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THE OPERATIONA‘L CALCULUS FOR DIRICHLET SERIES
~ WITH OPERATOR-COEFFICIENTS

TAKESHI YOSHIMOTO (HFAKR)

Toyo University, Kawagoe, Japan

1. Introduction

The purpose of the present paper is to develop the operational calculus for
Dirichlet series with the coefficients replaced by functions of a bounded linear
operator in a complex Banach space. This paper is the first of proper series concerned.
with the operatiomal calculus reflecting certain aspects of the. theory of such
Dirichlet series. The pattern for the developments presented here is provided by the
spectral theory of bounded linear operators and the.analytic theory of Dirichlet
series.

Let X be a complex Banach space and T a bounded linear operator with domain X
and range in X. Let B[X] denote the Banach algebra of bounded 1inear\operafors which
map X into itéelf. For a general T ¢ B[X] the resolvent set of T, denoted by p(T), is
the set of all cdmplex numbérs A such that (AI—.T)'I. exists and belongs to B[X]. The
spectrum of T, denoted by o(T), is the complement of p(T) in i:he complex plane. 1f
Aep(T), we denote ()\I--'I‘)_1 by R(A; T) and call it fhe resolvent (operator) of T.
When p(T) is not empty, it is well known (L 23, [5]) that R(A; T) is anmalytic in.
p(T) as an operator-valued function of the complex variable A. From now on, by N, R
and € we mean the sets of all positive infegers, all real numbers and all complex
numbers, respeétively. It is known that p(T) is an open subset of € and o(T) is a
nonempty bounded closed subset of €. So, the spectral radius of T, denoted by y(T),

T Y®. 1f TeBIX] and Aec,

ig well defined : in fact, y(T) =sup|a(T)| = lim

Al >Y(T), then the series z§=0 )\—(n+1)Tn converges in the uniform operator topology
and we have X e p(T) and '

Tn
An—l— 1

(1.1) R(A;T)=(AI-T)" 1= °f
. e

It is also known that if d()) denotes the distance from A e C to o(T), then ||[R(A; T)||
21/d()). We consider é more general situation. When T e B[X] is given, the symbol
$(T) will denote the class of all complex functions of a complex variable which are
analytic in some open set containing o(T). , ' &

As early as 1943 N. Dunford [ 1] and A.E. Taylor [ 3] developed an operational

calculus for bounded linear operators T by choosing the class &(T) as the algebra of
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functions, each single—vaiued and analytic in some open set containing o(T). And
they used the resulting operational calculus to develop systematically the spectral
theory of bounded linear operators. The development presented there was made in such
a way that the operationai calculus is obtained as part of the general theory of
operators. If £(A) is a function belonging to #(T), the corresponding operator £(T)
in B[X] is defined by the Dunford-Taylof inteéral '

(1.2) (1) = =1 [F)1-1) L an,

21

the- integral being extended over the boundary of a suitable bounded domain containing
o(T). | ‘ ' |

Wé introduce an operator-valued Dirichlet series D(z;p, £, T), the coefficients
of ‘which are composed of operators f_ (T) € ¢(T), that is :
a3 . . D(z;u, £, T)= ] e 'n® £,(T), zeC,

_ - n=0 _

where the series on the right of (1.3) converges in the uniform operator topology
‘for f"{f } and n= {un},l0§u0<u < °f' <pp > as n> e, In particular, when X—ez,
v £ (T) T11 and y,=n+l, we get D(z, M5 £, T) R(A T). if un-log(n+ l), then

_D(z, u,f T) = H(z E, T), where

: . o £ (T)
(1.4) SR Rz £, )= ] 22— .
EEE PR E ‘L ; ' n=0 (Il+l)z‘ . : . ' i

Thé study of Dirichlet series of type (1.3) is particularly natural, appropriate-and
fmportant becaiise of ite great generality which will become clear in this paper.

2. The operatiponal calculus

We begin by recalling the’ meaning' of the operator £(T) corresponding to f e'(b(‘T.).‘
The functions with which we shall be .concerned will be single-valued, but the domains
on which they are defined may consist of more than one component. A component ‘of"atvx
open set means a maximal connected sobset of the open set. ' .

Following A.E. Taylof La], ifwe say that a set D in the complex plane is a Cauchfyv'
domain if the following conditions are fulfilled: |

(1) D is bounded and open ; ‘ ! ‘

(i1) D has a. finite number of components, the closures of any two of which are.
disjoint ; and _ . | '

(iii) the boundary 9D of D is composed of a finite number of closed rectifiable

Jordan curves (no two of which intersect) oriented in the usual sense..
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A co.mponent of a Cauchy dom'ain is a vCauchy domain. We denote by D the closure of
the set D. The idea of a Cauchy domain plays an important role in dealing with
Cauchy’s integral theorem fof analytic functions in &(T).

The following topological theorem was proved in Taylor [ 4 1.

Theorem 2.1. Let F be a closed and G a bounded open subset of the complex plane’

such that FCG. Then there exists a Cauchy domain D such that FCDcDcCG.

For given f e $(T)  the corresponding operator £(T) 1s defined by the Dunford-
Taylor integral '

(2.1) £(T) = f f(A)R(A T) dA( )
where D is any bounded Cauchy domain containing o(T). The operator £(T) dependé only
on the function f, but not on the ‘choice of D. By a spectral set of T will be meant
any subset o of o(T) which Vis both open and closed in o(T). If o ig a sgpectral set
of T, then there exists a function e € ®(T) which is identically one on ¢ and which
vanishes on the rest of o(T). The projection E(o; T) corresponding to o is defined
by E(os T) =ey(T). | | ’
We first discuss the uniform convergence of D(z; p, £, T) and the abscissa of uni-
.form convergence. The following theorem proved by the author (Yoshimoto [ 6 1) will

be used later.

Theorem 2.2. Let Tt—;B[X], f={fn}, f e ®(T), and u={un}, OSpy <y <eer<p >,

Define

logl Z3_, £, (D)l
1im sup ku" k. 1€ linsupll 2o £ (D> 0,
N> o 3+ =
(2.2) a, (£; 1) = n
- 1f limsuplil, o £.(TN=0

Then the following statements hold.

(1) Suppose that D(z, U, f T) converges in the uniform. operator topology for
some z € € with Re(z) >0. Then Re(z) Za (f T).

(2) When a (f T) <o, D{z3 u, £, T) converges in the uniform operator topology for
any z e € with Re(z) > max (0, a, (£:T)).

If 0 sau(f; T) < w, we shall call au(f; T) the abscissa of uniform convergence
of D(z; n, £, T).

Theorem 2.3. Let TeB\[XJ,' f={fn}, £,€®(T), and u={un}, OSpy<m <ore<py >,



34

n
log I, £, (D) I

if 14 ™ £.(T))>0
o 1im sup ™ ggggpu.k=o k(DI>0,
a (£;T) =
prt :
—w if limsup||Z™ £, (T)|| = 0.
£ limsup|iZ, o £y ( )IIA

Then if |au(f; T)| <, then
log(ntl)

au(f; T) - au(f; T) s ;1;1+sgp —T— .
Proof : We may and do assume
log(ntl)

(2.3) £=1im sup ————— < o,
) n+oc ]]n )
To prove the theorem, on assuming that D(z ; u, f, T) converges in B[X] for some

z,) € C, it suffices to prove that for any 6 >0, D(z; u, £, T) converges absolutely for

-Unz
z=2z, + 2+ 6. Then there exists a constant M >0 such that suanoll e HnZo £,(T) s M,

so that

~Hp (2+6)

£ (DlsHe .

- (zo+24+6
o in 20O

On the other hand, in view of (2.3), we can find an integer N>1, no matter how

large, such that

[\
log(n+l) < pn(!.+ -i-)

for all n>N. Thus, setting p=(2+8)(L+ 6/2)'-1 >1, we have for all n>N

- +
. up(zg+e+s)

-plog(ntl) M

£ (Il s M
n(™ ¢ (n+1)P

and so D(z; y, f, T) converges absolutely for z = zo+ £+ 8. The theorem follows.

Theorem 24 Let TeB[X], £={f }, f €e®(T), and u= {un}, OSu0 SHy<terSu, Y,
If D(zo; u, £, T) is absolutely convergent for some Z, € C, then D(z; p, £, T) is abso-

lutely convergent for any z € € with Re(z) > Re(zo).

Proof : Assume that D(zo; v, £, T) is absolutely convergent. Then~

- - -upRe(z-z
|eun(zzo)|=eun (0)<1
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for all nz1 and all z € € with Re(z) >Re(z0). Hence
- - - —UnZ
e £ (nyll =] "n 07200 | P0%0 ¢ oy
<fle ™VE (DI,

and D(z; u, £, T) is absolutely convergent as asserted.

Theorem 2.5. Let TeB[X];, £={£f }, £ €®(T), and w={u,}, OSuy<uy < =<y, > o
if D(ZO; u, £, T) converges in B[X] for some z, € C, then D(z; u, f, T) converges in
B[X] uniformly for ze € with Re(z—zo) >0 and larg(z—zo)l Sw, 0Sw<w/2.

Proof : Let

v ~HnZg
D (zys s £, T) =n§=:0 e £.(1), mz0.

For any z € C such that Re(z-zo) >0 and |arg(z—z0)|5w, Osw<mn/2, we get

(2.4) z e-unzfn(T) = Z {Dn(zo;u,f,']'_‘) -D(Zgiusf,T)} {e-un(z—zo) - E~un+l(z*20) }
n=n+1 Nn=m1 ,
~“Fm41 (?"zo)

+ {Dm(zo;U:f,T) -D(Zo;usfsT) } e

In addition

- z-z - zZ-z lz=2z | -yu,Re(z-2 - Re(z-z,)
|e un( 0) -e uﬂ-l-l( 0)|§ 0 {e Hp ( 0) —e Hn4i ( 0 }

2.5) . ~
( ) Re(z—zo)

and by assumption
]Im(Z—ZO)l

S tanw = const.
Re(z~-z)

(2.6)

Given any small €>0 we can choose a number m =m0(e,z0) so large that

I Dy (z o3 1y £, T) -D(zg5 1, £, T){I<€

for all mzm, on supposing that D(zy; u, £, T) converges in B[X]. Then it follows from
(2.4), (2 5) and (2.6) that

©o [}

Y e e miise | e

N=m+1 n=m+1

—un (2 - - - Re(z-z
Hn(z zo) —e Un+1(z Zo)l tee Uit ( 0)

| z-2z | ‘i’ { -unRe(z—zo) —un+lRe(z—zo) ] te
Re(z-z() n=mtl ~

ceV e (2RC0) g2 hpRe(emn)
Re(z—zo) ‘

< (/1T can? +1)e
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for all mzm,. Hence the proof is complete.

With two constants 6 >0 and M> 0 we define

by, 5(2z¢) = {ze€: Re(z-z)) 26, |Im(z-2z()]= e“Re(z"zo) -1 }

Theorem 2.6. Let TeB[X], £= {fn}, fr€ $(T), and p= {.un}, OSpg<m <-°° <p, *o,
Suppose that D(zo; u, £, T) converges in B[X] for some zZ, ¢ €. Then D(z; u, £, T) con-

verges in B[X] uniformly for z eAM 6(z0), where M and § are two positive constants.
9

Proof : Let z be any element fixed in AM 6(zo) for which D(zo; u, £, T) converges
. ? N

Using the partial sums Dm(zo; u, £, T) we have by (2.5)

"D(Z; u!f’T) "'Dm(z; u:f:T) "

'l-ln(z"zo) _ e"‘“n—{-l (z"'zo) } _ Dm(z £,T) e-ullH-l (z'zo) 0

0
=l I Dulzysw.f,De 0 W
n=m#1
oo
- z-2 - z~-Z - Re(z-z
501 z |el-|n( 0)_eun+1( 0)|+Cleum+1 ( 0)
n=m+1
< I z=2zg < -unRe(z—zo) _ -'un+1Re(z—z0) —um_'_lReV(zv—zo)
VT e e + C1 e
Re(z-2(3) n=mt1-
- | z=2z¢ | e—um_‘_IRe(z—zo) s e-—u,,H_lRe(z—zo)
1 . 1
Re(z-z )
z~2Z - Re(z- A
< 2¢ 2%l HmpRe(zmzg)

1 Re(z-z;)

where C, = sumeoll Dm(zo; p, £, T)J| < °. While, since z ¢ AM’G(ZO),

| ‘_Z—ZO | s Re(z-zo) + | Im(z—z0)|

MRe(z—zo) _

s Re(z-zo) + e i

< C2 eMRe(z—v-zo)

for some constant C2>0' Let € >0 be arbitrarily small and choose a sufficiently

large integer m, =m0(e, zy) such that M< Uney and Cl (:2 6_1 e(M_u“H'I)s < € whenever

me m,. Then

MRe(z-z)

I D(z; u,£,T) - Dy (25 w, £, Tl S 2C, €, =

e—um+lRe(zjz0)
-2 RE(Z_ZO) )
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2 C1 C2 e(M“Um.;.l)RE(Z"Zo)
Re(z—zo)

2C;C —1.
1v2 e(M Um+1)6 <
§

s 2¢

for all m2m; and the theorem is proved.

Recall that a pole of order p (eN) of R(A; T) is an iéolated point }‘0 of o(T)
such that the coefficient- of index -p of the Laurent expansion of R(A; T) in a punc-
tured neighborhood of A, 18 nonzero and the coefficient OfviAndex -n is zero for
every n> p. According to the minimal equation theorem of Dunford ( Dunford [. 11,
Theorem 2.19), it follows that if £, ge 9(T), thén f(T) =g(T) - if and only if

(a) for every pole A of R(-; T) of order p
V=P,  3=0,1,...,p-1,

(b) £(2) =g(A) for every A in a neighborhood of o(T) excluding poles of R(*;. T).

Theorem 2.7. Let TeB[XJ, f= {'fn}, g=1{g,}, £, gneé(T),' ‘and p= {u,},
0=y < M)y <"t <uy>=. Suppose that D(z,; u, £, T) and D(zo; U, g5 T) converge in BL[X]
for some Zy e C and that | '
D(z; u, £, T) =D(z; 1, g, T)
for infinitely many ze:AM;G(zo) with Re(z) +~, where M and & are two positive con-

stants. Then

£.(T) =g (T), nz0.

Proof : Assume that there exists a number k such that
£y D=y (1), £, (=g, (D), ==, f_ (D=g, (D), £, (D=gy ().
Since D(z;3 p, £, T) and D(z; u, g, T) converge in B[X] uniformly for z¢ AM 6(20) in

virtue of Theorem 2.6, there is én integer N ( > k), independent of z EAM 6(20)’ such

that

FE L (TR TP ‘ 1,
1T . Hp— M z{ (1) - g, (T) }i < % 1 fk(T) —gk(T) il
n=N+1 ,

Thus it follows that

Y YR N ~(u - )z,
@D o] e R e g sy ) e v R e (- ()]
n=k+1] n=k+1

1
+ 2 N - g (D]



i -0
s ) NEy(T) -gp(DM e
n=k+41

1 .

However, since u'n> M for n>k, we can _fit_ld zeAM 6(20) such that

| N (umIRe(z) 1
(2.8) ] (D —g(Dlle 0K < L (M) - gy (DI
n=k+1 ' '

Then (2.7) combined with (2.8) gives

©  —(ummy) |
1Y e TR () o g (M < NELTD - gy (D
n=k41 )

and hence

= (noup) |
1Y e 2R (1) - (D)2 N£(T) - g (DI

n=k
T =(u,mm )z
- Y e R E (1) - g (T
n=k+
Accordingly we have
Y e ™l m-g =] e ®{£,(M-g (M} >
n=0 n=k

for all z ¢ AM G(ZD) with Re(z) sufficiently large and a contradicti
b R

the proof of the theorem.

7 When f € #(T), we denote by A(f) the set on which f is defined.
assume that A(f) is a nonempty open set containing o(T), not necess
and that f is single-valued and anaiytic on A(f). If f£,ged(T), w
functions f+g and fg in the obvious way, taking A(f)N A(g) as the:
inition. The homomorphism equation theorem of Dunford (Dunford C1.
states that if f, g€ ®(T), then |

(a) af +Bg e ®(T) and (af +Bg)(T) = af(T) + Bg(T),

(b) fge ®(T) and (£g)(T) = £(T)g(T).

If f= {fn}, g=1{g,}, £, 8,€8(T), we let f+g={f +g,} and fg
rules of the operational calculus for Dirichlet series of type (1.3

the following quasi-homomorphism equation theorem which is a nice

homomorphism equation theorem of Dunford to the case of Dirichlet s

38



39

Theorem 2.8. Let T e B[X], f={fn}, g={gn}, £, 8, € ¥(T), and u={un}, \)={vn},

0 éuo Spy << ey O.<,\)0 SV <<y Fo, Then the following statements hold.

(1) 1f D(z;u, £, T) and D(zj p, g, T) are .convergent in B[X], then for a, BeC,
D(z; u, af+Bg, T) is convergent in B[X] and

(2.9) D(z; u, af+Bg, T) =aD(z; u; £, T) +BD(z; n, g, T).
(2) 1£ D(z; 1, f, T) is absolutely convergent in B[X] and D(z; u, g, T) is convergent
in B[X], then D(z; v, h, T) with h= {h,} defined by

(2.10) , h, = Z fy 8y, 120,
u!’+um=v .

is convergent in B[X] and

(2.11) ) D(z; v, h, T) =D(z; n, £, T)D(Z_; M, gy T).

Proof : The assertion (1) is obvious. In order to prove (2), assume that D(g; u,£,T)
is absolutely convergent and D(z; y, g, T) is convergent for some z ¢ €. For any fixed
integer k21 we let

- k _
“izhim Le T mem)).

k
p(k) =max {2 ) e
i=0 Hetup=vy

For a given €>0 arbitrarily small let N be an integer chosen such that

m

i

£,(T
gnue (D) < =
m
1L e " eMi< 55

for all m, n with m2n2N (which is possible by assumption), where

q q
-Hiz nyz
M=max max{ ) |e i £, 0 ) e i gi(T)ll}.
q20 i=0 i=0

Now we set with p(k)

k .z
Sy M=, L e ng(m
| p(k) b4 (p(K))
- e - ~Hy2 '
= £.(T) (T) }.
i-=zo © 1t { jz.o ¢ gj }

Clearly, 11ml+wp(k) = and limk+ $;(p(k)) == for i=0,1,...;N. So, taking k suffi-
ciently large such that

P >N, ¢;(p(K)) >N, 1=0,1,...,N,



p(k) _, 5 pk) _y
- i _ 3
1S, (i (D (i=20 e 1 e(m)( jio e 1gm)I

p(l) _ $(RCO) _ PO _y
L e am| ) e Tgm- ) e g ]
i=0 : J=0 _ j=0
N . .¢1(P(k)) _ p(k) _
siy e "eml 1 e Fym- ] e T gml
i=0 j=0 j=0 _
p(k) _ g (p(K)) _ p(k) _.
EY IR AC T ) eujzsj(r)- 5 e"jzsj
i=N+1 Jj=0 j=0
N - p(k) _,.,
-5 7 pe e mn+om he ¥ £ (i
3IM 12;0 i . :I.=§t:‘l+1 B |

€ €
< — + — <
3 T3 0%
which is enough to yield (2.11). This finishes the proof of the the

Theorem 2.9. Let TeB[X], £=1{f }, g=1{gy}, £ 8y € 9(T), and u

OSuy<u < oo <p>®, 08y <y, <ere <y, o, Define h={h_} by (i

D(z; p, £, T), D(z; u, g, T) and D(z; v, h, T) converges in B[X], then
holds. ’ )

Proof : Fix a point z € C for which D(z; u, £, T), D(z; p, g, T) an
convergent. We let t >0 and define 4
Y e T O£.(T) if t2u,
S(z, £, T)(t) = upSt
0o . ‘if0<t<uw
—UpnZ .
S(z, g, T) (t) = a3t
0 if 0<t< uo,
—vnz
e hn(T) if t2v
S(z, h, T)(t) = J Vnst
0 if 0<t<v, .

0’

In this setting we have for t> 2u0

. —vnz
S(z,h, T)()= §J e T h(T)-
'ul+um§t i
. -UeZ -, 2z
=7 e Mgm L e ™ gp(m
HgSt-i, Sty

40
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= ] e Y f(1)8(z, 8, T (E-ny)
uzst-uo

and for t chosen éufficiently large

(2.12) [ S(z,h, T)(s)ds= [ ] e £4(T) S(z, g5 T) (8- ny)ds

- t .
= ) e he® f!,(T)f - 5(z, 8, T) (s - ng)ds

: et | X1 t-u .
= 1 e *em[ sz, g 1)(s)ds.
On the other hand,
E-g ﬂ
(2.13) / S(z, £, T)(s) S(z, g, T)(t - 5)ds
Ho o :

t-u -z
= 7% ] e Vg 1) 8z, 8, T) (L - 8)ds
uO ulés .

-,z t-ug A
= ) e ¥ fl(T)f 05(z, gs T)(t-8)ds
U£§t"l—|0 Hg ’
~UgZ t-u
I ooe M

*s(z, g, T) (s)ds.
0

Hence from (2.12) and (2.13) it follows that

(2.14) ¥ sz, by 1) (e)das ="
21 M

¥5(z, £, T)(s) S(z, g, T) (t - 8)ds.
0

Let € >0 be given arbitrarily small and choose a number 8, '=so(e, z) > u, 8o large

that for all s> 8,

Is(z, £, 1) (s) =D(z5 1, £, ) < £
Thus for sufficiently large t such that t>‘u0+s and

=11 °{s(z, £, T)(8) -D(z; 1, £, T) } ds ]l < =,
t uo 2

we have

t-ig,
1 P sGy £, D (@) -DCzs w, £, 1) ) ds |
Wo : .

s L1 s(z, £, 1) (s) - D(z; u, £, T) ] ds]
L TP _

-+ *t—ft—uo fIs(z, £, T)(8) =D(z; u, £, T) || ds
8p



42

[
- + —-.
2 t 2
This gives
(2.15) (uo)lim — [ [s(z, £, T)(8) =D(z;5 u, £, T) }ds =0,
S tyo tpy

where 6 denote .the null operator. Similarly

(2.16) (uo)1lim -]:-ft_uo{ S(z, g, T)(t -8) -D(z; u, g, T) }ds=9
‘ tyo g
and
(2.17) (uo)lim — [ °[s(z, £, T)(s8) =D(z; u, £, T}
tro T py

x [s(z, g> T) (t —8) =D(z; u, g, T) } ds = 6.
Taking into account that for t>s>0 |
S(z, £, T)(s) S(z, g, T) (£t - 8)
=D(z; n, £, T)D(z; 1, 8, T)
+ [S(z, £, T)(8) =D(z; w» £, D}D(z; 1, g5 )
+ D(z; u, £, T)iS(z, g, T) (t - 8) = D(z; u, g, T)} |
+ {S(z, £, T) (8) - D(z; u, £, )} {S(2, g, T) (£ - 8) =D(z; u, 8, T},

we conclude from (2.14) combined with (2.15), (2.16) and (2.17) that
1 .t o
8= (uo)lim —f [S(z, h, T)(s) -D(z; v, h, T)} ds
. tvo 70 : ‘

=D(z; p, £, T)D(z5 1, g, T) =D(z; v, h, T).

This completes the proof of the theorem.

In general, we can not expect that D(z; u, fg, T)YBD(z; u, £, T)D(z; u, g, T) for
f=1{f,)} and g={g,} with £, g, € ¢(T). If fe &(T) weAlet £,= £, £,=0, n=1,2,...,
and p={p,}, 0= Mg <My < *++<p, *w. Then we identify the function f with the.se-
quence (fn} so defined, and D(z; p, £, T) =£(T). In this case, D(z; pu, fg,T) =
D(z; p, £, T)D(2z; u, g, T).

A Banach space X is said to possess a denumerable basis {En} if to each Eel

there corresponds a unique sequence of numbers {u,} such that

N=()

E= ) o E .
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Now it is a natural question to ask the criteria for D(z; p, £, *) to belong to &(T).
The following theorem which is a special case of Taylor’s theorem ( Taylor [31,

Theorem 3) gives an- answer to this question.

Theorem 2.10. Let X possess a denumerable basis. Let f= {f 1, £,€®(T), each of
rwhich is analytic and regular in a region D such that

(1) to each compact subset F. of D and each £* € X* there corresponds a constant M

such that
m
le*( L e ™ E,) s
n=0
for any AeF and m=0,1,2,... 3
' “UnZ
(2) the series D(z; u, £, 2) =Z':___D e Hn fn()\) converges for each AeD.

Then the function D(z; p, £, *) is analytic and regular in D and

. 0 — z
9D(z; u, £, 1) J e n £1(0).

) e

Using Theorem 2.10 and the perturbation theorem (Dunford and Schwartz [ 2 1, VII,

Theorem 6.10) we have

Theoreﬁl 2.11. Let X possess a denumerable basis and let S and N be commuting
operators in B[X]. Let f—{f } (£, ¢ @(T)) and D(z; u, £, *) be functions analytic in
a domain AN D including the spectrum O(S) of S and every point within a distance of
U(S) not greater than some positive number €, where D is a region as given in
Theorem 2.10. Suppose further that D(z; u, f; *) satisfies the conditions (a) and (b)
of Theorem 2.10 and that the spectrum o(N) of N lies within the open circle of radius
€ about the origin. Then the functions fn and D(z; u, £, *) are analytic on a neigh- -

borhood of o(S+N), and

(k) k
o o f (S)N
D(z3 u, £, SHN) = Z eun{z —_1,
: n=0 k= k!

the series converging in the uniform operator topology.

Let Al""’}‘k be poles of R(X; T) of orders P;s:* Py respectively. Let ¢’ be the
complement of the spectral set o= {A_i,--',kk}. ‘1f D(z; u, £, *) € (T) for some fixed

zeC, then

f D(z u, £, A)R(A; T)dA,

(1)  D(zzu, £, T) = m

where D is any bounded Cauchy domain, and
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k PiTl i -
. 1 3°D(z; p,£,1)
(11) bp(z;m, £, T) = -
2p 121 jZo ! a3d |

13 :
"=*1] (T-MI)"E(A;T)

+ D(z; u, £, T)E(0’; T),

(see Dunford [ 1], Theorem 2.21). By the way, if we take A=eZ, £,(T) =T" and u, =

n+1, then the resolvent equation can also be expressed in terms of Dirichletseriés

z z :
as follows: if le }l, le 2l >lTll, then

1.

2.

3.

4.

5.

.6.

z z '
D(zl; u, £, T) -D(ZZ; u, £, T) = (e 2-9 I)D(zl; n, £, T)D(Zz; n, £, T).
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