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HOMOTOPY TYPES OF DIFFEOMORPHISM GROUPS
OF NONCOMPACT 2-MANIFOLDS

&%k EE (TATSUHIKO YAGASAKI)

HBLEMERF T2

1. INTRODUCTION

This is a report on the study of topological properties of the diffeomorphism groups of
noncompact smooth 2-manifolds endowed with the compact-open C*™-topology [18].

When M is a compact smooth 2-manifold, the diffeomorphism group D(M) with the compact-
open C*-topology is a smooth Fréchet manifold [6, Section 1.4], and the homotopy type of the
identity component D(M)o has been classified by S. Smale [15], C. J. Earle and J. Eell [4],
et.al. In the C%-category, for any compact 2-manifold M, the homeomorphism group H(M)
with the compact-open topology is a topological Fréchet manifold (3, 11, 19], and the homotopy
type of the identity component (M )¢ has been classified by M. E. Hamstrom [7].

Recently we have shown that H(M), is a topological Fréchet-manifold even if M is a non-
compact connected 2-manifold, and have classified its homotopy type [17]. The argument in [17]
is based on the following ingredients: (i) the ANR-property and the contractibility of H(M)
for compact M, (ii) the bundle theorem connecting the homeomorphism group H(M)g and the
embedding spaces of submanifolds into M [16, Corollary 1.1], and (iii) a result on the relative
isotopies of 2-manifolds [17, Theorem 3.1]. The same strategy based on the C™-versions of
these results implies a corresponding conclusion for the diffeomorphism groups of noncompact
smooth 2-manifolds.

Suppose M is a smooth 2-manifold and X is a closed subset of M. We denote by Dx (M) the
group of C*®-diffeomorphisms h of M onto itself with h|x = idx, endowed with the compact-
open C™-topology [9, Ch.2, Section 1], and by Dx (M), the identity connected component of
Dx(M).

The following is our main result:

Theorem 1.1. Suppose M is a noncompact connected smooth 2-manifold without boundary.
(1) D(M)o is a topological €>-manifold.
(2) (i) D(M)o ~S! if M = a plane, an open Mébius band or an open annulus.

(i) D(M)o =~ * in all other cases.
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Any separable infinite-dimensional Fréchet space is homeomorphic to the Hilbert space ¢2 =
{(zn) €R®: 3, 22 < 00}. A topological £2-manifold is a separable metrizable space which is
locally homeomorphic to ¢2. Topological types of £o-manifolds are classified by their homotopy

types. Theorem 1.1 implies the following conclusion:

Corollary 1.1. (i) D(M)o = S! x £2 if M = a plane, an open Mdbius band or an open annulus.
(i) D(M)o = ¢3 in all other cases.:

For the subgroup of diffeomorphisms with compact supports, we have the following results:
Let D(M)§ denote the subgroup of D(M)o consisting of h € D(M) which admits a C®-isotopy
with a compact support, ht : M — M such that ho = idp and hy = h.

We say that a subspace A of a space X has the homotopy negligible (h:n.) complement in
X if there exists a homotopy ¢; : X — X such that ¢g = idx and ¢¢(X) C A (0<t < 1). In
this case, the inclusion A C X is a homotopy equivalence, and X is an ANR iff A is an ANR.

Theorem 1.2. Suppose M is a noncompact connected smooth 2-manifold without boundary.

Then D(M)§ has the h.n. complement in D(M)o

Corollary 1.2. (1) D(M)§ is an ANR.
(2) The inclusion D(M)§ C D(M)o is a homotopy equivalence.

Section 2 contains fundamental facts on diffeomorphism groups of 2-manifolds ‘and €2¥

manifolds. Section 3 contains a sketch of proofs of Theorems 1.1 and 1.2.

2. FUNDAMENTAL PROPERTIES OF DIFFEOMORPHISM GROUPS

In this preliminary section we list fundamental facts on diffeomorphism groups of 2-manifolds
(general properties, bundle theorem, homotopy type, relative isotopies, etc) and basic facts on
ANR’s and f3-manifolds. Throughout the paper all spaces are separable and metrizable and

maps are continuous.

2.1. General property of diffeomorphism groups.
Suppose M is a smooth n-manifold possibly with boundary and X is a closed subset of M.

Lemma 2.1. (c.f. [9, Ch2., Section 4], etc)
Dx (M) is a topological group, which is separable, completely metrizable, infinite-dimensional

and not locally compact.
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When N is a smooth submanifold of M, the symbol £ x (N, M) denotes the space of C*-
embeddings f : N < M with f|x = idx with the compact-open C*°-topology, and Ex (N, M),

denotes the connected component of the inclusion iy : N C M in € x (N, M).

Lemma 2.2. (i) Suppose M is a smooth mdﬁifold without boundary, N is a comapct smooih
submanifold of M and X is a closed subset of N. Then Ex (N, M) is a Fréchet manifold.

(1) Suppose M is a compact smooth n-manifold and X is a closed subset of M with oM C X
or OM N X = 0. Then Dx(M) is a Fréchet manifold.

In Lemma 2.2 £x (N, M)o and Dx(M)o are path-connected. Thus any h € Dx(M)o can be
joined with idpy by a path h; (t € [0,1]) in Dx (M)o.

2.2. Bundle theorems.

The bundle theorem asserts that the natural restriction maps from diffeomorphism groups
to embedding spaces are principal bundles [2, 12]. This has been used to study the homotopy
types of diffeomorphism groups. This theorem also plays an essential role in our a.rgument ,

Suppose M is a smooth m-manifold without boundary Nisa compact smooth n-submamfold
of M and X is a closed subset of N.

Case 1: n <m [2, 12]
Let U be any open neighborhood of N in M.

Theorem 2.1. For any f € Ex(N,U) there ezist a neighborhood U of f in Ex(N,U) and a
map ¢ : U — Dxym\v)(M)o such that p(9)f = g (9 €U) and o(f) = idy.

Corollary 2.1. The restriction map = : Dxymuvy(M)o — Ex(N,U)o, m(h) = h|n, is a
principal bundle with fiber Dxya\vy(M)o N Dn(M).

Case2: n=m

In this case we have a weaker conclusion: Suppose N’ is a compact smooth n-submanifold
of M obtained from N by attaching a closed collar N x [0,1] to 8N . Let U be any 6pexi
neighborhood of N’ in M. We can apply Theorem 2.1 to N’ to obtain the following result:

Theorem 2.2. For any f € Ex(N',U) there exist a neighborhood U’ of f in Ex(N',U) and a
map ¢ : U' — Dy (M)o such that p(g)fin = g (9 € U') and o(f) = idpy.

For the sake of simplicity, we set Do = Dxyanu)(M)o, &0 = Ex(N, U)o, & = Ex(N',U).

Consider the restriction map p : £ — &, p(f) = f|y and 7 : Dy — &, m(h) = h|n. We
have the pullback diagram: o
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p*(Do) —2— Do

| |

& —? ., &,

where p*Do = {(f,h) € & x Do | flw = hin}, pe(f,h) = h and mu(f,h) = f. The map px
admits a natural right inverse g : Do — p*Do, q(h) = (h|n',h). The group Do N DN (M) acts
on.p*Dp by (f,h)g = (£, hg) (g € Do N DN (M)).

Corollary 2.2.

(1) 7y : p* (Do) — & is a principal bundle with fiber Do N Dn(M). ‘

(2) p« : p*(Do) = Do 15 @ homotopy equivalence with the homotopy inverse g Do — p (Do)
(3) p: € — &o is a homotopy equivalence if X C int N.

The statements (2) and (3) exhibit a close relation between the restriction map 7 and the
pullback 7.

2.3. Diffeomorphism groups of 2-manifolds.

Next we recall fundamental facts on diffeomorphism groups of compact 2—mamfolds The
following theorem shows that Dx (M) =~ * except a few cases. The symbols S!, §2, T, P, K,
D, A and M denote the 1-sphere, 2-sphere, torus, projective plane, Klein bottle, dxsk annulus

and Mobius band respectively.

Theorem 2.3. ([4, 15] etc.) Suppose M is a compact connected smooth 2-manifold. Then the
homotopy type of D(M)o is classified as follows: | ‘

M D(M)o :

s?, P S0(3) o Dp(D) = *, Dp(M) = *.

T . T o If X is a disjoint union of a compact smooth 2-sub-
K, D,A/M st manifold and finitely many smooth czrcles and points
all other cases * in M and 8M C X, then Dx(M)o =~

For 2-manifolds there is no difference among the conditions: homotopic, CY-isotopic, C*°-
isotopic and joinable by a path in the diffeomorphism group. By [4] and a C*-analogue of [5]

we have

Proposition 2.1. Suppose M is a compact smooth 2-manifold.
(1) Suppose N is a closed collar of OM. If h € DN(M) is homotopic to idy rel N, then h s
C™-isotopic to idp rel N.

(2) Suppose N is a compact smooth 2- submamfold of M with OM C N. For h € 'DN(M ), the
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following conditions are equivalent:
(a) h is C%-isotopic to idpys rel N.
(b) h is C®-isotopic to idps rel N.
(c) h € DN(M)y.

In Corollaries 2.1 and 2.2 we have a principal bundle with fiber G =Dx(M)oNDyn(M). The
next theorem gives us a sufficient condition that G = Dn(M)o. The symbol #X denotes the
cardinal of a set X.

Theorem 2.4. Suppose M is a compact connected smooth 2-manifold, N is a compact smooth
2-submanifold of M with 8M C N, X is a subset of N. Suppose (M,N, X) satisfies the
following conditions:
(i) M#£T,P,K or X #0.
(ii) (a) if H is a disk component of N, then #(HN X) > 2,
(b) if H is an annulus or Mébius band component of N, then HN X # @,
(iii) (a) if L is a disk component of cl(M \ N), then #(L N X)>2,
(b) if L is a Mébius band component of cl(M \N), then LN X #0.
Then we have: |
(1) If h € DN(M) is CO-isotopic to idpy rel X, then h is C™-isotopic to idy rel N.
(2) D(M)o N Dn(M) = Dn(M)o.

Theorem 2.4 follows from [17, Theorem 3.1] and Proposition 2.1.

2.4. Basic properties of ANR’s and ¢;-manifolds.

The ANR-property of diffeomorphism groups and embedding spaces is also essential in our
argument. Here we recall basic properties of ANR's [8, 10, 13) and a topological characterization
-theorem of £2-manifolds.

A metrizable space X is called an ANR (absolute neighborhood retract) for metric spaces if
any map f: B — X from a closed subset B of a metrizable space Y admits an extension to a
neighborhood U of B in Y. If we can always take U =Y, then X is called an AR. It is known
that X is an AR (an ANR) iff it is a retract of (an open subset of) a normed space. Any ANR
has a homotopy type of CW-complex. An AR is exactly a contractible ANR.

We apply the following criterion of ANR’s:

Lemma 2.3. (1) A space X is an ANR iff every point of X has an ANR neighborhood in X.
(2) If X = UR2,U;, U; is open in X and Ui C Uiy1 and if each U; is an AR, then X is also an
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(8) In a fiber bundle, the total space is an ANR iff both the base space and the fiber are ANR’S.
(4) A metric space X is an ANR iff for any e >0 there is an ANRY and maps f : X =Y
and g: Y — X such that gf is e-homotopic to idx.

Since any Fréchet space is an AR, every Fréchet manifold is an ANR.
Finally we recall a characterization of ¢2-manifold topological groups [3, 19].

Theorem 2.5. A topological group is an £2-manifold iff it is a separable, non locally compact,

completely metrizable ANR.

The diffeomorphism group D(M), satisfies all conditions except the ANR property (Lemma
2.1). Thus the proof of Theorem 1.1 (1) reduces to the verification of ANR property of D(M)o.
The latter follows from the ANR property of the diffeomorphism groups and embedding spaces
of compact 2-manifolds (Lemma 2.2).

3. PROOF OF MAIN THEOREMS

In this section we give a sketch of proofs of Theorems 1.1 and 1.2 in the case where M #
a plane, an open Mobius band, an open annulus. Below we assume that M is a noncompa.ctr
connected smooth 2-manifold without boundary and that M # a plane, an open Moébius band,
an open annulus. ‘

We can write as M = U2, M;, where Mo = 0 and for each 1 > 1

(a) M; is a nonempty compact connected smooth 2-submanifold of M and M;_; C int M;,

(b) for each component L of ¢l (M \ M;), L is noncompact and L N M;4; is connected.

Note that M is a plane (an open Mobius band, an open annulus) iff infinitely many M;’s are
disks (M6bius bands, annuli respectively). Since M # a plane, an open Mobius band, an open
annulus, passing to a subsequence, we may assume that "

(c) M; # a disk, an annulus, a M6bius band.

For each i > 1 let U; = int M;, and choose a small closed collar E; of OM; in U.+1 \U,, a.nd set
M,- = M; U E; C Uj41.

3.1. Proof of Theorem 1.1.
[1] For each j > i > k > 0, we have the following pﬁllba.ék diagram:
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(Pk i)e

(P;m) (Dmumn\u;)(M)o) —— Duumnu,)(M)o
(xh ,,).l lr"'j 7} j» Pk : the restriction maps,
(] . S, _ .
Em, (M{,Uj)o Lea, Em, (M;,Uj)o, Gk.i = Dmum\uy)(M )9 NDa(

Lemma 3.1. (1) (=} jxisa pnnctpal bundle with fiber G}, . g
(2) G,w is an AR.

(3) (m} ’j). is a trivial bundle.

(4) Em,.(M{,Uj)o is an AR.

In (2) we apply Theorem 2.4 to deduce G} ; = Dk, (M;)o. The latter is an AR (Lemma
2.2 (ii), Theorem 2.3).

[2] For each i > k > 0, we have the following pullback diagram:

(1) Daa, (M)0) 225 Dy, ()0

(xi ).1 1,; 7}, p} : the restriction maps,

i Gt = Dy, (M)o N Dy, (M).
Em (M, M)o 2 Eaq (M;, M)o, * * ‘

Lemma 3.2. (1) (}). is & principal bundle with fiber G}.

(2) Em, (M], M) is an AR.

(3) (ni)a is a trivial bundle.

(4) G = Dm,(M)o and Dy, (M)o strongly deformation retracts onto Dy, (M)o.

The assertion (2) follows from Lemma 2.3 (2), Lemma 3.1 (4) and the fact that Ea, (M}, M) =
Uj>i Em, (M5, Uj)o.

Proof of Theorem 1.1.
(A) D(M)p ~ *:

Dm,(M)o strongly deformation retracts onto D, (M) for each ¢ > 0 (Lemma 3.2 (4)).
Since diam Dy, (M)o — 0 (i — 00), it follows that D(M), strongly deformation retracts onto
{idm}.

(B) D(M)y is an £2-manifold:

By Theorem 2.5 and Lemma 2.1 it remains to show that D(M )o is an ANR. We apply

Lemma 2.3 (4): For each i > 0, we have the following pullback diagram:

(p:)*(D(M)o) —— @) D(M)o i, p; : the restriction maps,
(")'l l«.- » g : D(M)o — (p:)*(D(M)o)

E(M[, M) —E— E(M;, M), gi(h) = (hlm;, h).
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Since ()« is a trivial principal bundle with the contractible fiber D, (M)o (Lemma 3.2 (3),(4).
(A)), it follows that (m;). admits a section s; and s;(m;)s is (;)«-fiber preserving homotopic to

id. Consider the two maps
(7"'1)*% D(M)O - g(Mt’ )0 and "/J (p'l)*st g(Mu M)O - D(M)O

Then E(M;, M)o is an ANR (Lemma 2 2 (1)) and Yy : D(M Jo — D(M)o is mi-fiber preserving
homotopic to id. Since diam (fibers of ;) — 0 (i — 0o0), Lemma 2.3 (4) implies that D(M)o is
an ANR. : e O

3.2. Proof of Theorem 1.2.

We use the following notations:

Dj = Dany,(M)o, Uij=E(M;i, U)o, Ui =EM,Us)o (G>i21)

We have the pullback diagram:
L \* . (p',.‘l)‘ i ;
(ig)Ps = P n}: D(M)o — E(M, M),
| [ o
Tij, Di,j, T; : the restriction maps.

Uy — Uy,
Lemma 3.3. (i) (7ij)« is a tn’qﬁ'al bundle with AR fiber.
(i) mi j has the following lifting‘ property:
(x) IfY is a metric space, B is a closed subset of Y and ¢ :Y —» U; ;' and <po : B—Dj are
map with pi,jtpl B = i jo, then there exists a map ® : Y — D; such that m; ,j‘<I>’= DijP
and ®|5 = o. | | | |

For each j > i > 1, we regard as U ;/ C E(M!, M)o and set Vi ;' = (n})~}(Us;") C D(M)o.
For each ¢ > 1 we have: '
(i) E(Mi, M)y = Ujsiclls ;' (Ui is open in E(Mi, M), cllh;j’ C Ui j11")
(ii) D(M)o = Uj>icl Vi (Vij' is open in D(M)o, clVij' C Vij+1's Visry € Vi (G >
i+1))
(i) D(M)§ = Uj>i Dj (Dj C Djt1)
Proof of Theorem 1.2.

We construct a homotopy
F :D(M)g x [1,00] = D(M)o such that Fo, =id and F;(D(M)o) C D(M)§ (1 <t < 00).

(1) F; (¢ 2 1): Using Lemma 3.3 (ii), inductively we can construct a map s;'- Uy —
Djy1 such that s§(f)|m, = flm, (f € i) and 8§, 4lauy, s = s; (j > i). Define a map



58

s' : E(M], M) — D(M)§ by 8'laz ;» = 8}, and set F; = s'n}. We have F;(clV;;') C Djy; and
Fi(h)Im; = hln;.-
(2) F; (i <t <i+1): Inductively we can construct a sequence of homotopies GJ : cl Viqr,j %

[i,é + 1] = Djy1 (j > i + 1) such that G} = F;, G, = Fiyy, G gy, xlii+1 = G7 and
GJ(h)|m, = h|m,. If G is given, then GI*! is obtained by applying Lemma 3.3 (ii) to the

> Djt2

A ’
n l ﬁP(h, t)= th‘:’ ‘PO(h, t) — {GJ(h1 t) (h € clv,-ﬂa- )

Fy(h)  (t=14,i+1)

(Y, B) = (clVigr5+1" x [i,8 + 1), (e Vigr4' % [i,5 + 1)) U (cd Vig1,441" X {5,6 + 1})).
Define F : D(M)o X [,4+1] = D(M)§ by F = G7 on el Viy1,f X [i,i+ 1].
(3) Foo: Since Fy(h)|um, = h|u; for t > i, we can continuously extend F by Fy, = id. This
completes the proof. a
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