HOMOTOPY TYPES OF DIFFEOMORPHISM GROUPS OF NONCOMPACT 2-MANIFOLDS

矢ヶ崎 達彦 (TATSUHIKO YAGASAKI)

京都工芸繊維大学 工芸学部

1. Introduction

This is a report on the study of topological properties of the diffeomorphism groups of noncompact smooth 2-manifolds endowed with the compact-open C^{∞} -topology [18].

When M is a compact smooth 2-manifold, the diffeomorphism group $\mathcal{D}(M)$ with the compact-open C^{∞} -topology is a smooth Fréchet manifold [6, Section I.4], and the homotopy type of the identity component $\mathcal{D}(M)_0$ has been classified by S. Smale [15], C. J. Earle and J. Eell [4], et. al. In the C^0 -category, for any compact 2-manifold M, the homeomorphism group $\mathcal{H}(M)$ with the compact-open topology is a topological Fréchet manifold [3, 11, 19], and the homotopy type of the identity component $\mathcal{H}(M)_0$ has been classified by M. E. Hamstrom [7].

Recently we have shown that $\mathcal{H}(M)_0$ is a topological Fréchet-manifold even if M is a non-compact connected 2-manifold, and have classified its homotopy type [17]. The argument in [17] is based on the following ingredients: (i) the ANR-property and the contractibility of $\mathcal{H}(M)_0$ for compact M, (ii) the bundle theorem connecting the homeomorphism group $\mathcal{H}(M)_0$ and the embedding spaces of submanifolds into M [16, Corollary 1.1], and (iii) a result on the relative isotopies of 2-manifolds [17, Theorem 3.1]. The same strategy based on the C^{∞} -versions of these results implies a corresponding conclusion for the diffeomorphism groups of noncompact smooth 2-manifolds.

Suppose M is a smooth 2-manifold and X is a closed subset of M. We denote by $\mathcal{D}_X(M)$ the group of C^{∞} -diffeomorphisms h of M onto itself with $h|_X = id_X$, endowed with the compact-open C^{∞} -topology [9, Ch.2, Section 1], and by $\mathcal{D}_X(M)_0$ the identity connected component of $\mathcal{D}_X(M)$.

The following is our main result:

Theorem 1.1. Suppose M is a noncompact connected smooth 2-manifold without boundary.

- (1) $\mathcal{D}(M)_0$ is a topological ℓ_2 -manifold.
- (2) (i) $\mathcal{D}(M)_0 \simeq \mathbb{S}^1$ if M = a plane, an open Möbius band or an open annulus.
 - (ii) $\mathcal{D}(M)_0 \simeq *$ in all other cases.

²⁰⁰⁰ Mathematics Subject Classification. 57S05; 58D05; 57N05; 57N20.

Key words and phrases. Diffeomorphism groups, Infinite-dimensional manifolds, 2-manifolds.

Any separable infinite-dimensional Fréchet space is homeomorphic to the Hilbert space $\ell_2 \equiv \{(x_n) \in \mathbb{R}^\infty : \sum_n x_n^2 < \infty\}$. A topological ℓ_2 -manifold is a separable metrizable space which is locally homeomorphic to ℓ_2 . Topological types of ℓ_2 -manifolds are classified by their homotopy types. Theorem 1.1 implies the following conclusion:

Corollary 1.1. (i) $\mathcal{D}(M)_0 \cong \mathbb{S}^1 \times \ell_2$ if M = a plane, an open Möbius band or an open annulus. (ii) $\mathcal{D}(M)_0 \cong \ell_2$ in all other cases.

For the subgroup of diffeomorphisms with compact supports, we have the following results: Let $\mathcal{D}(M)_0^c$ denote the subgroup of $\mathcal{D}(M)_0$ consisting of $h \in \mathcal{D}(M)$ which admits a C^{∞} -isotopy with a compact support, $h_t: M \to M$ such that $h_0 = id_M$ and $h_1 = h$.

We say that a subspace A of a space X has the homotopy negligible (h.n.) complement in X if there exists a homotopy $\varphi_t: X \to X$ such that $\varphi_0 = id_X$ and $\varphi_t(X) \subset A$ ($0 < t \le 1$). In this case, the inclusion $A \subset X$ is a homotopy equivalence, and X is an ANR iff A is an ANR.

Theorem 1.2. Suppose M is a noncompact connected smooth 2-manifold without boundary. Then $\mathcal{D}(M)_0^c$ has the h.n. complement in $\mathcal{D}(M)_0$

Corollary 1.2. (1) $\mathcal{D}(M)_0^c$ is an ANR.

(2) The inclusion $\mathcal{D}(M)_0^c \subset \mathcal{D}(M)_0$ is a homotopy equivalence.

Section 2 contains fundamental facts on diffeomorphism groups of 2-manifolds and ℓ_2 -manifolds. Section 3 contains a sketch of proofs of Theorems 1.1 and 1.2.

2. Fundamental properties of diffeomorphism groups

In this preliminary section we list fundamental facts on diffeomorphism groups of 2-manifolds (general properties, bundle theorem, homotopy type, relative isotopies, etc) and basic facts on ANR's and ℓ_2 -manifolds. Throughout the paper all spaces are separable and metrizable and maps are continuous.

2.1. General property of diffeomorphism groups.

Suppose M is a smooth n-manifold possibly with boundary and X is a closed subset of M.

Lemma 2.1. (c.f. [9, Ch 2., Section 4], etc)

 $\mathcal{D}_X(M)$ is a topological group, which is separable, completely metrizable, infinite-dimensional and not locally compact.

When N is a smooth submanifold of M, the symbol $\mathcal{E}_X(N,M)$ denotes the space of C^{∞} -embeddings $f:N\hookrightarrow M$ with $f|_X=id_X$ with the compact-open C^{∞} -topology, and $\mathcal{E}_X(N,M)_0$ denotes the connected component of the inclusion $i_N:N\subset M$ in $\mathcal{E}_X(N,M)$.

Lemma 2.2. (i) Suppose M is a smooth manifold without boundary, N is a comapct smooth submanifold of M and X is a closed subset of N. Then $\mathcal{E}_X(N,M)$ is a Fréchet manifold. (ii) Suppose M is a compact smooth n-manifold and X is a closed subset of M with $\partial M \subset X$ or $\partial M \cap X = \emptyset$. Then $\mathcal{D}_X(M)$ is a Fréchet manifold.

In Lemma 2.2 $\mathcal{E}_X(N, M)_0$ and $\mathcal{D}_X(M)_0$ are path-connected. Thus any $h \in \mathcal{D}_X(M)_0$ can be joined with id_M by a path h_t $(t \in [0, 1])$ in $\mathcal{D}_X(M)_0$.

2.2. Bundle theorems.

The bundle theorem asserts that the natural restriction maps from diffeomorphism groups to embedding spaces are principal bundles [2, 12]. This has been used to study the homotopy types of diffeomorphism groups. This theorem also plays an essential role in our argument.

Suppose M is a smooth m-manifold without boundary, N is a compact smooth n-submanifold of M and X is a closed subset of N.

Case 1: n < m [2, 12]

Let U be any open neighborhood of N in M.

Theorem 2.1. For any $f \in \mathcal{E}_X(N,U)$ there exist a neighborhood \mathcal{U} of f in $\mathcal{E}_X(N,U)$ and a map $\varphi : \mathcal{U} \to \mathcal{D}_{X \cup (M \setminus U)}(M)_0$ such that $\varphi(g)f = g$ $(g \in \mathcal{U})$ and $\varphi(f) = id_M$.

Corollary 2.1. The restriction map $\pi: \mathcal{D}_{X\cup (M\setminus U)}(M)_0 \to \mathcal{E}_X(N,U)_0$, $\pi(h) = h|_N$, is a principal bundle with fiber $\mathcal{D}_{X\cup (M\setminus U)}(M)_0 \cap \mathcal{D}_N(M)$.

Case 2: n = m

In this case we have a weaker conclusion: Suppose N' is a compact smooth n-submanifold of M obtained from N by attaching a closed collar $\partial N \times [0,1]$ to ∂N . Let U be any open neighborhood of N' in M. We can apply Theorem 2.1 to $\partial N'$ to obtain the following result:

Theorem 2.2. For any $f \in \mathcal{E}_X(N', U)$ there exist a neighborhood \mathcal{U}' of f in $\mathcal{E}_X(N', U)$ and a map $\varphi : \mathcal{U}' \to \mathcal{D}_{X \cup (M \setminus U)}(M)_0$ such that $\varphi(g) f|_N = g|_N$ $(g \in \mathcal{U}')$ and $\varphi(f) = id_M$.

For the sake of simplicity, we set $\mathcal{D}_0 = \mathcal{D}_{X \cup (M \setminus U)}(M)_0$, $\mathcal{E}_0 = \mathcal{E}_X(N,U)_0$, $\mathcal{E}_0' = \mathcal{E}_X(N',U)_0$. Consider the restriction map $p: \mathcal{E}_0' \to \mathcal{E}_0$, $p(f) = f|_N$ and $\pi: \mathcal{D}_0 \to \mathcal{E}_0$, $\pi(h) = h|_N$. We have the pullback diagram:

$$p^*(\mathcal{D}_0) \xrightarrow{p_*} \mathcal{D}_0$$
 $\pi_* \downarrow \qquad \qquad \downarrow \pi$
 $\mathcal{E}'_0 \xrightarrow{p} \mathcal{E}_0,$

where $p^*\mathcal{D}_0 = \{(f,h) \in \mathcal{E}_0' \times \mathcal{D}_0 \mid f|_N = h|_N\}, \ p_*(f,h) = h \ \text{and} \ \pi_*(f,h) = f.$ The map p_* admits a natural right inverse $q: \mathcal{D}_0 \to p^*\mathcal{D}_0, \ q(h) = (h|_{N'}, h)$. The group $\mathcal{D}_0 \cap \mathcal{D}_N(M)$ acts on $p^*\mathcal{D}_0$ by (f,h)g=(f,hg) $(g\in\mathcal{D}_0\cap\mathcal{D}_N(M)).$

Corollary 2.2.

- (1) $\pi_*: p^*(\mathcal{D}_0) \to \mathcal{E}_0'$ is a principal bundle with fiber $\mathcal{D}_0 \cap \mathcal{D}_N(M)$.
- (2) $p_*:p^*(\mathcal{D}_0)\to\mathcal{D}_0$ is a homotopy equivalence with the homotopy inverse $q:\mathcal{D}_0\to p^*(\mathcal{D}_0)$.
- (3) $p: \mathcal{E}_0' \to \mathcal{E}_0$ is a homotopy equivalence if $X \subset int N$.

The statements (2) and (3) exhibit a close relation between the restriction map π and the pullback π_* .

2.3. Diffeomorphism groups of 2-manifolds.

Next we recall fundamental facts on diffeomorphism groups of compact 2-manifolds. The following theorem shows that $\mathcal{D}_X(M)_0 \simeq *$ except a few cases. The symbols \mathbb{S}^1 , \mathbb{S}^2 , \mathbb{T} , \mathbb{P} , \mathbb{K} , D, A and M denote the 1-sphere, 2-sphere, torus, projective plane, Klein bottle, disk, annulus and Möbius band respectively.

Theorem 2.3. ([4, 15] etc.) Suppose M is a compact connected smooth 2-manifold. Then the homotopy type of $\mathcal{D}(M)_0$ is classified as follows:

M	$\mathcal{D}(M)_0$
\mathbb{S}^2 , \mathbb{P}	SO(3)
T	T
K, D, A, M	\mathbb{S}^1
all other cases	*

$$\circ \mathcal{D}_{\partial}(\mathbb{D}) \simeq *, \, \mathcal{D}_{\partial}(\mathbb{M}) \simeq *.$$

 $\circ \mathcal{D}_{\partial}(\mathbb{D}) \simeq *, \, \mathcal{D}_{\partial}(\mathbb{M}) \simeq *.$ \circ If X is a disjoint union of a compact smooth 2-subnifold and finitely many smooth circles and points in M and $\partial M \subset X$, then $\mathcal{D}_X(M)_0 \simeq *$.

For 2-manifolds there is no difference among the conditions: homotopic, C^0 -isotopic, C^∞ isotopic and joinable by a path in the diffeomorphism group. By [4] and a C^{∞} -analogue of [5] we have

Proposition 2.1. Suppose M is a compact smooth 2-manifold.

- (1) Suppose N is a closed collar of ∂M . If $h \in \mathcal{D}_N(M)$ is homotopic to id_M rel N, then h is C^{∞} -isotopic to id_M rel N.
- (2) Suppose N is a compact smooth 2-submanifold of M with $\partial M \subset N$. For $h \in \mathcal{D}_N(M)$, the

following conditions are equivalent:

- (a) h is C^0 -isotopic to id_M rel N.
- (b) h is C^{∞} -isotopic to id_M rel N.
- (c) $h \in \mathcal{D}_N(M)_0$.

In Corollaries 2.1 and 2.2 we have a principal bundle with fiber $\mathcal{G} \equiv \mathcal{D}_X(M)_0 \cap \mathcal{D}_N(M)$. The next theorem gives us a sufficient condition that $\mathcal{G} = \mathcal{D}_N(M)_0$. The symbol #X denotes the cardinal of a set X.

Theorem 2.4. Suppose M is a compact connected smooth 2-manifold, N is a compact smooth 2-submanifold of M with $\partial M \subset N$, X is a subset of N. Suppose (M, N, X) satisfies the following conditions:

- (i) $M \neq \mathbb{T}$, \mathbb{P} , \mathbb{K} or $X \neq \emptyset$.
- (ii) (a) if H is a disk component of N, then $\#(H \cap X) \geq 2$,
 - (b) if H is an annulus or Möbius band component of N, then $H \cap X \neq \emptyset$,
- (iii) (a) if L is a disk component of $cl(M \setminus N)$, then $\#(L \cap X) \geq 2$,
 - (b) if L is a Möbius band component of $cl(M \setminus N)$, then $L \cap X \neq \emptyset$.

Then we have:

- (1) If $h \in \mathcal{D}_N(M)$ is C^0 -isotopic to id_M rel X, then h is C^{∞} -isotopic to id_M rel N.
- (2) $\mathcal{D}(M)_0 \cap \mathcal{D}_N(M) = \mathcal{D}_N(M)_0$.

Theorem 2.4 follows from [17, Theorem 3.1] and Proposition 2.1.

2.4. Basic properties of ANR's and ℓ_2 -manifolds.

The ANR-property of diffeomorphism groups and embedding spaces is also essential in our argument. Here we recall basic properties of ANR's [8, 10, 13] and a topological characterization theorem of ℓ^2 -manifolds.

A metrizable space X is called an ANR (absolute neighborhood retract) for metric spaces if any map $f: B \to X$ from a closed subset B of a metrizable space Y admits an extension to a neighborhood U of B in Y. If we can always take U = Y, then X is called an AR. It is known that X is an AR (an ANR) iff it is a retract of (an open subset of) a normed space. Any ANR has a homotopy type of CW-complex. An AR is exactly a contractible ANR.

We apply the following criterion of ANR's:

Lemma 2.3. (1) A space X is an ANR iff every point of X has an ANR neighborhood in X. (2) If $X = \bigcup_{i=1}^{\infty} U_i$, U_i is open in X and $U_i \subset U_{i+1}$ and if each U_i is an AR, then X is also an

- (3) In a fiber bundle, the total space is an ANR iff both the base space and the fiber are ANR's.
- (4) A metric space X is an ANR iff for any $\varepsilon > 0$ there is an ANR Y and maps $f: X \to Y$ and $g: Y \to X$ such that gf is ε -homotopic to id_X .

Since any Fréchet space is an AR, every Fréchet manifold is an ANR. Finally we recall a characterization of ℓ_2 -manifold topological groups [3, 19].

Theorem 2.5. A topological group is an ℓ_2 -manifold iff it is a separable, non locally compact, completely metrizable ANR.

The diffeomorphism group $\mathcal{D}(M)_0$ satisfies all conditions except the ANR property (Lemma 2.1). Thus the proof of Theorem 1.1(1) reduces to the verification of ANR property of $\mathcal{D}(M)_0$. The latter follows from the ANR property of the diffeomorphism groups and embedding spaces of compact 2-manifolds (Lemma 2.2).

3. PROOF OF MAIN THEOREMS

In this section we give a sketch of proofs of Theorems 1.1 and 1.2 in the case where $M \neq$ a plane, an open Möbius band, an open annulus. Below we assume that M is a noncompact connected smooth 2-manifold without boundary and that $M \neq$ a plane, an open Möbius band, an open annulus.

We can write as $M = \bigcup_{i=0}^{\infty} M_i$, where $M_0 = \emptyset$ and for each $i \geq 1$

- (a) M_i is a nonempty compact connected smooth 2-submanifold of M and $M_{i-1} \subset int M_i$,
- (b) for each component L of $cl(M \setminus M_i)$, L is noncompact and $L \cap M_{i+1}$ is connected.

Note that M is a plane (an open Möbius band, an open annulus) iff infinitely many M_i 's are disks (Möbius bands, annuli respectively). Since $M \neq$ a plane, an open Möbius band, an open annulus, passing to a subsequence, we may assume that

(c) $M_i \neq a$ disk, an annulus, a Möbius band.

For each $i \geq 1$ let $U_i = int M_i$, and choose a small closed collar E_i of ∂M_i in $U_{i+1} \setminus U_i$, and set $M'_i = M_i \cup E_i \subset U_{i+1}$.

3.1. Proof of Theorem 1.1.

[1] For each $j > i > k \ge 0$, we have the following pullback diagram:

Lemma 3.1. (1) $(\pi_{k,j}^i)_*$ is a principal bundle with fiber $\mathcal{G}_{k,j}^i$.

- (2) $\mathcal{G}_{k,j}^{i}$ is an AR.
- (3) $(\pi_{k,j}^i)_*$ is a trivial bundle.
- (4) $\mathcal{E}_{M_k}(M_i', U_j)_0$ is an AR.

In (2) we apply Theorem 2.4 to deduce $\mathcal{G}_{k,j}^i \cong \mathcal{D}_{M_i \cup E_j}(M_j')_0$. The latter is an AR (Lemma 2.2 (ii), Theorem 2.3).

[2] For each $i > k \ge 0$, we have the following pullback diagram:

$$(p_k^i)^*(\mathcal{D}_{M_k}(M)_0) \xrightarrow{(p_k^i)_*} \mathcal{D}_{M_k}(M)_0$$
 $(\pi_k^i)_* \downarrow \qquad \qquad \downarrow \pi_k^i \qquad \qquad \pi_k^i, \ p_k^i : \text{the restriction maps,}$
 $\mathcal{E}_{M_k}(M_i', M)_0 \xrightarrow{p_k^i} \mathcal{E}_{M_k}(M_i, M)_0,$
 $\mathcal{G}_k^i \equiv \mathcal{D}_{M_k}(M)_0 \cap \mathcal{D}_{M_i}(M).$

Lemma 3.2. (1) $(\pi_k^i)_*$ is a principal bundle with fiber \mathcal{G}_k^i .

- (2) $\mathcal{E}_{M_k}(M_i', M)_0$ is an AR.
- (3) $(\pi_k^i)_*$ is a trivial bundle.
- (4) $\mathcal{G}_k^i = \mathcal{D}_{M_i}(M)_0$ and $\mathcal{D}_{M_k}(M)_0$ strongly deformation retracts onto $\mathcal{D}_{M_i}(M)_0$.

The assertion (2) follows from Lemma 2.3 (2), Lemma 3.1 (4) and the fact that $\mathcal{E}_{M_k}(M_i', M)_0 = \bigcup_{j>i} \mathcal{E}_{M_k}(M_i', U_j)_0$.

Proof of Theorem 1.1.

(A) $\mathcal{D}(M)_0 \simeq *$:

 $\mathcal{D}_{M_i}(M)_0$ strongly deformation retracts onto $\mathcal{D}_{M_{i+1}}(M)_0$ for each $i \geq 0$ (Lemma 3.2 (4)). Since diam $\mathcal{D}_{M_i}(M)_0 \to 0$ $(i \to \infty)$, it follows that $\mathcal{D}(M)_0$ strongly deformation retracts onto $\{id_M\}$.

(B) $\mathcal{D}(M)_0$ is an ℓ_2 -manifold:

By Theorem 2.5 and Lemma 2.1 it remains to show that $\mathcal{D}(M)_0$ is an ANR. We apply Lemma 2.3 (4): For each $i \geq 0$, we have the following pullback diagram:

$$(p_i)^*(\mathcal{D}(M)_0) \xrightarrow{(p_i)_*} \mathcal{D}(M)_0$$
 $\pi_i, p_i : \text{the restriction maps},$
 $(\pi_i)_* \downarrow \qquad \qquad \downarrow \pi_i$ $q_i : \mathcal{D}(M)_0 \to (p_i)^*(\mathcal{D}(M)_0)$
 $\mathcal{E}(M_i', M)_0 \xrightarrow{p_i} \mathcal{E}(M_i, M)_0,$ $q_i(h) = (h|_{M_i'}, h).$

Since $(\pi_i)_*$ is a trivial principal bundle with the contractible fiber $\mathcal{D}_{M_i}(M)_0$ (Lemma 3.2 (3),(4). (A)), it follows that $(\pi_i)_*$ admits a section s_i and $s_i(\pi_i)_*$ is $(\pi_i)_*$ -fiber preserving homotopic to id. Consider the two maps

$$\varphi = (\pi_i)_* q_i : \mathcal{D}(M)_0 \to \mathcal{E}(M_i, M)_0 \quad \text{and} \quad \psi = (p_i)_* s_i : \mathcal{E}(M_i, M)_0 \to \mathcal{D}(M)_0.$$

Then $\mathcal{E}(M_i, M)_0$ is an ANR (Lemma 2.2 (i)) and $\psi \varphi : \mathcal{D}(M)_0 \to \mathcal{D}(M)_0$ is π_i -fiber preserving homotopic to id. Since diam (fibers of π_i) $\to 0$ ($i \to \infty$), Lemma 2.3 (4) implies that $\mathcal{D}(M)_0$ is an ANR.

3.2. Proof of Theorem 1.2.

We use the following notations:

$$\mathcal{D}_j = \mathcal{D}_{M \setminus U_i}(M)_0, \quad \mathcal{U}_{i,j} = \mathcal{E}(M_i, U_j)_0, \quad \mathcal{U}_{i,j}' = \mathcal{E}(M_i', U_j)_0 \quad (j > i \geq 1).$$

We have the pullback diagram:

$$(p_{i,j})^*\mathcal{D}_j \xrightarrow{(p_{i,j})_*} \mathcal{D}_j \qquad \qquad \pi_i' : \mathcal{D}(M)_0 \to \mathcal{E}(M_i', M)_0, \ (\pi_{i,j})_* \downarrow \qquad \qquad \downarrow \pi_{i,j} \qquad \qquad \pi_{i,j}, \ p_{i,j}, \ \pi_i' : \text{the restriction maps.} \ \mathcal{U}_{i,j}' \xrightarrow{p_{i,j}} \mathcal{U}_{i,j},$$

Lemma 3.3. (i) $(\pi_{i,j})_*$ is a trivial bundle with AR fiber.

- (ii) $\pi_{i,j}$ has the following lifting property:
 - (*) If Y is a metric space, B is a closed subset of Y and $\varphi: Y \to \mathcal{U}_{i,j}'$ and $\varphi_0: B \to \mathcal{D}_j$ are map with $p_{i,j}\varphi|_B = \pi_{i,j}\varphi_0$, then there exists a map $\Phi: Y \to \mathcal{D}_j$ such that $\pi_{i,j}\Phi = p_{i,j}\varphi$ and $\Phi|_B = \varphi_0$.

For each $j > i \ge 1$, we regard as $\mathcal{U}_{i,j}' \subset \mathcal{E}(M_i',M)_0$ and set $\mathcal{V}_{i,j}' = (\pi_i')^{-1}(\mathcal{U}_{i,j}') \subset \mathcal{D}(M)_0$. For each $i \ge 1$ we have:

- (i) $\mathcal{E}(M_i, M)_0 = \bigcup_{j>i} cl \mathcal{U}_{i,j}'$ ($\mathcal{U}_{i,j}'$ is open in $\mathcal{E}(M_i, M)_0$, $cl \mathcal{U}_{i,j}' \subset \mathcal{U}_{i,j+1}'$)
- (ii) $\mathcal{D}(M)_0 = \bigcup_{j>i} cl \mathcal{V}_{i,j}'$ ($\mathcal{V}_{i,j}'$ is open in $\mathcal{D}(M)_0$, $cl \mathcal{V}_{i,j}' \subset \mathcal{V}_{i,j+1}'$, $\mathcal{V}_{i+1,j}' \subset \mathcal{V}_{i,j}'$ (j > i+1))
- (iii) $\mathcal{D}(M)_0^c = \cup_{j>i} \mathcal{D}_j \ (\mathcal{D}_j \subset \mathcal{D}_{j+1})$

Proof of Theorem 1.2.

We construct a homotopy

 $F: \mathcal{D}(M)_0 \times [1,\infty] \to \mathcal{D}(M)_0 \; ext{ such that } \; F_\infty = id \; ext{ and } \; F_t(\mathcal{D}(M)_0) \subset \mathcal{D}(M)_0^c \; (1 \leq t < \infty).$

(1) F_i $(i \ge 1)$: Using Lemma 3.3 (ii), inductively we can construct a map $s_j^i : cl \mathcal{U}_{i,j}' \to \mathcal{D}_{j+1}$ such that $s_j^i(f)|_{\mathcal{M}_i} = f|_{\mathcal{M}_i}$ $(f \in cl \mathcal{U}_{i,j}')$ and $s_{j+1}^i|_{cl \mathcal{U}_{i,j}'} = s_j^i$ (j > i). Define a map

 $s^i: \mathcal{E}(M_i', M)_0 \to \mathcal{D}(M)_0^c$ by $s^i|_{cl \mathcal{U}_{i,j}'} = s_j^i$, and set $F_i = s^i \pi_i'$. We have $F_i(cl \mathcal{V}_{i,j}') \subset \mathcal{D}_{j+1}$ and $F_i(h)|_{M_i} = h|_{M_i}$.

(2) F_t $(i \le t \le i+1)$: Inductively we can construct a sequence of homotopies $G^j: cl \, \mathcal{V}_{i+1,j}' \times [i,i+1] \to \mathcal{D}_{j+1}$ (j > i+1) such that $G_i^j = F_i$, $G_{i+1}^j = F_{i+1}$, $G^{j+1}|_{cl \, \mathcal{V}_{i+1,j}' \times [i,i+1]} = G^j$ and $G_t^j(h)|_{M_i} = h|_{M_i}$. If G^j is given, then G^{j+1} is obtained by applying Lemma 3.3 (ii) to the diagram:

$$(Y,B) = (cl \, \mathcal{V}_{i+1,j+1}' \times [i,i+1], (cl \, \mathcal{V}_{i+1,j}' \times [i,i+1]) \cup (cl \, \mathcal{V}_{i+1,j+1}' \times \{i,i+1\})).$$

Define $F: \mathcal{D}(M)_0 \times [i, i+1] \to \mathcal{D}(M)_0^c$ by $F = G^j$ on $cl \mathcal{V}_{i+1,j} \times [i, i+1]$.

(3) F_{∞} : Since $F_t(h)|_{M_i} = h|_{M_i}$ for $t \geq i$, we can continuously extend F by $F_{\infty} = id$. This completes the proof.

REFERENCES

- [1] Bessaga, C. and Pełczyński, A., Selected topics in infinite-dimensional topology, Polska Akademia Nauk Instytut Mate., Monografie Mate., 58, PWN Polish Scientific Publishers, Warszawa, 1975.
- [2] Cerf, J., Topologie de certains espaces de plongements, Bull. Soc. Math. France, 89 (1961) 227-380.
- [3] Dobrowolski, T. and Toruńczyk, H., Separable complete ANR's admitting a group structure are Hilbert manifolds, Topology Appl., 12 (1981) 229-235.
- [4] Earle, C. J. and Eells, J., A fiber bundle discription of Teichmüller theory, J. Diff. Geom., 3 (1969) 19-43.
- [5] Epstein, D. B. A., Curves on 2-manifolds and isotopies, Acta Math., 155 (1966) 83-107.
- [6] Hamilton, R. S., The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. (New Series), 7 n.1 (1982) 65-222.
- [7] Hamstrom, M. E., Homotopy groups of the space of homeomorphisms on a 2-manifold, *Illinois J. Math.*, 10 (1966) 563 573.
- [8] Hanner, O., Some theorems on absolute neighborhood retracts, Ark. Mat., 1 (1951) 389-408.
- [9] Hirsch, M. W., Differential Topology, GTM 33, Springer-Verlag, New York, 1976.
- [10] Hu, S. T., Theory of Retracts, Wayne State Univ. Press, Detroit, 1965.
- [11] Luke, R. and Mason, W. K., The space of homeomorphisms on a compact two manifold is an absolute neighborhood retract, Trans. Amer. Math. Soc., 164 (1972), 275 285.
- [12] Palais, R. S., Local triviality of the restriction map for embeddings, Comment Math. Helv., 34 (1960) 305-312.
- [13] _____, Homotopy theory of infinite dimensional manifolds, Topology, 5 (1966) 1-16.
- [14] Scott, G. P., The space of homeomorphisms of 2-manifold, Topology, 9 (1970) 97-109.
- [15] Smale, S., Diffeomorphisms of the 2-sphere, Proc. Amer. Math. Soc., 10 (1959) 621-626.
- [16] Yagasaki, T., Spaces of embeddings of compact polyhedra into 2-manifolds, Topology Appl., 108 (2000) 107-122.
- [17] _____, Homotopy types of homeomorphism groups of noncompact 2-manifolds, Topology Appl., 108 (2000) 123-136.
- [18] _____, Homotopy types of diffeomorphism groups of noncompact 2-manifolds, (math.GT/0109183).
- [19] Toruńczyk, H., Characterizing Hilbert space topology, Fund. Math., 111 (1981) 247-262.

DEPARTMENT OF MATHEMATICS, KYOTO INSTITUTE OF TECHNOLOGY, MATSUGASAKI, SAKYOKU, KYOTO 606, JAPAN

E-mail address: yagasaki@ipc.kit.ac.jp