コンパクト次数 cmp に関する de Groot と Nishiura の問題

Vitalij A. Chatyrko (Linköping University) 服部泰直(島根大学総合理工学部)

1 Introduction

A regular space X is called rim-compact if there exists a base \mathcal{B} for the open sets of X such that the boundary Bd U is compact for each U in \mathcal{B} .

In 1942 de Groot (cf. [1]) proved the following:

(*) A separable metrizable space X is rim-compact if and only if there is a metrizable compactification Y of X such that ind $(Y \setminus X) \leq 0$.

In an attempt to generalize (*), de Groot introduced two notions, the small inductive compactness degree cmp and the compactness definiency def (we will recall the definitions in Section 2 and Section 3 respectively). It is known that the inequality cmp $X \leq \text{def } X$ holds for every separable metrizable space X. The well known conjecture of de Groot (see for example [4]) was that the two invariants coincide in the class of separable metrizable spaces. As a way either to disprove or to support the conjecture de Groot and Nishiura [4] posed the following:

Question 1.1 Let $Z_n = [0,1]^{n+1} \setminus (0,1)^n \times \{0\}$. Is it true that $cmpZ_n \ge n$ for $n \ge 3$?

In the quoted article, de Groot and Nishiura proved that def $Z_n = n$ for every $n \ge 1$, and they also stated that cmp $Z_i = i$ for i = 1, 2.

In [9], R. Pol constructed a space $P \subset R^4$ such that cmp P = 1 < def P = 2. The space P is a modification of an example given by Luxemburg [7] of a compactum with noncoinciding transfinite inductive dimensions. After that, some other counterexamples to the de Groot's conjecture were constructed by Hart (cf. [1]), Kimura [6], Levin and Segal [8]). However, Question 1.1 remained open (see also [10, Question 418] and [1, Problem 3, page 71]).

One of our main results is the following.

Theorem 1.1 Let $n \leq 2^m - 1$ for some integer m. Then $cmp \ Z_n \leq m + 1$. In particular $cmp \ Z_n < def \ Z_n \ for \ n \geq 5$.

This is the answer to Question 1.1 for $n \geq 5$. Our paper is based on a construction of examples of compacta with noncoinciding transfinite inductive dimensions given in [2]. Our terminology follows [5] and [1].

2 Finite sum theorem for \mathcal{P} -ind

In this part, topological spaces are assumed to be regular T_1 and all classes of topological spaces considered are assumed to be nonempty and to contain any space homeomorphic with a closed subspace of one of their members. The letter \mathcal{P} is used to denote such classes.

Recall the definition of the small inductive dimension modulo $\mathcal{P},\,\mathcal{P}\text{-}\mathrm{ind}$. Let X be a space.

- (i) \mathcal{P} -ind X = -1 iff $X \in \mathcal{P}$:
- (ii) \mathcal{P} -ind $X \leq n \ (\geq 0)$ if each point in X has arbitrarily small neighbourhoods V with \mathcal{P} -ind Bd $V \leq n-1$.
- (iii) \mathcal{P} -ind X = n if \mathcal{P} -ind $X \le n$ and \mathcal{P} -ind X > n 1;
- (iv) \mathcal{P} -ind $X = \infty$ if \mathcal{P} -ind X > n for n = -1, 0, 1, ...

It is clear that if $\mathcal{P} = \{\emptyset\}$ then \mathcal{P} -ind X = ind X. If \mathcal{P} is the class of compact spaces then \mathcal{P} -ind X = cmp X.

The following is a list of properties of \mathcal{P} -ind we shall use in the paper.

- (1) If A is closed in X then \mathcal{P} -ind $A \leq \mathcal{P}$ -ind X.
- (2) If \mathcal{P} -ind $X \leq n \geq 0$ and U is open in X then \mathcal{P} -ind $U \leq n$.
- (3) If $X = O_1 \cup O_2$, where O_i is open in X, i = 1, 2, and $\max\{\mathcal{P}\text{-ind }O_1, \mathcal{P}\text{-ind }O_2\} \leq n \geq 0$. Then $\mathcal{P}\text{-ind }X \leq n$.
- (4) \mathcal{P} -ind $X \leq n \geq 0$ iff for each point p and for each closed set G of X with $p \notin G$ there is a partition S between p and G such that \mathcal{P} -ind $S \leq n-1$.

The following statement is contained implicitly in the proofs of [2, Theorem 3.9] and [3, Theorem 2].

Lemma 2.1 . Let X be a normal space such that $X = X_1 \cup X_2$, where X_i is closed in X, and A, B be two closed disjoint subsets of X such that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset$, i = 1, 2. Choose a partition C_1 in X_1 between the sets $A \cap X_1$ and $B \cap X_1$ such that $X_1 \setminus C_1 = U_1 \cup V_1$, where U_1, V_1 are open in X_1 and disjoint, and $A \cap X_1 \in U_1$, $B \cap X_1 \subset V_1$. Choose also a partition C_2 in X_2 between the the sets $A \cap X_2$ and $((C_1 \cup V_1) \cup B) \cap X_2$ such that $X_2 \setminus C_2 = U_2 \cup V_2$, where U_2, V_2 are open in X_2 and disjoint, and $A \cap X_2 \in U_2$, $(C_1 \cup V_1) \cup B) \cap X_2 \subset V_2$. Then the set $C = X \setminus (((U_1 \setminus X_2) \cup U_2) \cup (V_1 \cup (V_2 \setminus X_1)))$ is a partition in X between the sets A and B such that $C \subset C_1 \cup C_2 \cup (X_1 \cap X_2)$. Moreover, if X is a regular T_1 -space then the same statement is valid for a pair of closed subsets of X, where one of the sets is a point.

The following theorem and corollary are generalizations of [3, Theorem 2] and [2, Corollary 3.10 (a)] respectively.

Theorem 2.1 Let X be a space such that $X = X_1 \cup X_2$, where X_i is closed in X and \mathcal{P} -ind $X_i \leq n \geq 0$ for every i = 1, 2. Then \mathcal{P} -ind $X \leq n + 1$.

Moreover, if the space X is normal then for any closed subsets A and B of X there exists a partition C between A and B such that \mathcal{P} -ind $C \leq n$.

Corollary 2.1 Let X be a space and q be an integer. If $X = \bigcup_{k=1}^{n+1} X_k$, where each X_k is closed in X, $0 \le n \le 2^m - 1$ for some integer m and $\max\{\mathcal{P}\text{-ind }X_k\} \le q \ge 0$ then $\mathcal{P}\text{-ind }X \le q + m$.

For every normal space X one assigns the large inductive compactness degree Cmp as follows (cf. [1]).

- (i) For n = -1 or 0, Cmp X = n iff cmp X = n.
- (ii) Cmp $X \le n \ge 1$ if each pair of disjoint closed subsets A and B of X there exists a partition C such that Cmp $C \le n 1$.
- (iii) Cmp X = n if Cmp $X \le n$ and Cmp X > n 1.
- (iv) Cmp $X = \infty$ if Cmp X > n for every natural number n.

It is clear that the following properties of Cmp are valid.

- 1. If A is closed in X then Cmp $A \leq$ Cmp X.
- 2. If X is a sum of closed subsets X_i , i = 1, 2, then Cmp $X = \max\{\text{Cmp } X_1, \text{Cmp } X_2\}$.

Corollary 2.2 Let X be a normal space such that $X = X_1 \cup X_2$, where X_i is closed in X and Cmp $X_i \leq 0$ for every i. Then Cmp $X \leq 1$. Moreover, if Cmp $(X_1 \cap X_2) = -1$ then Cmp $X \leq 0$; if Cmp $X_1 = -1$ then Cmp X = Cmp X_2 .

Now we are ready to prove the following theorem.

Theorem 2.2 Let X be a normal space such that $X = X_1 \cup X_2$, where X_i is closed for i = 1, 2. Then $Cmp \ X \le \max\{Cmp \ X_1, Cmp \ X_2\} + Cmp \ (X_1 \cap X_2) + 1 \le Cmp \ X_1 + Cmp \ X_2 + 1$.

Proof. Put Cmp $(X_1 \cap X_2) = k$ and max $\{\text{Cmp } X_1, \text{Cmp } X_2\} = m$. Observe that $k \leq m$. Let k = -1. First we will prove the theorem for any $m \geq -1$ (k = -1). By Corollary 2.2 the statement is valid for m = -1 and m = 0. Assume that our theorem is valid for m . Put <math>m = p. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset$, i = 1, 2. Choose partitions C_i , i = 1, 2, as we

did in Lemma 2.1 such that $\max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq p-1$. Denote $Y_1 = C_1 \cup C_2$ (recall that C_1 and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\operatorname{Cmp} (Y_1 \cap Y_2) = -1$, $\operatorname{Cmp} Y_1 = \max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq p-1$ and $\max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} \leq p-1$. By inductive assumption, $\operatorname{Cmp} Y \leq \max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} + \operatorname{Cmp} (Y_1 \cap Y_2) + 1 \leq -1 + (p-1) + 1 = p-1$. By Lemma 2.1 there is a partition C between A and B in X such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq p = k + m + 1$.

Assume that our theorem is valid for any pair $(k, m) : k < q \ge 0$ and $k \le m$.

Put k=q. Consider the case $m=k\geq 0$. If k=m=0 then $\operatorname{Cmp} X_i\leq 0$ for every i=1,2, and by Corollary 2.2, $\operatorname{Cmp} X\leq 1=k+m+1$. Let $k=m=q\geq 1$. Consider two disjoint closed subsets A and B of X. We can suppose that $A\cap X_i\neq \emptyset$ and $B\cap X_i\neq \emptyset$, i=1,2. Choose partitions $C_i, i=1,2$, as we did in Lemma 2.1 such that $\max\{\operatorname{Cmp} C_1,\operatorname{Cmp} C_2\}\leq q-1$. Denote $Y_1=C_1\cup C_2$ (C_1 and C_2 are disjoint), $Y_2=X_1\cap X_2$ and $Y=Y_1\cup Y_2$. Observe that $\operatorname{Cmp} Y_1=\max\{\operatorname{Cmp} C_1,\operatorname{Cmp} C_2\}\leq q-1$, $\operatorname{Cmp} (Y_1\cap Y_2)\leq \min\{q,q-1\}=q-1< q$ and $\max\{\operatorname{Cmp} Y_1,\operatorname{Cmp} Y_2\}\leq q$. By inductive assumption, $\operatorname{Cmp} Y\leq \max\{\operatorname{Cmp} Y_1,\operatorname{Cmp} Y_2\}+\operatorname{Cmp} (Y_1\cap Y_2)+1\leq q+(q-1)+1=2q$. By Lemma 2.1 there is a partition C between A and B in X such that $C\subset Y$. Hence, $\operatorname{Cmp} X\leq 2q+1=k+m+1$.

Assume that our theorem is valid for any $m: k \leq m (k=q). Put <math>m=p$. Consider two disjoint closed subsets A and B of X. We can suppose that $A \cap X_i \neq \emptyset$ and $B \cap X_i \neq \emptyset$, i=1,2. Choose partitions $C_i, i=1,2$, as we did in Lemma 2.1 such that $\max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq p-1$. Denote $Y_1 = C_1 \cup C_2$ (C_1 and C_2 are disjoint), $Y_2 = X_1 \cap X_2$ and $Y = Y_1 \cup Y_2$. Observe that $\operatorname{Cmp} Y_1 = \max\{\operatorname{Cmp} C_1, \operatorname{Cmp} C_2\} \leq p-1$, $\operatorname{Cmp} (Y_1 \cap Y_2) \leq \min\{q, p-1\} = q$ and $\max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} \leq p-1$. By inductive assumption, $\operatorname{Cmp} Y \leq \max\{\operatorname{Cmp} Y_1, \operatorname{Cmp} Y_2\} + \operatorname{Cmp} (Y_1 \cap Y_2) + 1 \leq q + (p-1) + 1 = q + p$. By Lemma 2.1 there is a partition C between A and B in X such that $C \subset Y$. Hence, $\operatorname{Cmp} X \leq q + p + 1 = k + m + 1$.

Corollary 2.3 Let X be a normal space with Cmp $X = n \ge 1$. Then

(a) X cannot be represented as a union of n many closed subsets P_1, P_2, \ldots, P_n with $Cmp P_i \leq 0$ for each i.

Furthermore, we suppose now that $X = \bigcup_{i=1}^{n+1} Z_i$, where each Z_i is closed and $Cmp Z_i \leq 0$ for every i = 1, ..., n+1, then we have

- (b) Cmp $(Z_1 \cup ... \cup Z_{k+1}) = k$ for any k with $0 \le k \le n$;
- (c) $Cmp((Z_1 \cup ... \cup Z_{1+i}) \cap (Z_{i+2} \cup ... \cup Z_{i+j+2})) = min\{i, j\}$ for any nonnegative integers i, j such that $i + j + 1 \leq n$.

Remark. The estimations from Corollary 2.2 and Theorem 2.2 can not be improved (see Corollary 3.3).

3 Spaces with cmp \neq def (cmp \neq Cmp).

The deficiency def is defined in the following way: For a separable metrizable space X,

 $\operatorname{def} X = \min\{\operatorname{ind} (Y \setminus X) : Y \text{ is a metrizable compactification of } X\}.$

In this section, the concept of B-special decomposition introduced in [2] essentially works. A decomposition $X = F \cup \bigcup_{i=1}^{\infty} E_i$ of a metric space X into disjoint sets is called B-special if E_i is clopen in X and $\lim_{i\to\infty} \delta(E_i) = 0$, where $\delta(A)$ is the diameter of A. The following proposition is easily obtained by use of [2, Lemma 2.3].

Proposition 3.1 Let $X = F \cup \bigcup_{i=1}^{\infty} E_i$ be a B-special decomposition of a metric space X and $n \geq 0$ be an integer. If $\max\{\mathcal{P}\text{-ind }F, \mathcal{P}\text{-ind }E_i\} \leq n$ then $\mathcal{P}\text{-ind }X \leq n$.

Let $\{x_i\}_{i=1}^{\infty}$ be a sequence of real numbers such that $0 < x_{i+1} < x_i \le 1$ for all i and $\lim_{i \to \infty} x_i = 0$. Put $C^n = (\text{Bd } I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [x_{2i}, x_{2i-1}]) \subset I^{n+1}$.

Theorem 3.1 (a) There are closed subsets $X_1, X_2, ..., X_{n+1}$ of C^n such that $C^n = \bigcup_{k=1}^{n+1} X_k$ and cmp $X_k = 0$ for each k = 1, 2, ..., n+1.

- (b) The equalities $def C^n = Cmp C^n = n (= CompC^n) hold (see [1] for the definition of Comp).$
- (c) Let m be an integer such that $0 \le n \le 2^m 1$. Then we have $cmp \ C^n \le m$. In particular $cmp \ C^n < Cmp \ C^n = def \ C^n$ for $n \ge 3$.
- **Proof.** (a) For every i choose finite systems $B_k^i, k = 1, ..., n+1$, consisting of disjoint compact subsets of I^n with diameter $< \frac{1}{i}$ such that $I^n = \bigcup_{k=1}^{n+1} (\bigcup B_k^i)$. We put $X_k = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} ((\bigcup B_k^i) \times [x_{2i}, x_{2i-1}])$ for every k = 1, ..., n+1. Observe that the space X_k admits a B-special decomposition into compact subsets and, by Proposition 3.1, cmp $X_k = 0$ for every k = 1, ..., n+1.
- (b) It is enough to prove that Comp $C^n \geq n$ i.e. there exist n pairs $(F_1, G_1), ..., (F_n, G_n)$ of disjoint compact subsets of C^n such that for any partitions S_i between F_i and G_i in X, i = 1, ..., n, the intersection $S_1 \cap ... \cap S_n$ is not compact. (Recall that for every separable metrizable space W we have Comp $W \leq \text{Cmp } W \leq \text{def } W$ (cf. [1]) and evidently $\text{def } C^n \leq n$.) For example such pairs are $((\{0\} \times I^n) \cap C^n, (\{1\} \times I^n) \cap C^n), ..., ((I^{n-1} \times \{0\} \times [0,1]) \cap C^n, (I^{n-1} \times \{1\} \times [0,1]) \cap C^n)$.

Moreover, for any partition C between $(\{0\} \times I^n) \cap C^n$ and $(\{1\} \times I^n) \cap C^n$ in C^n , Comp $C \ge n-1$.

(c) One can show (c) by applying Corollary 2.1 for cmp and the statement (a). Now we are ready to show Theorem 1.1.

Proof of Theorem 1.1. Decompose the space Z_n , $n \geq 3$, into the union of two closed subsets Z_n^1 and Z_n^2 (each of them is homeomorph to C^n), where $Z_n^1 = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [1/(2i+1), 1/(2i)])$, $Z_n^2 = (\operatorname{Bd} I^n \times \{0\}) \cup \bigcup_{i=1}^{\infty} (I^n \times [1/(2i), 1/(2i-1)])$.

Let m be the integer such that $0 \le n \le 2^m - 1$. It follows from Theorem 3.1 (c) that cmp $Z_n^i \le m$ for i = 1, 2. Thus, by Corollary 2.1, we have cmp $Z_n \le m + 1$.

Corollary 3.1 (a) For the space C^2 we have $cmp\ C^2 = cmp\ (C^2 \times [0,1]) = 2$. (b) $cmp\ C^3 = 2$.

The following question is discussed in [1, Problem 6, page 71].

Question 3.1 For any k and m with 0 < k < m, does there exist a separable metrizable space X such that $cmp \ X = k$ and $def \ X = m$?

We shall partially answer the question as follows.

Corollary 3.2 Let m be an integer and $l(m) = \lfloor log_2(m) \rfloor + 1$. Then for every k with $m \geq k \geq l(m)$ there exists a separable metrizable space X such that cmp X = k and def X = m.

Let C^n be the space defined above and $X_1, X_2, \ldots, X_{n+1}$ be closed subsets of C^n described in Theorem 3.1. It follows from Theorem 3.1 (a) and Corollary 2.3 that $\operatorname{Cmp}(X_1 \cup \ldots \cup X_{k+1}) = k$ for each k with $0 \le k \le n$. However, we do not know the value of the deficiency of $X_1 \cup \ldots \cup X_{k+1}$. So we can ask the following.

Question 3.2 Is it true that $def(X_1 \cup ... \cup X_{k+1}) = k \text{ for } 1 \leq k < n$?

The question might be interesting when we consider a problem posed by Aarts and Nishiura [1, Problem 6, page 71]: Exhibit a separable metrizable space X such that cmp X < Cmp X < def X. If the Question 3.1 would be answered negatively for example for the case of n = 4 and k = 3, then we have $\text{def } (X_1 \cup X_2 \cup X_3 \cup X_4) = 4$. We put $Y = X_1 \cup X_2 \cup X_3 \cup X_4$. Then, by the argument above, we have Cmp Y = 3. On the other hand, by Theorem 3.1 (a) and Corollary 2.1, it follows that cmp $Y \leq 2$. Hence cmp Y < Cmp Y < def Y. Even if the Question 3.1 would be answered positively, then one gets an interesting counterpart of Corollary 3.3 (see below) for def.

Now we will obtain a complement to Theorem 2.2 showing the exactness of the theorem's estimations.

Corollary 3.3 For any integer $n \geq 1$ there exists a compact space $X_n (= C^n)$ with $Cmp\ X_n = n$ such that for any nonnegative integers p, q with p + q = n - 1 there exist its closed subsets $X_n^{(p)}$ and $X_n^{(q)}$ such that $X_n = X_n^{(p)} \cup X_n^{(q)}$, $Cmp\ X_n^{(p)} = p$, $Cmp\ X_n^{(q)} = q$ and $Cmp\ (X_n^{(p)} \cap X_n^{(q)}) = min\ \{p,q\}$.

参考文献

- [1] J. M. Aarts and T. Nishiura, Dimension and Extensions, North-Holland, Amsterdam, 1993.
- [2] V. A. Chatyrko, On finite sum theorems for transfinite inductive dimensions, Fund. Math. 162 (1999), 91-98.
- [3] V. A. Chatyrko and K. L. Kozlov, On (transfinite) small inductive dimension of product, Comment. Math. Univ. Carolinae. 41, 3 (2000), 597-603.
- [4] J. de Groot and T. Nishiura, Inductive compactness as a generalization of semicompactness, Fund. Math. 58 (1966), 201-218.
- [5] R. Engelking, Theory of dimensions, finite and infinite, Heldermann Verlag, Lemgo, 1995.
- [6] T. Kimura, The gap between cmp X and def X can be arbitrary large, Proc. Amer. Math. Soc. 102 (1988), 1077-1080.
- [7] L. A. Luxemburg, On compact metric spaces with noncoinciding transfinite dimensions, Dokl. Akad. Nauk. SSSR, 212 (1973), 1297-1300.
- [8] M. Levin and J. Segal, A subspace of R^3 for which cmp \neq def , Topology Appl. 95 (1999), 165-168.
- [9] R. Pol, A Counterexample to J. de Groot's Conjecture cmp = def , Bull. Acad. Polon. Sci.30 (1982), 461-464.
- [10] R. Pol, Questions in Dimension theory, in J. van Mill, G.M. Reed eds., Open problems in topology, North-Holland, Amsterdam (1990), 279-291.