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Nonwandering sets of the powers of maps of trees

ﬁ&k? 95[] ich %B (N&Otsugu CHINEN)

Abstract. Let X be a tree. Then there exists a‘positive integer mx > 2 such that for each
a continuous map f : X — X, the nonwandering set of f is equal to the nonwandering
set of f™ for every m > 1 such that the greatest common divisor of m and m x' is equal
to one. '

1 Introduction.

A continuum is a nonempty, compact, connected, metric space. A graph is a continuum
which can be written as the union of finitely many arcs any two of which are disjoint
or intersect only in one or both of their end points. From now on, X denotes a tree by
which we mean a graph which contains no simple closed curve.

Let f be a continuous map from a continuum X to itself. We denote the n—fold
composition f™ of f with itself by fo---o f. Let f 0 denote the identity map. A point
z € X is a periodic point of pemodn > 1 for f if f*(z) = z. A point z € X is an
eventually periodic point of period n for fif there exists m > 0 such that fri(z)=f(z)
for all i > m. That is, f*(z) is a periodic point of period n for i > m. A point z € X is
nonwandemng point for fif for any open set U containing z there exist y € Uandn >0
such that f*(y) € U. This paper investigates the nonwandering sets of the powers (under
composition) of a map f. »

We denote the set of periodic points for f, eventually perlodlc points for f, and
nonwandering points for f by P(f),EP(f) and Q(f), respectively. It is known that the
closure of P(f) is contained in £2(f), that (f) is a closed subspace of X and an invariant
set of f i.e. f(Q(f)) C Q(f) (See [BC,p.77]). And if X is a tree, by [HK, p.36], (f) is
contained in the closure EP(f) of EP(f). ‘

It is clear that P(f) = P(f*) and Q(f*) C Q(f) for all n > 1. And it is known
that Q(f) = Q(f™) does not hold in general In fact, there exists a continuous map
F :10,1] — [0,1] such that Q(f*") # Q(f"") for all n > 1. By [CN, p.9], if X is an
interval, then Q(f) = Q(f™) for all odd n > 1. This result is obtained by two steps
Stepl [CN, Theorem 1, p.10]. If z € Q(f) \ EP(f), then z € Q(f") foralln > 1.

Step2 [CN, Theorem 3, p.10]. If z € Q(f) NEP(f), then z € Q(f™) for all odd m > 1.

First, we shall prove the following theorem. \

Theorem 1 Let f be a continuous map from a tree X to itself. Ifx € Q(f)\ EP(f),
then z € Q(f™) for every n > 1.

Let z be a point of X. Denote the number of all components of X'\ {z} by Ord(z, X).
Let En(X) = {z € X|Ord(z, X) = 1} be the set of end points of X. We see that m > 1
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is odd if and only if the greatest common divisor (m,2) of m and 2 is equal to one.
Since |En([0,1])| = 2, for Step 2 we can rewrite that z € Q(f™) for all m > 1 with
(m, |En([0,1])]) = 1. And by [CN, Proposition 1.1], there exist a continuous map f from
[0, 1] to itself with zo € Q(f) such that zo € Q(f™) if and only if (m,|En([0,1])]) = 1. For
each positive integer n > 1, we say a subspace X, = {re® :0 =2kn/n(k=0,1,--- yn—1)
and 0 < r < 1} of the complex plane an n-od.
Example 1. There exist a continuous map f from an n-od Xn to itself with zo € Q(f)
such that zo € Q(f™) if and only if (m,n) = 1. '
This shows that for each n’ < n, there exist a continuous map f, from an n-od X, to
itself and z, € Q(fy) such that z,» € Q((f)™) if and only if (m,n’) = 1. We notice that
(m,n’) =1 for all n’ < n if and only if (m,n!) = 1. Let B(X) = {z € X|Ord(z, X) > 3}
be the set of branched points of X. And we construct a map ¢ from a tree Y,, with
|En(Yz)| = n to itself with yo € Q(g) such that Ord(b,Y,) = 3 for all b € B(Y,) and that
Yo € (g™) if and only if (m,n) = 1.

Let Ed(X) be the set of all components of X \ B(X ). Next we shall prove the
following:

Theorem 2 Let f be a continuous map from a tree X to itself and let
mx = max{|En(X)| + |B(X)|,2|Ed(X)| + |B(X)| — |En(X)| — 1}.

Ifz € Q(f)NEP(f), then z € Q(f™) for every m > 1 with (m,mx!) = 1. In paticularly,
¥ X is an od, then x € Q(f™) for every m > 1 with (m, |En(X)|!) = 1.

A dendrite is a locally connected,uniquly arcwise connected continuum. We see that
every tree is a dendrite.

Example 3. There exist a dendrite S which is not a tree, a continuous map f: S — S
and z; € Q(f) NEP(f) such that z; & Q(f*) for all k£ > 1.

By Example 3, we see trees in Theorem 2 can not be change into dendrites. From
‘Theorem 1 and 2, we have the following main theorem.

Theorem 3 Let f be a continuous map from a tree X to itself and let
mx = max{|En(X)| + |B(X)|,2|Ed(X)| + |B(X)| — |En(X)| — 1}.

Then QU f) = Q(f™) for every m > 1 with (m,mx!) = 1. In paticularly, if X is an od,
then Q(f) = Q(f™) for every m > 1 with (m,|En(X)|!) = 1.

2 Examples.

Example 1. Let n > 2 be an integer. We construct a continuous map f from an n-od
Xn to itself with 2o € Q(f) such that zo € f™) if and only if (m,n) = 1. Denote
zx = 1/2e%*™/"(k = 0,1,-+-,n — 1), 2o = 3/4€*™/™ yo = 7/12¢*™, and z; = 2/3e?,

Define ) )
f(re?mi/ny = re2k+mi/n 0 <r <1/2 0r k =1,---,n—2,

f(re¥n-Umi/ny = pe2m i 0 < r < 3/4, and
f(re¥n=mi/ny — g, if3/4<r<1.
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And define
f(tzo+ (1 = t)yo) = tz1 + (1 = )™/,
fltyo+ (1 —t)z1) = te2mi/n,
f(tzy + (1 — t)zo) = (1 —t)20,and
Fltzo + (1 — t)e?™) = tzo + (1 — t)Zo (0<t<1).

Set e}, = {re?*™/m:3/4 <r <1}k =0,1,---,n— 1) and 2z, = 15/24€™ with f(z) = 21.
We note f~(zo) = {€2™}Ue,,_, and f(Xn) = Xn \ €. We see that f~*1(xo) = e} forn >
3 and that there exist y1 € (20, %0) and 2} € (2g, ¥o) such that f™(zo) = [y1,2}]- Set 7y =
3/4e?min = f(y;) = f(z}). We have 3,25 € (21, 7}) such that f~*(z5) = 1, [ (23) =
2, and f~"*([yy, 2}]) = [z}, z3). Therefore, there exist y2, ¥} € (20,91) and 25, 25 € (25, 21)
L oh that fom) = F(2h) = o Fuh) = F(4) = o and f([ys, 24)) = lya, 93] U L2, 2]
After all, we have f=2"(zo) = [y2,¥5] U [22, 2Y]. Inductively, for each m > 2, there exist
Yms Y € (20, Ym—1) and zp,, z;, € (20, Zm_y) such that F7m(20) = [Yms Y] U [2ms 2m)- And
we see that Mo e Um = 20, Mmoo 2 = 2, U NUsy f (o) = U NUgZ fFn(zo) C
Unm1[Ym, ) for each small connected neighborhood U of 2 and that for all m’ > 0,

f(m:+m+l)n([z0, ym])

F+ (£ (20, )
oI (20, 20))

fm 711([0’ :L‘] U [0’ Zn—ll)

f(m —1)n([07 330] U [0’ Zn—l])

(0,20 U [0, z0-a))
= [0,z0] U [0, zn-1-

This shows that for each small connected neighborhood V of zp, there exists m>0
such that zo € f*(V) if and only if k = (m +m')n + 1 for some m' > 0. We conclude
that zo € Q(f™) if and only if (m,n) = 1. »

This shows that for each ' < n, there exist a continuous map frn from an n-od Xn

to itself and z € Q(f) such that T, € Q((fw)™) if and only if (m,n') = 1.
Example 2. Let Y, = {(z,y) : 0 <z <n-1lify=0, or0<y<6ifz=0,1,---n=1}
(n > 3). We construct a continuous map g from Y, to itself with yo € §(g) such that
o € (g™) if and only if (m,n) = 1.

Let yo = (0,5) and 2z = (0,2). Define

g((z,0)) = (z,0) ifo<z<n-1, o
g((z,y)) = (¢ +1,9) , fl<y<6andz=12--,n—2,
9([(z,0), (z,1)]) = [(z,0), (z + 1,1)] ifz=01,---,n—2,
g((n—1,9))=(0,y) if 1<y <5,

g([(n - 110)’ (n - 1’1)]) = [(n— 1’0)’ (0’ 1)]a

9((n—1,9)) =% if5<y<6,

9((0,1+1)) = (1,1+1),9((0,2+1)) = (1,2 + 4),
9((0,3 + 1)) = (1,6 — 6t),9((0,5 +¢t)) = (0,2+3t) for0<t<1,and
g([(O, 4)1 (0’5)]) = [(1’0)a20]' ;
As the proof of Example 1, we can show that for each small connected neighborhood
V of yo, there exists m > 0 such that yo € g*(V) if and only if k = (m+m/)n+1 for
some m' > 0. We conclude that yo € Q(¢g™) if and only if (m,n)=1. :
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This shows that for each n' < n, there exist a continuous map g, from Y, to itself
and yo € Q(gn) such that yo € Q((gn)™) if and only if (m,n') = 1.

Example 3. Let S be a subspace {re?:n=1,2,---.0 = 2n/n and 0 < r < 1/n} of the
complex plane and z; = 1/2e?™. We construct a continuous map f : S — § such that
z1 € Q(f) NEP(f) and z; &€ Q(f*) for all k > 1.

Let p2,p3,--- be a sequence of primes with 1 < Pn < Pny1 (n > 2). Denote I, =
{re?™":0<r<1/n} C Sand J, = {re’™:1/2+1/2n <r <1/2+1/2(n — 1)} for
eachn=23,--..

Define f({re*™ : 0 < r < 1/2 or r = 1/2 4+ 1/2n for each n = 2,3,---}) = {0},
f(re?™/™) = rn/(n — 1)e?™/=1) for each n > 2, f(re™) = r/2¢®™ for 0 < r < 1 and
f(Jn) =1, for eachn =2,3,---. _

Let U be a small connected neighborhood of z; in §. We have that z; € f¥(U) if and
only if k = p,, for some n > 2. We conclude that z; € Qf) and z; & Q(f*) for all k > 1.

3 The proof of Theorem 2.

We will omit the proof of Theorem 1.

Let f be a continuous map from a tree X to itself and let 2p be a periodic point of
f with period n > 1. Set z; = fi(2). Put X \ {z} = X;(0) U Xi(1) U --- U X;(r;) for
some r; > 0, where each X;(j) is a component of X \ {z:}. If V is a neighborhood of
2o in Xo(0), we say V a 0-neighborhood of z. Set W(zo, f*, Xo(0)) = {z € X| for any
0-neighborhood V' of %, € f™*(V) for some k > 0 } and W; = F{(W (20, f, X0(0))).

Let z € Q(f)NEP(f)\P(f), let ¢ be the least positive integer such that f9(z) € P(f)
and let f9(z) have period n. Since z € Q(f), we have z = f™(xx), where z;, — z
(nk — o0). For some p > ¢q we have n; = p (mod n) for infinitely many k. Then
fP(zk) — fP(z) = 20 (nk — o0). Moreover we may suppose that all fP(zx) € Xo(0).
Put W; = f3(W (2, f*, X0(0))), so that z € Wy. There exists unique integers s,t with
0 <s<nandt>0such that p+ s =tn. Set z = f(z) and ko = max{ Ord(z;, X) :
i >0}

Lemma 1 Let f be a continuous map from a tree X to itself, let x € Q(f) N EP(f) \
P(f), and let f°(z) be a periodic point of period n > 1 for some s > 1. Ifky =
min{Ord(f?(z), X) : p > s}, there ezists an integer € with 1 < £ < ky such that then for
each neighborhood G of = we have a positive integer N(G) such that z € flin+N(G) (G)
forall j > 0.

Lemma 2 Suppose that £ € W,. Then there exists an integer £ with 1 < ¢ < K} such
that z € Q(f™) for every m > 1 with (m,€) = 1.

Lemma 3 Let ky = max{Ord(z;, X) : 0 <i < n}. Ifk, = 2, then there erists an integer
¢ with 1 < ¢ < ky such that z € Q(f™) for every m > 1 with (m,2¢) =1.

Lemma 4 Suppose that z ¢ W, (i.e. Wo # W,). Then 2 < k; < |En(X)| + |B(X)|. In
paticularly, if X is an od, then 2 < k; < |En(X).
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Lemma 5 Suppose that x & W (i.e. Wy # W) and that ky > 3. Then
(1) Then s < 2|Ed(X)| + |B(X)| — |En(X)| - 1. |
(2) Paritcularly, if X is an od, then s < |En(X)| — 1.

If the lemmas above can be proved, Theorem 2 can be proved as follows.

Proof of Theorem 2. We may assume that z € Q(f) NEP(f) \ P(f). Let g be the
least positive integer such that f9(z) € P(f) and let f9(z) have period n. And let m > 1
with (m,mx!) = 1.

Suppose that z € W;. Since kfj < |En(X)| < mx, by Lemma 2, we have z € Q(f™).

Suppose that z & W;. Since ky < mx, by Lemma 3, we may assume that k; > 3. By
Lemma 1, there exists an integer £ with 1 < £ < kg such that for each neighborhood G
of x we have a positive integer N such that z € f%"*¥(G) for all j > 0. There exists
a positive integer k' such that k'n = k;s. Since ko < mx, from Lemma 4 and 5, we see
that (m,#n) = 1. There exist two integers p, g such that —pfn + gm = N. We conclude
that z € f9"(G) and that z € Q(f™). :

4 Questions.

Let X be a tree. Set nxy = min{n : Q(f) = Q(f™) for all continuous map f : X — X
and all m > 1 with (m,n!) = 1} > |En(X)| (by Example 2).

Question 1. Do there exists a tree X with nx, < mx, ?

Question 2. Does there exist a continuous map f : X — X such that for each £ < ny,
we have z, € Q(f) such that z, € Q(f™) if and only if (m,¢) =17
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