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This is an announcement of results to appear.
Let us consider the family of non-negative solutions for the initial-value prob-

lem

$\partial_{t}u_{\epsilon}-\Delta u_{\epsilon}=-\beta_{\epsilon}(u_{\epsilon})$ in (0,$\infty)$ $\cross \mathrm{R}^{n}$ , $u_{\epsilon}(0, \cdot)=u_{\epsilon}^{0}$ in $\mathrm{R}^{n}$ (1)

Here $\epsilon\in(0,1)$ , $\beta_{\epsilon}(z)=\frac{1}{\epsilon}\beta(\frac{z}{\epsilon})$ , $\beta\in C_{0}^{1}([0,1])$ , $\beta>0$ in $(0, 1)$ and $\int\beta=\frac{1}{2}$ . We
assume the initial data $(u_{\epsilon}^{0})_{\epsilon\in(0,1)}$ to be bounded in $C^{0,1}(\mathrm{R}^{n})$ and to satisfy
$u_{\epsilon}^{0}arrow u^{0}$ in $H^{1,2}(\mathrm{R}^{n})$ and $\bigcup_{\epsilon\in(0,1)}\mathrm{s}\mathrm{u}\mathrm{p}\mathrm{p}u_{\epsilon}^{0}\subset B_{S}(0)$ for some $S<\infty$ .
Formally, each limit $u$ with respect to asequence $\epsilon_{m}arrow 0$ will be asolution

of the free boundary problem

$\partial_{t}u-\triangle u=0$ in $\{u>0\}\cap(0, \infty)\cross$ $\mathrm{R}^{n}$ , $|\nabla u|=1$ on C){u $>0$} $\cap(0, \infty)\cross \mathrm{R}^{n}$

(2)

The singular limit problem (1) has been derived as amodel for the propa-
gation of equidiffusional premixed flames with high activation energy ([4]);
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here $u–\lambda(T_{c}-T)$ , $T_{c}$ is the flame temperature, which is assumed to be
constant, $T$ is the temperature outside the flame and Ais anormalization
factor.
Let us shortly summarize the mathematical results directly relevant in this
context, beginning with the limit problem (2): In the excellent paper [1],
$\mathrm{H}.\mathrm{W}$ . Alt and $\mathrm{L}.\mathrm{A}$ . Caffarelli proved via minimization of the energy $\int(|\nabla u|^{2}+$

$\chi\{u>0\})$ –here $\chi\{u>0\}$ denotes the characteristic function of the set $\{u>0\}$

-existence of astationary solution of (2) in the sense of distributions. They
also derived regularity of the free boundary $\partial\{u>0\}$ up to aset of vanish-
ing $n-1$-dimensional Hausdorff measure. The question of the existence of
classical solutions in three dimensions stands still exposed. Existence would
however follow by [13], once the non-existence of singular minimizing cones
has been established. Non-minimizing singular cones do in fact appear for
$n=3$ (cf. [1, example 2.7]). Moreover it is known, that solutions of the
Dirichlet problem in two space dimensions are not unique (cf. [1, example
2.6]).
For the time-dependent (2), a“trivial non-uniqueness” complicates the mat-
ter further, as the positive solution of the heat equation is always another
solution of (2). Even for flawless initial data, classical solutions of (2) de-
velop singularities after afinite time span; consider e.g. the example of two
colliding traveling waves

$u(t, x)=\chi\{x+t>1\}(\exp(x+t-1)-1)$
(3)

$+\chi_{\{-x+t>1\}}(\exp(-x+t-1)-1)$ for $t\in[0,1)$ .

Let us now turn to results concerning the singular perturbation (1): For the
stationary problem (1) H. B\’er\’estycki, $\mathrm{L}.\mathrm{A}$ . Caffarelli and L. Nirenberg ob-
tained in [3] uniform estimates and –assuming.the existence of aminimal
solution -further results.
$\mathrm{L}.\mathrm{A}$ . Caffarelli and $\mathrm{J}.\mathrm{L}$ . Vazquez contributed in [8] among other things the
corresponding uniform estimates for the time-dependent case and aconver-
gence result: for initial data $u^{0}$ that is strictly mean concave in the interio$\mathrm{r}$
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of its support, asequence of $\epsilon$-solutions converges to asolution of (2) in the
sense of distributions.
Let us finally mention several results on the corresponding tw0-phase prove
$\mathrm{l}\mathrm{e}\mathrm{m}$ , which are relevant as solutions of the one-phase problem are automati-
cally solutions of the corresponding tw0-phase problem. In [6] and [7], $\mathrm{L}.\mathrm{A}$ .
Caffarelli, C. Lederman and N. Wolanski prove convergence to asort of bar-
rier solution in the case that $\{u=0\}^{\mathrm{o}}=\emptyset$ . These results deal quite well
with the $tme$ twO-phase behavior of limits, but have –as will become more
plain in the examples below -to largely ignore the one-phase behavior. One
of the reasons for this is that the limit cannot be expected to be close to
amonotone function near free boundary points that are not true tw0-phase
points.

Our result: As an intermediate result we obtain that each limit $u$ of (1) is a
solution in the sense of domain variations, i.e. $u$ is smooth in $\{u>0\}$ and
satisfies

$\int_{0}^{\infty}\int_{\mathrm{R}^{n}}[-2\partial_{t}u\nabla u\cdot\xi+|\nabla u|^{2}\mathrm{d}\mathrm{i}\mathrm{v}\xi-2\nabla uD\xi\nabla u]=-\int_{0}^{\infty}\int_{R(t)}\xi\cdot\nu d\mathcal{H}^{n-1}dt$

(4)
for every $\xi\in C_{0}^{0,1}((0, \infty)\cross \mathrm{R}^{n};\mathrm{R}^{n})$ . Here

$R(t):=\{x\in\partial\{u(t)>0\}$ : there is $\nu(t, x)\in\partial B_{1}(0)$ such that $u_{r}(s, y)=$

$\frac{u(t+r^{2}s,x+ry)}{r}arrow\max(-y\cdot\nu(t, x), 0)$ locally uniformly in $(s, y)\in \mathrm{R}^{n+1}$

as $rarrow 0$}

is for $\mathrm{a}.\mathrm{e}$ . $t$ $\in(0, \infty)$ acountably $n-1$-rectifiable subset of the free boundary.
Let us remark that already this equation contains information (apart from
the rectfiability of $R(t))$ that cannot be inferred from the viscosity notion of
solution in [11, Definition 4.3] (the stationary case): whereas any function
of the form $\alpha\max(x_{n}, 0)+\beta\max(-x_{n}, 0)$ with $\alpha$ , $\beta\in(0,1]$ is aviscosity
solution in the sense of [11, Definition 4.3], positive $\alpha$ and $\beta$ have to be equa
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in order to satisfy (4).
Our main result is then that each limit of (1) –no additional assumptions
are necessary -satisfies for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$

$\int_{\mathrm{R}^{n}}(\partial_{t}u(t)\phi+\nabla u(t)\cdot\nabla\phi)=-\int_{R(t)}\phi$ $d7\{^{n-1}$

(5)
$- \int_{\Sigma_{*}(t)}2\theta(t, \cdot)\phi$ $d \mathcal{H}^{n-1}-\int_{\Sigma_{z}(t)}\phi$ $d\lambda(t)$

for every $\phi$ $\in C_{0}^{1}(\mathrm{R}^{n})$ , that the non-degenerate singular set

$\Sigma_{*}(t):=\{x\in\partial\{u(t)>0\}$ : there is $\theta(t, x)\in(0,1]$ and $\xi(t, x)\in\partial B_{1}(0)$ such

that $u_{r}(s, y)= \frac{u(t+r^{2}s,x+ry)}{r}arrow\theta(t, x)|y\cdot$ $\xi(t, x)|$ locally uniformly

in $(s, y)\in \mathrm{R}^{n+1}$ as $rarrow 0$}

is for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ acountably $n-1$-rectifiable subset of the free boundary
whereas $\lambda(t)$ is for $\mathrm{a}.\mathrm{e}$ . $t\in(0, \infty)$ aBorel measure such that the $n-1$
dimensional Hausdorff measure is on

$\Sigma_{z}(t):=$ {$x\in\partial\{u(t)>0\}$ : $r^{-n-2} \int_{Q_{r}(t,x)}|\nabla u|^{2}arrow 0$ as $rarrow 0$}

totally singular with respect to $\lambda(t)$ , i.e. $r^{1-n}\lambda(t)(B_{r}(x))arrow 0$ for $\mathcal{H}^{n-1_{-}}$

$\mathrm{a}.\mathrm{e}$ . $x\in\Sigma_{z}(t)$ . Up to aset of vanishing $H^{n-1}$ measure, $\partial\{u(t)>0\}=$

$R(t)\cup\Sigma_{*}(t)\cup\Sigma_{z}(t)$ .

In the tw0-dimensional stationary case one can prove that Adoes not appear
in the equation. On the other hand there seem to exist very bad distributional
solutions that are not solutions in the sense of domain variations. This
suggests that the solution in the sense of domain variations is abetter notion
of solution than that in the sense of distributions.

Let us shortly describe relevant parts of the proof:
As afirst step, we prove convergence of $2B_{\epsilon_{m}}(u_{\epsilon_{m}})$ to acharacteristic function.
We also need some control over the set of horizontal points, i.e. the set of
points at which the solution’s behaviour in the time direction is dominant
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Acrucial tool in the local analysis at the free boundary is the monotonicity

formula
Theorem 1( $\epsilon$-Monotonicity Formula) Let $(t_{0}, x_{0})\in(0, \infty)\cross \mathrm{R}^{n}$ , $T_{f}^{-}(t_{0_{l}}$

$=(t_{0}-4r^{2}, t_{0}-r^{2})\cross \mathrm{R}^{n}$ , $0< \rho<\sigma<\frac{\sqrt{t_{0}}}{2}$ and

$G_{(t_{\mathrm{O}},x\mathrm{o})}(t, x)=4 \pi(t_{0}-t)|4\pi(t_{0}-t)|^{-\frac{n}{2}-1}\exp(-\frac{|x-x_{0}|^{2}}{4(t_{0}-t)})$

Then
$\Psi_{(t_{\mathrm{O}},x_{\mathrm{O}})}^{\epsilon}(r)=r^{-2}\int_{T_{r}^{-}(t_{0})}(|\nabla u_{\epsilon}|^{2}+2B_{\epsilon}(u_{\epsilon}))G_{(t_{0},x_{0})}+$

$- \frac{1}{2}r^{-2}\int_{T_{r}^{-}(t_{\mathrm{O}})}\frac{1}{t_{0}-t}u_{\epsilon}^{2}G_{(t_{\mathrm{O}},x\mathrm{o})}$

satisfies the monotonicity fomula
$\Psi_{(t_{0},x\mathrm{o})}^{\epsilon}(\sigma)-\Psi_{(t_{0},x\mathrm{o})}^{\epsilon}(\rho)\geq\int_{\rho}^{\sigma}r^{-1-2}\int_{T_{r}^{-}(t_{0})}\frac{1}{t_{0}-t}(\nabla u_{\epsilon}\cdot(x-x_{0})$

$-2(t_{0}-t)\partial_{t}u_{\epsilon}-u_{\epsilon})^{2}G(t_{0},x\mathrm{o})dr\geq 0$

The key to our result is then an estimate for the parabolic mean frequency.

Proposition 1On the closed set $\Sigma:=\{(t, x)\in(0, \infty)\cross$ $\mathrm{R}^{n}$ : $\Psi(t,x)(0+)=$

$2H_{n}\}$ the parabolic mean frequency

2 $( \int_{T_{r}^{-}(t)}\frac{1}{t-s}u^{2}G_{(t,x)})^{-1}\int_{T_{r}^{-}(t)}|\nabla u|^{2}G_{(t,x)}\geq 1$

The function $r \mapsto r^{-2}\int_{T_{r}^{-}(t)}\frac{1}{t-s}u^{2}G(t,t)$ is non-decreasing and has a right
limit $\theta^{2}(t, x)\int_{T_{1}^{-}(0)}\frac{1}{-s}|x_{1}|^{2}G_{(0,0)}$ . The function 0is upper semicontinuous on
$\Sigma$ . At each $(t, x)\in\Sigma$

$\int_{0}^{r}s^{-3}\int_{T_{s}^{-}(t)}(1-\chi)G_{(t,x)}dsarrow 0$ as $rarrow 0$ .

It is asurprising fact that the parabolic mean frequency is bounded from
below at each point of highest density, which includes the set $\Sigma_{*}$ As a
consequence we obtain unique tangent cones for $\mathrm{a}.\mathrm{e}$ . time and at $H^{n-1}-\mathrm{a}.\mathrm{e}$ .
point of the graph of $u$ , whence GMT-tools lead to our result
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