let Wo be the set of

all elements w € R" such that I[WH = 1 the set I(ATW) contams only one elementr say z(w)
and cyw) # 0. Then

(a) The complement of Wy has measure zero.

(b) If w(0) € Wy then limy_, o0 yl(t) = j:szo(t) for every k = 1,2,..., where y(t) = w()Tx(t)
and 19 = i(w(0)). . e :

(¢) The rate of convergence in (b) is of order p— 1.



Proof.
(a) It is easy to see that the complement of W, is a finite union of proper subspaces of IR",

therefore this union has measure zero.
(b), (c). By the properties of the cumulants, since s;,% = 1,...,n are statistically independent
(see [22]), we have:
n n
cum, (Z c,-s.-) = Zcfcum,,(s,').
i=1 i=1
Define ¥p(c) = T, ¢fcumy(s;), and c(l) = ATw(l), where w(l) is given by (6).
Since pp(W) = Yp(ATw), using the chain rule for differentiating the composite function
1/)p(ATw) with respect to w, we obtain:

h(w) = Ag)(c) = pA (& cumy(s1), - & leumy(sa)) (7)
therefore
L A1)
Ac) = w0 = DI ®
A1)
Ay (c(t — I
_ A¥((-1)
' (et —)I’
since A is orthogonal.
Multiplying (8) by AT we obtain
_ et-1)
O = e ©)
or
oy oiplcump(si)la( -1 n ,
“W = gea-om o™ (1)
where 0; = sign cump(s;).
From (10) we obtain
]
ool < o [ex(l = Dleumy(s)77] an

Il (el — 1)P~teumy(s)), --., ca(l — 1)P~1cumy(s,))” ||

From (11) it follows by induction that if the initial conditions satisfy c¢;(0)cumy(s;) # 0 for
some i € {1,...,n}, then the denominator in (11) is not zero for every l > 0, so w(l) in (8) is well
defined. Hence, if w(0) € Wy, we obtain:

ci(l) (Icump(Si)l )— _ % [a(z— 1) (ucump(s,-)t )_],,1 (12)

Cip(1) \ lcumy(sio)| Oig | Cig(I — 1) \ Jcumy(s;o)]
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Now by (12) one proves easily by induction that for every | > 0 and every i = 1,...,n

1 _1_q -1
o) (loumy(o) )7 (0! [ed0) (Jeump(o)]) 3)
Cig (l) lcump(s’io)l Tip Cig (0) lcump(sio)l
From (13) it follows that c;(I) — 0 when ! — oo for i # 4g and |c;, (I)| — 1 (since ||c(l)]| = 1),
as the speed of the convergence is p — 1. Thus we proved:

lim y(t) = lim w?(0)x(t) = lim cT(1)s(t) = +s;,(t) Vk=1,2,....
l—00 l—o00 l—00
Similar algorithm can be used for cumulants involving time delays:

cumy{s;, s;, 8:(. — p), si(. — p)}.

This will allows to extract signals having non-zero cumulants (depending on time delays).

3 Cumulant matrices

We will consider the case of cumulants of order four for simplicity. Define (like in [6], but here
using time delays) a 4-th order cumulant matrix Ciﬁip (B) of the sensor signals as follows:

Ci%, (B) = E{xx"x]Bx,} — BE{xx” }tr(BE{xpx;, }) . | (14)
—-E{xe}BE{xpr} - E{xx;;}BTE{xpr}

where B € IR™ is a matrix, Xp = X(t — p),x = x(t),sp = s(t — p),s = s(t) and E is the
mathematical expectation (with respect to t). Similarly, define a fourth order cumulant matrix
c;";?,,(B) of the source signals s;,i = 1,...,n.

Assume that the additive noise n has independent Gaussian components (with zero means),
which are independent also with s;,¢ = 1,...,n. It is easy to see that the (i, j)-th element of
C%%,(B) is :

n
C2%(Biy = 3 cum{zi(t), z;(t), zk(t — p), aa(t — p)} By,
k,i=1
where cum{z;(t), z;(t), zx(t — p), z:(t — p)} denotes the fourth order cumulant.
In the sequel we suppose that s;,, i = 1, ..., n are statistically independent. Then we have:

C5,(B) =HA(B)HT, (15)

A(B) = diag{cum,, (p)h?;Bh,,, ...,cum;, (p)h] Bh,,}, (16)

where cumy,(p) = cum{s;(k), si(k), si(k — p),s;(k — p)} and h,; denotes the i-th column of
H. Therefore, if the mixing matrix H is orthogonal, we can separate the sources by eigenvalue
decomposition of Ci’ip(B) (if its eigenvalues are distinct), which estimates H up to multiplication
with permutation and diagonal sign matrices. Below we show how to disperse its eigenvalues, if
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4 Subdifferential algorithms for dispersing the eigenvalues

Cardoso [6] mentioned (without proof), that the set B of matrices B for whlch the eigenvalues
of C22 'z»(B) are distinct, has full - measure, that is, its complement (in R )} has measure zero.
This fact is an easy exercise, based on the observations that 1): B is non-empty, due to the
non-singularity of H, and 2): the complement of B in R™ is a finite union of proper subspaces,
therefore, with measure zero. This suggests random choice of matrix B, in order to achieve
separation. But, as it was mentioned by Cardoso in [6], we need more in practice, because the
algorithms use only sample estimates of the cumulant matrices and a small error in the sample
estimate could produce a large deviation of the eigenvectors; if the eigenvalues are not well enough
separated.
We present algorithm which ensures enough separation: of the eigenvalues of the matrix
(074 Zp (B) For its derivation (which is omitted because of limited space) we use the notions and
facts from the non-smooth analysis and the optimization thieory, contained in [8] and [11].
Consider the function:

'

#(B) = | _min B - (B, an

.. 1
1

where \;(B) are the eigenvalues (in decreasing order) of the matrix Cz,zp (B) Every elgenva.lue
can be expressed by Fisher’s minimax theorem [18].

This function is positively homogeneous, i.e. p(tB) = typ(B) for t > 0. ‘It is enough to find
an accent direction d of this functlon to achieve separation of the elgenvalues Below we propose
an algorithm for finding an accent direction. We point out that this is not "the steepest accent
direction, although we can find this steepest accent-direction with a more complicated algorithm.

The following lemma gives accent directions of a nonsmooth function.

Lemma 4 Assume that f : R — IR is a locally Lipschitz function, regular in sense of Clarke
[8]. Let 8f(b) mean the Clarke subdifferential of f at b and d € 3f(b) be any nonzero element
of 0f(b). Then sup;¢ f (b +td) > f (b) i.e. d is direction in which the function can increase
stnctly ‘ - , : .

Proof. By'the propéfties of the reéula.r locally Lipschitz functions (see [8]), we;_haye: N
f(b+td) — f(b) .

t—'0+ t

= f'(b;d) = iy ch > |14} > o:
The derivation of the subdifferential Bcp(B) is complicated and is given by the formula: '
a(p(B) = —CT){R‘,(‘L V) : V € Vi: ue€ Vivi € IO}7 (18)

where R(u,v) is a matrix with (k,l)-th element vTQ,c v — ulQyu, Io is the set where the
minimum in (17) is attained, V; is the set of all unit eigenvectors of C2 z‘,,(B) corresponding to
the eigenvalue \;(B), Qj is the matrix with (7, s)-th element cum(z,(¢), z5(t), zr(t — p), 21(t —p))
and. ¢o denotes the closed convex hull. The derivation uses subdifferential calculus for functions
of sup-type, applied in our case for the function in Fisher minimax formula. - -
. The following algorithm is based on formula (18) and Lemma (4). -

1. Start from arbitrary B € R™.

2. Perform an EVD of the matrix C2 zp(B) c z,,(B) = UAUT, where A is a dlago-
nal matrix whose dlagonal elements are the eigenvalues of c2? 'zp(B) and the columns of U are
eigenvectors of C2 z,,(B) If ¢(B) > 0, then stop. Otherwise go to 3.
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3. Let X\;(B),i € I C {1,...,m;} be the set of non-distinct eigenvalues of C2'2 'z, (B); i.e. every
Ai(B),7 € I has multlphuty m; > 2. Cdlculate the n X n-matrices Wz ,j with (k,[)-th element

Wik, 1) = uz‘ijlui,j

where u;;,j = 1,..,m; are the elgenvectors among the columns of U correspondlng to the
eigenvalue \;(B),i € I SR

4. Choose a matrix (denoted by D) with maximal norm among,the matrices {W W” :
Jyr=1,..,m;,i € I} and compute the new matrix as B, = B + 6D, where 0 < 6 < 1.

Then ¢(Bx) > 0, i.e. the eigenvalues of Ci;ip (B,) are distinct. -

In the following theorem we show how to disperse two equal eigenvalues. This is an inde-
pendent proof for the validity of the above algorithm for this case.and gives an idea why the
matrix D has such a form.

Theorem 5 Assume that the eigenvalues \i(B),i = 1,...,m of the matric Cg:gP(B),B e R™
are ordered in decreasing order, \;(B) has multiplicity 2, i.e. A\;(B) = Aj41(B) for some j, uj,
uJ.H are two unit linearly mdependent etgenvectors of
zzp(B) corresponding to A\;(B) and cums,(p).cumy,,,(p) # 0. Then, for any 0 # 0 we have
(B + HD) # Aj+1(B + BD) where the components ofD are B

Dyy = uy TQk,u, - Uj+1Qk,zllj+1 ' .- (19)
and Qx, are defined after formula (18). l

Proof. We have o RS S PR ST R i
c’;’ﬁ(B) AA(B)AT (20)

A(B) dzag (cumsl(p)a*lBa*l, ,cumsn(p)aanam). S (21)

Since A is orthogonal, the eigenvalues of the ma,trlces Cc2 zp(B + 0D) and A(B + 0D) comcxde
Since A, (B) has multiplicity 2 we have

‘AT uJ = aleJ + az€j41, A ll]+1 BleJ + ﬁzéj_;_l,

for some di,aQ,ﬂl,ﬁg, where ej = (0 ..0, 1,0, 0) 1isin’ thej th pla(:e and a1+a2 = ,61 +,62 =
1. By (19) wehave ' T

- F : T B :
Dkl u; Qpu; — j+1leuj+1 = o

Zcum{zr (1), 25(t), 2 (t— -p), alt - )}(uy r"Js “J+1rUJ+1 s):
r,s_l

Hence we obtam
‘D = Adiag {cumsl(p)a 1Va,g, ..., cumg, (p)amVam} AT

where V is.a matrlx Wlth elements Vrs; umuJ s — Uj+1rljtls and a*, is the i-th column of A.
By (20) (21)wehave ol : o i R R

C22,(B+0D) = Adiagleum,, (p)ay(B + D).y, ., cum,, (p)aZy(B  6D)a., }AT
= A(C% z,,(B) + 6diag{cumy, (p)al; Da,y, ..., cumg, al, Da,, })AT.
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The theorem will be proved, if

cumg; (p)aTjDa,]- # cums; ., (p)az‘j’*'lDa*j'*'l'

We calculate:
cum,,(p)al;Da,; = cum,,(p)al;Adiag{cum,, (p)al}Va,y, ..., cum,, (p)al,Va.}ATa.

= cumg; (p)e;‘rdiag{cumsl (p)al}Va,y, ..., cum,, (p)cums, (p)al, Va..}e;
n
= cum,,(p)?al;Va,jeum,, (p)® D) ar,ju;k01,iU50 — Gkjti+1,k0L %41
k=1

= cum,,(p)*(af - BY).
Analogously we obtain:
cum,,,, (p)al;, DaLj41 = cum,,, (p)*(a3 - B3).
Since a? — 3} = —(a2 — (32), we obtain
cumg; (p)az;-Da.j - cum3j+1(p)az;-+1Da,j+1 = (a? — ﬂf)(cumsj ()% + cum3j+l(p)2).

Note that a? # B2, since u; and ujy; are linearly independent. So, the above expression is
nonzero, which finishes the proof of the theorem. =

5 Blind Source Extraction using time delays

In this section we prove that BSS problem can be converted to a symmetric eigenvector prob-
lem. So, any algorithm for eigenvector problem can be used to estimate the mixing matrix
and therefore, to separate simultaneously sources with different temporal structures, or different
cumulants.

The use of second statistics approach for blind separation of temporally correlated sources
has been developed and analyzed by many researchers, including [3]-[5], [19]-[23], etc.

Our approach has unified form for the second order statistic and high order statistics using
matrix cumulants with time delays and it allows to extract colored or signals with different cu-
mulant functions. Even for second order statistics our approach has some advantages that may
not be found in others known results at the same time. It allows us to control successfulness
of the separation by observing the eigenvalues; it provides relative fast convergence (since sev-
eral algorithm has been developed for the EVD with cubic convergence [10]); it can solve large
scale problems due to efficiency of available EVD algorithms; it extracts the components simul-
taneously; does not need the sources to be stationary; does not need that all but one signal to
be Gaussian; and it is robust with respect to additive noise what often leads to smaller errors
(cross-talking between estimated sources).

In our method below we need the global mixing matrix to be orthogonal. We use either
standard orthogonalization procedure, or robust (to additive white noise) one [4], when it is
possible. We perform such an orthogonalization by a linear transformation z = Qx such that the
matrix A = QH is orthogonal, i.e. ATA =1, so our model is z(k) = As(k) + fi(k) (h = Qn).

We shall consider a concrete form of fourth order cumulants and note that generalizations
to high order cumulants is straightforward. '

Let P = {pi, ..., p} be a set of positive integers with L elements. We introduce the following
conditions:
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Vi, j#1 Hli’j S {1,...,L} :
E{si(t)si(t — pi, )} # E{s;(t)s;(t — pi, ;)} (DAF(P))
i.e. the sources have different autocorrelation functions on P;

Vi,j #43li; € {1,...,L}: Cums,—(pl,-,,-) # cumsj(plu), (DCF(P))

where
cumy, (p) = cum{s;(k), s;(k), si(k — p), si(k — p)}

i.e. the sources have different cumulant functions of fourth order on the set P.
Define a covariance matrix of the sensor (resp. source) signals by

R,(p) = E{zz,}, (resp. Rs(p) = E{ss]}), (22)
where ’
' ZP =Z(k—p),z= Z(k),Sp ZS(k—-p),S =S(k) (23)
Define a fourth order cumulant matrix CZ;ZP of the sensor signals as follows:
Cc2 :,, = E{zszZ;zp} - E{zzT}trE{zpz;f} - 2E{zz§}E{zpzT} (24)

where F is the mat;hematlcal expectation (with respect to k in (23)) and similarly, a fourth order
cumulant matrix C's s, Of the source signals s;,i = 1,...,n. It is easy to see that the (%,7)-th

element of Cz zp 1S
szf,,(z ) = Y cum{z(k), z;(k), a(k — p), a(k — p)}.

It is clear that C2 Zp =C2 §p(1n) accordmg to (14), where I, is the unit 7 X n matrix.
For a given vector b € R” define the following matrices for the chosen set P of time delays

Z(b) = sz R.(p:); Z(b)-—_Zbc”,, (25)

and similarly for the source signals

o
S(b) = ib.-asm); S -3 onei,. (26)

We recall that the source signals are uncorrelated, if Rs (p) are diagonal matrices for every

p 2> 1. If the source signals are statistically independent, then this condition is satisfied, but’ the
converse assertion is not always true. Note that the diagonal elements of R,(p) are E{s;(k)s;(k —
p)}. We say that the source signals are colored, if for some py > 1 the matrix Rs(po) has a
nonzero diagonal element. We shall say that the source signals are uncorrelated of order 4, if
c2? s, are diagonal matrices for every p > 1 with diagonal elements cum, (p). If the source signals
are statistically independent, then this condition is satisfied, but the converse assertion is not
always true. We shall say that the sources are colored of order 4, if for some pp > 1, cumy;, (po)
is nonzero. So, if s;, z =1,.., n are uncorrelated of order 4 and colored of order 4, then for some
po > 1, the matrix C22 Spo 1S a nonzero diagonal matrix.
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Assume that the additive noise n has independent components (with zero means), which
are independent also with s;,i = 1,...,n. Recall that a signal s is white (resp. white of order 4) if

E{s(k)s(k-p)} =0, Vp=>1

(resp.cum{s(k - pl),'s(k. — p2),s(k — p3), s(k —pa)} =0
forevery p; > 1,1 =1,...,4).

The proof of the following lemma is straightforward and is omitted.

Lemma 6 Assume that the mizing matriz A is orthogonal, the noise m is white and S(b) is a
diagonal matriz (resp. the noise n is white of order 4 and S(b) is a dzagonal matriz). Then the
matriz Z(b) (resp. Z(b)) is symmetncal and can be decomposed as Z(b) = AS(b)AT UAUT
(resp. Z(b) = AS(b)AT = UAUT), where U is an orthogonal matriz and A is a diagonal
,matmx If the diagonal elements. of A are djstinct, then the mizing matriz can be estimated as
A = U up to multiplication with arbitrary permutation and diagonal sign matrices.

Theorem 7 Assume that the mizing matriz A is orthogonal and (i): the source signals are
colored and uncorrelated, the noise n is white and condition (DAF(P)) is satisfied (resp. (ii):
the source signals are colored of order 4 and uncorrelated of order 4, conditioh (DCF(P)) is
satzsﬁed and the noise n is white of order 4). Then

(a) there ezists ¢ vector b € RV such that the matriz Z(b) (resp. Z(b) ) has distinct
eigenvalues. Furthermore, the set B(L) of all vectors b € R with thzs property form an open
subsel of RE, whose complement has a measure zero.

(b) If U is given from an EVD of the matriz Z(b) (resp “the matriz Z(b) ) for some
b € B(L), i.e. Z(b) = UAUT, (resp. Z(b) = UAUT), then the estimating miring matriz
is A = U and the separating matriz is W = AT = UT (up to multzplzcatzon with arbitrary
permutation and diagbnal sign matrices).

Proof We shall prove the theorem under condltlon (1) (the proof is similar under condltlon

(i1)). ‘ ‘ ' : ’ ‘ '
(a) Smce si;i = 1,..;,n are uncorrelated, S(b) is a' diagonal matrix and by Lemma 1,
Z(b) = AS(b)AT. Observe that the matrices Z(b) and S(b) have the same eigenvalues. It
is easy to see that the complement of B(L) is a finite union of subspaces of RE. If we prove
that B(L) is nonempty, then every of these subspaces must be proper (i.e. different from IRY),
consequently, with a measure zero (with respect to IR”), therefore the complement of B(L) must
have a measure zero too.

Let {0i(b)}™, be the diagonal elements of the matrix S(b), where b € IRF. Assume
that two diagonal elements of -the matrix S(b) are equal, for example o1(b) = o2(b). Let
b(l 2) be a vector, which is different from b only in the component b, , (11,2 is defined by the
condition (DAF(P))). Then 01(b(1,2)) # 02(b(1,2)), because of the condition (DAE(P)).
If all dlagonal elements of S(b(1, 2)) are different, we finish the proof. If not, suppose that

di(b(1;2)) = 0;(b(1,2)) for some indexes i and j. We can change a ittle the component by, ,; of
the vector b(1,2) (keeping the other components the same) such that for the new vector bz, ]) to
be satisfied 6;(b(s, _7)) # oj (b(3, 7)) (because of condition (DAF(P)) and o,(b(, 7)) # aa2(b(s, 7)).
Contmumg in such a way, for any couple (K, 7), k # r for which i (b(k’, 7)) = o5(b(K’, 7)) (where
b(k, ') is'the vector considered in the previous step), we make small change of by, keeping the
pair-wise difference of the diagonal elements considered in the previous steps and obtain vector
b(k,r) for which ox(b(k,7)) # or(b(k,T)). 'S0, after finite number of steps we obtain a vector b*
for which the diagonal elements of S(b*) are dxstmct ‘This proves the non—emptmess of the set
B(L) and finishes the proof of (a).

(b) This follows from the well known facts of linear algebra [14]. »
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Remark 1 If the matrix Z(b) (resp. Z(b)) is non-symmetric (due to'some numerical errors
and finite number of samples) the following proced~ure can be applied. Construct symmetric
matrix: M(b) = 1[Z(b) + Z”(b)] (resp. M(b) = 3[Z(b) + ZT(b)]) and then apply EVD.

i

6 Subdifferential dispersing algorlthm for sources w1th dlstlnct
cumulant functlons

We assume in sectlon that the mixing matrix is orthogonal (after robust oitogonalizetion [4]) and
the source signals have distinct cumulant functions, i.e. cumg,(p) and cums,(p) as functions of
p are different for any 4, j # i). (If the mixing matrix is not orthogonal, the normalized cumulant
functions should be different.) This condition could be considered as large generalization of the
conditions given in [23], [7].

We have proved that the set of vectors b € IRE for which the matrix Z(b) (resp Z(b)) has
distinct eigenvalues and an EVD of it leads to separation of the mixing signals, has a full measure
(i.e. its complement has measure zero). This suggests a random choice of b to achieve separation.
Nevertheless, here we propose a subdifferential dispersing algorlthm for the elgenva.lues of Z(b)
When these cumulant functions are very different (i.e. if we can find apriori a small set of indexes
P = {py,...,pL} such that-cumg,(p;;) # cums,(p;;) for some p;; € P) the following algorithm
has an advantage for large scale problems (because the parameter here is vector, not matrix).
Consider the function: 9(b) = mini<i<m—1{Ai(b)'— Ait1(b)}, where Ai(b). are ‘the eigenvalues
(in decreasing order) of the matrix Z(b). This function has properties similar to those of (17)
and the algorithm for its maximization is the same as those of ¢ with the only difference that
B in the above algorithm is replaced with the vector b, and W, ; are replaced with the vectors
Wik = [uz kcg Zpl (In)uz ks Uy kCz sz( n)uz k}T

The subdifferential (’M(b) is glven by the formula:

8(b) = { (VI R.(p1)V, ., VIR (p1)v) — (WTR.(p)1, s uTR,(pr)u) : v € Viyu € Visi € I},

where Ij is the set where the minimum in the definition of 9 is attained, V; is the set of all unit
eigenvectors corresponding to the exgenvalue i and co denotes the closed convex hull
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