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1 Introduction

A regular space X is called mim-compact if there exists a base B for the open sets of X
such that the boundary Bd U is compact for each U in B.

In 1942 de Groot (cf. [1]) proved the following:

(*) A separable metrizable space X is rim-compact if and only if there is a metrizable
compactification Y of X such that ind (Y \ X) <0.

In an attempt to generalize (*), de Groot introduced two notions, the small inductive
compactness degree cmp and the compactness definiency def (we will recall the
definitions in Section 2 and Section 3 respectively). It is known that the inequality
cmp X < def X holds for every separable metrizable space X. The well known conjecture
of de Groot (see for example [4]) was that the two invariants coincide in the class of
separable metrizable spaces. As a way either to disprove or to support the conjecture de
Groot and Nishiura [4] posed the following:

Question 1.1 Let Z, = [0,1]*"1\ (0,1)" x {0}. Is it true that cmpZn 2 n forn > 3%

In the quoted article, de Groot and Nishiura proved that def Z, = n for every n > 1,
and they also stated that cmp Z; = ¢ for i = 1,2. ‘ '

In [9], R. Pol constructed a space P C R* such that cmp P = 1 < def P = 2. The
space P is a modification of an example given by Luxemburg [7] of a compactum with
noncoinciding transfinite inductive dimensions. After that, some other counterexamples
to the de Groot’s conjecture were constructed by Hart (cf. [1]), Kimura [6], Levin and
Segal [8]). However, Question 1.1 remained open (see also [10, Question 418] and (1,
Problem 3, page 71]). |

One of our main results is the following.

Theorem 1.1 Letn < 2™ —1 for some integer m. Then cmp Z, < m+1. In particular
cmp Zy, < def Z,, forn > 5. '
This is the answer to Question 1.1 for n > 5. Our paper is based on a construction of

examples of compacta with noncoinciding transfinite inductive dimensions given in [2]:
Our terminology follows [5] and [1].
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2 Finite sum theorem for P-ind

In this part, topological spaces are assumed to be regular T; and all classes of topo-
logical spaces considered are assumed to be nonempty and to contain any space homeo-
morphic with a closed subspace of one of their members. The letter P is used to denote
such classes. '

Recall the definition of the small inductive dimension modulo P, P-ind . Let X be a
space.

(i) P-ind X = —1iff X € P;

(ii) P-ind X < n (> 0) if each point in X has arbitrarily small neighbourhoods V with
P-ind BdV <n-—1.

(ili) P-ind X = n if P-ind X <n and P-ind X > n — 1;
(iv) P-ind X = oo if P-ind X > n for n = —1,0, 1,...

It is clear that if P = {0} then P-ind X = ind X. If P is the class of compact spé,ces
then P-ind X = cmp X.
The following is a list of properties of P-ind we shall use in the paper.

(1) If Ais closed in X then P-ind A < P-ind X.
(2) If P-ind X <n >0 and U is open in X then P-ind U < n.

(3) If X = O, U O2, where O; is open in X,i = 1,2, and max{P-ind O;, P-ind O,} <
n > 0. Then P-ind X < n.

(4) P-ind X < n > 0 iff for each point p and for each closed set G of X with p¢G
there is a partition S between p and G such that P-ind S <n — 1.

The following statement is contained implicitly in the proofs of [2, Theorem 3.9] and
(3, Theorem 2).

Lemma 2.1 . Let X be a normal space such that X = X; U X3, where X; is closed in X,
and A, B be two closed disjoint subsets of X such that ANX; # 0 and BNX; #0,i=1,2.
Choose a partition Cy in X, between the sets ANX, and BNX, such that Xi\C = huy,
where U,V are open in Xy and disjoint, and AN X, € Uy, BN X, C V;. Choose
also a partition Cy in X, between the the sets AN X, and ((C; UV;) U B) N X such
that X3 \ C; = U, U Vy, where Us, V, are open in X, and disjoint, and AN X, € Us,
(CiUW)UB)N X, C Va. Then the set C = X \ (W \ X)) Ul) U (ViU (V2 \ X1))) s
a partition in X between the sets A and B such that C C GGUCLU (X N X2).
Moreover, if X is a regular Ti-space then the same statement is valid for a pair of closed
subsets of X, where one of the sets is a point.
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The following theorem and corollary are generalizations of [3, Theorem 2] and [2,
Corollary 3.10 (a)] respectively.

Theorem 2.1 Let X be a space such that X = X1 U Xy, where X; is closed in X and
P-ind X; <n >0 for every i = 1,2. Then P-ind X <n+ 1.

Moreover, if the space X is normal then for any closed subsets A and B of X there ezists
a partition C between A and B such that P-ind C _<_ n.

Corollary 2.1 Let X be a space and q be an integer. If X = U;C‘:%Xk, ‘where eqchz X 18
closed in X, 0 <n < 2" —1 for some integer m and max{P-ind Xx} < q > 0 then
P-ind X <g+m.

‘For every normal space X one assigns the large inductive compactness degree Cmpb as
follows (cf. [1]).

(i) Forn=—-1or 0; Cmp X =niff cmp X = n.

(ii) Cmp X < n > 1 if each pair of disjoint closed subsets A and B of X there exists a
partition C such that Cmp C <n-—1. -

(iii) Cmp X =nif Cmp X <nand Cmp X >n—1.
(iv) Cmp X = oo if Cmp X > n for every natural number n.
Itxis! clear that the following properties of Cmp are valid.

1. If A is closed in X then Cmp A < Cmp X. 4
2. If X is a sum of closed subsets X;,i = 1,2, then Cmp X = max{Cmp X1,Cmp X}

Corollary 2.2 Let X be a normal space such that X = X1 U X3, where X; 1s closed in
X and Cmp X; < 0 for every i. Then Cmp X < 1. Moreover, if Cmp (X1 N X3) = —1
then Cmp X < 0; if Cmp X; = —1 then Cmp X = Cmp Xo. '

Now we are ready to prove the following theorem.

Theorem 2.2 Let X be a normal space such that X = X; U Xz, where X; is closed for
i =1,2. Then Cmp X < max{Cmp X1, Cmp X2} + Cmp (X1 N X3) +1 < Cmp X; +
Cmp X2+ 1. ' ' ‘

Proof. Put Cmp (X; N X3) = k and max{Cmp X;,Cmp X} = m. Observe that
k < m. Let k = —1. First we will prove the theorem for any m > -1 (k= —1). By
Corollary 2.2 the statement is valid for m = —1 and m = 0. Assume that our theorem is
valid for m < p > 1. Put m = p. Consider two disjoint closed subsets A and B of X. We
can suppose that ANX; # 0 and BNX; # 0,7 = 1,2. Choose partitions C;, i = 1,2, as we
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did in Lemma 2.1 such that max{Cmp C;, Cmp C2} < p—1. Denote Y; = C;UC; (recall
that C; and C; are disjoint), Y = X;NX; and Y = Y;UY,. Observe that Cmp (Y1NY3) =
—1, Cmp Y; = max{Cmp C;,Cmp C2} < p — 1 and max{Cmp Y;, Cmp Yz;} <p-1
By inductive assumptlon Cmp Y < max{Cmp Y;,Cmp Y2} + Cmp (¥; N Y2)+1 <
—1+(p-1)+1=p—1. By Lemma 2.1 there is a partition C between A and B in X
such that C C Y. Hence, Cmp X <p=k+m+1.

Assume that our theorem is valid for any pair (k,m): k < g > 0 and k <m.

Put £ = ¢q. Consider the case m = kK > 0. If k = m = 0 then Cmp X; < 0 for
every ¢ = 1,2, and by Corollary 2.2, Cmp X <1 =k+m+1. Let k = m = qg>1
-~Consider two disjoint closed subsets A and B of X. We can suppose that AN X; # 0
and BN X; # 0,4 = 1,2. Choose partitions C;,i = 1,2, as we did in Lemma 2.1 such
that max{Cmp C},Cmp C;} < ¢ — 1. Denote Y; = C; U C, (C1 and C; are disjoint),
Y = XiNX; and Y = Y;UY,. Observe that Cmp ¥; = max{Cmp C;,Cmp C,} < ¢—1,
Cmp (¥1NY2) < min{q,¢—1} = ¢—1 < g and max{Cmp Y;, Cmp Y} < q. By inductive
assumption, Cmp Y < max{Cmp Y;,Cmp Y2} +Cmp (YiNY,)+1 < g+(¢—1)+1 = 2q.
By Lemma 2.1 there is a partition C between A and B in X such that C C Y. Hence,
Cmp X <2q+1=k+m+1.

Assume that our theorem is valid for any m : k < m < p 2> 1 (k=q). Put m = p.
Consider two disjoint closed subsets A and B of X. We can suppose that AN X; # 0
and BN X; # 0,7 = 1,2. Choose partitions C;,i = 1,2, as we did in Lemma 2.1 such
that max{Cmp C;,Cmp C;} < p — 1. Denote ¥; = C; UC, (C1 and C, are disjoint),
Y2 = XiNX; and Y = Y;UY;. Observe that Cmp Y; = max{Cmp C;,Cmp C;} < p—1,
Cmp (Y1 NY2) < min{g,p — 1} = ¢ and max{Cmp Y;, Cmp Y2} < p — 1. By inductive
assumption, Cmp ¥ < max{Cmp Y3, Cmp Y2} +Cmp (YiNY2)+1 < g+(p—1)+1 = g+p.
By Lemma 2.1 there is a partition C between A and B in X such that C C Y. Hence,
Cmp X <qg+p+l=k+m+1.

Corollary 2.3 Let X be a normal space with Cmp X =n > 1. Then

(a) X cannot be represented as a union of n many closed subsets B, B, ..., P, with
Cmp P, <0 for each .

Furthermore, we suppose now that X = U} Z;, where each Z; is closed and Cmp Z;<0
for everyi=1,...,n+ 1, then we have :

(b) Cmp (Z1U...UZxp1) =k forany k with0< k <n;

(c) Cmp ((Z1 U ... U Z143) N (Zix2 U ... U Zigji2)) = min {i,5} for any nonnegative
integers i,j such thati+j+1<n.

Remark. The estimations from Corollary 2.2 and Theorem 2.2 can not be improved
(see Corollary 3.3). |
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3 Spaces with cmp # def (cmp # Cmp ).

The deficiency def is defined in the following way: For a separable metrizable space
X,
def X = min{ind (Y \ X) : Y is a metrizable compactification of X }.

In this section, the concept of B-special decomposition introduced in [2] essentially
works. A decomposition X = FUUZR, E; of a metric space X into disjoint sets is called
B-special if E; is clopen in X and lim;_ 6(E;) = 0, where 5(A) is the diameter of A.

The following proposition is easily obtained by use of [2, Lemma 2.3].

Proposition 3.1 Let X = FUUR E; be a B-special decomposition of a metric space X

i=

and n > 0 be an integer. If max{P-ind F,P-ind E;} <n then P-ind X <n.

' Let {z;}32; be a sequence of real numbers such that 0 < zi4; < z; < 1 for all ¢ and
lim; o z; = 0. Put C" = (Bd I™ x {O}) U Uio:i_l(.[n X [mzi,.'rzi_.l]) C  and

Theorem 3.1 (a) There are closed subsets X1, Xz,..., Xnt1 of C™ such that C" -
Urtlx, and cmp Xi =0 for each k =1,2,..,n+ L. ' t

(b) The equalities def C* = Cmp C"=n (= OompC")‘ hold ( see [1] for the definition
of Comp).

(c) Let m be an integer such that 0 < n < 2™ — 1. Then we have cmp C* < m. In
particular cmp C™ < Cmp C™ = def C™ forn 2> 3. : ISR

Proof. (a) For every i choose finite systems Bi,k =1,..,n+ 1, consisting of disjoint
compact subsets of I” with diameter < 1 such that I" = Ul (UBL). We put Xy =
(Bd I™ x {0}) UUR,((UB}) X [z2, T2-1]) for every k = 1,..,m + 1. Observe that the
space X admits a B-special decomposition into compact subsets and, by Proposition
3.1, cmp Xx =0 forevery k=1,...,n+ 1. ' o
(b) It is enough to prove that Comp C" > n i.e. there exist n pairs (F1,G1), ..., (Fn, Gn)
of disjoint compact subsets of C™ such that for any partitions S; between F; and G; in
X,i=1,...,n, the intersection S1N...NSy is not compact. (Recall that for every separable
metrizable space W we have Comp W < Cmp W < def W (cf. [1]) and evidently
def C™ < n.) For example such pairs are (({0} x I")NC™, ({1} x IMYnC™), ..., (I"Fx
{0} x [0, 1)) nC™, (I"t x {1} x [0,1]) N C™). .

Moreover, for any partition C between ({0} x I™) N Cc™ and ({1} x I") N C™ in C™,
Comp C >n— 1. ,
(c) One can show (c) by applying Corollary 2.1 for cmp and the statement (a)

Now we are ready to show Theorem 1.1. '

Proof of Theorem 1.1. Decompose the space Z., n > 3, into the union of two
closed subsets Z! and Z2 (each of them is homeomorph to C™), where Z} = (Bd I™ x
(0D UUR, (1" x [1/(2+1),1/(20)]), 22 = (Bd I" x {0}) UU, (1" x [1/(20), 1/ (2 = 1))).
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Let m be the integer such that 0 < n < 2™ — 1. It follows from Theorem 3.1 (c) that
cmp Z; < m for i = 1,2. Thus, by Corollary 2.1, we have cmp Z, < m + 1.

Corollary 3.1 (a) For the space C? we have cmp C? = cmp (C*x[0,1]) = 2.

(b) emp C3 = 2.
The following question is discussed in [1, Problem 6, page 71].

Question 3.1 For any k and m with0 < k < m, does there ezist a separable metrizable
space X such that cmp X =k and def X = m?

We shall partially answer the question as follows.

Corollary 3.2 Let m be an integer and l(m) = [loga(m)] + 1. Then for every k with
m > k > l(m) there exists a separable metrizable space X such that cmp X = k and
def X =m.

Let C™ be the space defined above and X1, X2,...,Xn41 be closed subsets of C™
described in Theorem 3.1. It follows from Theorem 3.1 (a) and Corollary 2.3 that
Cmp (X1 U...U Xgy1) = k for each k with 0 < k < n. However, we do not know
the value of the deficiency of X; U...U X, k+1- S0 we can ask the following.

Question 3.2 Is it true that def (XiU. . .UXg) =k forl<k<n?

The question might be interesting when we consider a problem posed by Aarts and
Nishiura [1, Problem 6, page 71): Exhibit a separable metrizable space X such that
cmp X < Cmp X < def X. If the Question 3.1 would be answered negatively for example
for the case of n = 4 and k = 3, then we have def (X1UXoUX3U Xy) =4. We put
Y = X1 UX;U X3 U Xy Then, by the argument above, we have Cmp Y = 3. On the
other hand, by Theorem 3.1 (a) and Corollary 2.1, it follows that cmp Y < 2. Hence
cmp Y < Cmp Y < def Y. Even if the Question 3.1 would be answered positively, then
one gets an interesting counterpart of Corollary 3.3 (see below) for def .

Now we will obtain a complement to Theorem 2.2 showing the exactness of the theo-
rem’s estimations.

Corollary 3.3 For any integer n > 1 there exists a compact space Xn(— C") with
Cmp X,, = n such that for any nonnegative integers p, q with p+q = n—1 there ezist its
closed subsets X% and X9 such that X, =XPuX9, Cmp X®) =p, Cmp X9 = ¢
and Cmyp (XP) N XD) = min {p, q}.
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