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1Introduction
The aim of this short note is to explain the main ideas underlying are-
cent attempt to develop ageneral mathematical theory concerning models
of the dynamics of interacting (physiologically $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ spatially) structured
biological populations. For full details we refer to [3, 4, 6, 8].

2The setting
Let $\Omega$ be aset equipped with acount generated $\Sigma_{-}$ algebra. Apoint in
$\Omega$ corresponds to apossible state of an individual and accordingly we call
$\Omega$ the $\mathrm{i}$-state space. The population state is ameasure on $\Omega$ , describing
how many individuals there are and how their $\mathrm{i}$-states are distributed. The
aim is to specify how the population state evolves in the course of time on
the basis of model assumptions concerning the behaviour of individuals. This
“behaviour” has several components :movement in $\Omega$ , survival, reproduction
and interaction. Concerning interaction, we shall restrict ourselves to indirect
interaction via environmental quantities, e.g. food and predation pressure.

3Movement in $\Omega$

As afirst modelling ingredient we introduce

$u_{t}(x,\omega)\simeq \mathrm{t}\mathrm{h}\mathrm{e}$ probability that an individual that currently has i-state
$x\in\Omega$ has time $t$ from now an $\mathrm{i}$ state in $\omega$ $\subset\Omega$
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(while assuming that this quantity is bounded and measurable with re-
spect to $x$ and countably additive with respect to $\omega$ ). We call $u_{t}$ apositive
kernel and note that it is a(possibly defective, because of the possibility of
death) transition probability.
Introducing the product

$(k^{2} \cross k^{1})(x,\omega):=\int_{\Omega}k^{2}(\xi,\omega)k^{1}(x,\mathrm{d}\xi)$

we have as anatural consistency condition the Chapman-Kolmogorov rela-
taon

$u_{t+s}=u_{t}\cross u_{s}$ .
Before proceeding to the population level we give two examples of how to

construct such a(Green’s function, as one may also call it) $u_{t}$ on the basis
of more $\mathrm{e}\mathrm{l}\mathrm{e}\mathrm{m}\mathrm{e}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{r}\mathrm{y}/\mathrm{b}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{c}$ modeling ingredients.

Example 1:Let $x$ correspond to the “size” (length or volume or biomass
or...) of an individual, which evolves deterministically according to the ode

$\frac{dx}{dt}=g(x)$ .

Let $x(t;x_{0})$ denote the unique solution corresponding to the initial con-
dition $x(0;x_{0})=x_{0}$ . Assume that individuals of size $x$ experience aforce of
mortality $\mu(x)$ . Define the survival probability $F(t;x_{0})$ as the unique solution
of the initial value problem

$\{$

$\frac{dF}{dt}$ $=$ $-\mu(x(\cdot;x_{0}))F$

$F(0;x_{0})$ $=$ 1

Finally define

$u_{t}(x_{0},\omega)=F(t,x_{0})\delta_{x(t;x\mathrm{o})}(\omega)$

where, as usual, $\delta_{x}$ denotes the Dirac mass concentrated in $x$ .

Example 2:Let $x$ correspond to (one-dimensional) spatial position.
Assume that individuals diffuse with position-dependent diffusion coefficient
$D(x)$ . Assume that individuals at position $x$ experience aforce of mortality
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$\mathrm{p}(x)$ . Let the function $v(t, \mathrm{r}\ovalbox{\tt\small REJECT}_{\ovalbox{\tt\small REJECT}}\mathrm{r}_{0})$ be the unique solution of the pde initial
value problem

$\{$

$\frac{\partial v}{\partial t}$ $=$ $\frac{\partial}{\partial x}(D(x)\frac{\partial v}{\partial x})-\mu(x)v$

$v(0, \cdot;x_{0})$ $=$ $\delta_{x_{0}}$ .
Then we define

$u_{t}(x_{0}, \omega)=\int_{\omega}v(t, \xi;x_{0})\mathrm{d}\xi$ .

If we consider apopulation of independent individuals with initial distri-
bution $m_{0}$ , then its distribution at time $t$ is given by

$T(t)m_{0}=u_{t}\cross m_{0}$

(where $(u_{t} \cross m_{0})(\omega)=\int_{\Omega}u_{t}(\xi,\omega)m_{0}(\mathrm{d}\xi)$ ). The Chapman-Kolmogorov
relation guarantees that $T$ is asemigroup, i.e.

$T(t +s)=T(t)T(s)$ , $t$ , $s\geq 0$ .
So far, so good, but two essential elements of population biology, $\mathrm{v}\mathrm{i}\mathrm{z}$ .

-creation (reproduction)

-dependence (interaction)

are not yet incorporated.

4Reproduction
As asecond modeling ingredient we introduce (adopting afemale based book-
keeping system)

$\Lambda_{t}(x,\omega)\simeq \mathrm{t}\mathrm{h}\mathrm{e}$ expected number of daughters with state-at-birth in
$\omega\subset\Omega$ of amother which currently has $\mathrm{i}$-state $x\in\Omega$ in atime interval
of length $t$ .

As this is an $\mathrm{a}\mathrm{d}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}/\mathrm{c}\mathrm{u}\mathrm{m}\mathrm{u}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}$ quantity, the consistency condition
takes asomewhat different form. It reads

$\Lambda_{t+s}=\Lambda_{s}+\Lambda_{t}\cross u_{s}$ .
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In addition, since we need to distinguish offspring not only according
to the state-at-birth but also according to the time of birth, we need the
convolution product

$(k^{2}*k^{1})_{t}= \int_{[0,t)}k_{t-\tau}^{2}\cross k_{d\tau}^{1}$.

The point about the convolution product is that it allows us to iterate the
reproduction law to obtain the relevant information about grand-daughters,
great-grand-daughters etc. Indeed, if we define

$\Lambda^{1*}$ $=$ A

$\Lambda^{(k+1)*}$ $=$ $\Lambda*\Lambda^{k*}$ , $k\geq 1$

then we can construct the clan kernels

$\Lambda^{c}$ $=$ $\sum_{k=1}^{\infty}\Lambda^{k*}$

$u^{c}$ $=$ $u+u*\Lambda^{c}$

and therefore the next-population-state operators

$T(t)m_{0}=u_{t}^{c}\cross m_{0}$ .
That this construction yields asemigroup of operators is to be expected,

but must be verified.

Proposition 1

$i)\Lambda_{t+s}^{c}=\Lambda_{s}^{c}+\Lambda_{t}^{c}\cross u_{s}^{c}$

$ii)u_{t+s}^{c}=u_{t}^{c}\cross$ $u_{s}^{c}$

$iii)T(t+s)=T(t)T(s)$

The construction of $\Lambda_{t}$ from $\mathrm{a}$ , say, size-specific reproduction rate $\beta(x)$

(in the context of Example 1above) is particularly easy if there is only one
possible state-at-birth, say $x_{b}$ . Define $L(t;x_{0})$ as the unique solution of the
initial value problem

$\{$

$\frac{dL}{dt}$ $=$ $\beta(x(\cdot;x_{0}))F(x(\cdot;x_{0}))$

$L(0;x_{0})$ $=$ $0$
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then we put

$\Lambda_{t}(x_{0},\omega)=L(t;x_{0})\delta_{x_{b}}(\omega)$ .
When there are finitely many possible birth states, we get amatrix-vector

version of this. The extension to acontinuum of possible birth states is
straight-forward but, of course, notationally as well as computationally much
more involved. In general, the construction of $u$ and Afrom the rates $g$ , $\mu$ and
$\beta$ is apreprocessing that corresponds to the integration along characteristics
in models formulated as first order pde for population densities, as in [1, 2,
7, 9, 11, 12].

5Interaction
The formalism developed so far covers linear models, i.e. situations in which
individuals behave without affecting each other. It applies whenever the
environmental conditions, such as food availability and the probability per
unit of time of being caught by apredator, are fixed “in advanc\"e, e.g. by
an experimenter.
In mathematics one can always pretend, as long as one is explicit about
it. So our approach is to first consider the environmental conditions as
$\mathrm{k}\mathrm{n}\mathrm{o}\mathrm{w}\mathrm{n}/\mathrm{g}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{n}$ . In asecond step we then determine the environmental con-
ditions from the constructed population development in the course of time.
The consistency requirement then takes the form of afixed point problem,
which can be solved. So what we do is to first cut the feedback loop and
then restore it.
The kernels $u$ and Awere provided with an index $t$ corresponding to the time
elapsed. We now replace the symbol $t$ by the symbol $I$ , where I denotes the
“input” provided on atime interval of length $l(I)$ (corresponding to the $t$

before). So I describes the environmental conditions between now and $l(I)$

from now and, given these, we know how individuals behave in this time in-
terval (in the context of Example 1, the functions $g$ , $\mu$ and $\beta$ now also depend
on $I$). The addition of real numbers (recall $t+s$ ) is replaced by concatenation
(glueing together) of function segments, denoted by the symbol ${ }$ :

$(I_{2}I_{1})(t)=\{$

$I_{1}(t)$ for $0\leq t<l(I_{1})$

I2 $(t-l(I_{1}))$ for $l(I_{1})\leq t<l(I_{1})+l$(I2)

5



The Chapman-Kolmogorov relation then takes the form

$u_{I_{2}I_{1}}=u_{I_{2}}\cross u_{I_{1}}$

and the consistency condition for Anow reads

$\Lambda_{I_{2}I_{1}}=\Lambda_{I_{1}}+\Lambda_{I_{2}}\cross u_{I_{1}}$ .
Starting from $u_{I}$ and $\Lambda_{I}$ one can construct $\Lambda_{I}^{c}$ and $u_{I}^{c}$ as before and then

define the next population-state operators

$T_{I}m_{0}=u_{I}^{c}\cross m_{0}$

which form asemigroup

$T_{I_{2}I_{1}}=T_{I_{2}}T_{I_{1}}$ .
The easiest form of feedback is the pure mass action case, in which $I$

itself is alinear functional of the population state (so I is obtained by adding
contributions of individuals; more mathematically one should refer to this as
aquadratic nonlinearity). If $\gamma(x)$ denotes the $\mathrm{i}$-state specific contribution of
an individual to $I$ (so note that $\gamma$ is yet another modeling ingredient) then
the fixed point problem takes the form

$I(t)$ $=\gamma\cross u_{\rho(t)I}^{c}\cross m_{0}$

where $\rho(t)I$ denotes the restriction of I to the inverval of length $t$ $<1(1)$

and, in particular, $l(\rho(t)I)$ $=t$ .

“Theorem” Under appropriate assumptions there is, for given $m_{0}$ and
small enough $l(I)$ , aunique fixed point (depending on $m_{0}$ and denoted by
$I_{m\mathrm{o}})$ .

Anonlinear semiflow is then obtained by putting

$S(t, m_{0})=T_{\rho(t)I_{m_{0}}}m_{0}$
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6Concluding remarks
Via this construction we have deduced the population development from the
rules concerning individual behaviour, together with the initial population
state $m_{0}$ . The presentation above does not touch upon the determination
of steady states (and their stability) and, at first, it may seem that the
formalism is not very well suited for that. But actually it is! [5], [8].
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