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COMPUTATIONS OF CHOW RINGS AND THE MOD p MOTIVIC
COHOMOLOGY OF CLASSIFYING SPACES

Nobuaki Yagita (WE #8)
Faculty of Education, Ibaragi University (Stax%6W2E)

ABSTRACT. In this note, we explain how to compute mod p motivic cohomology over
C,the complex number field, by only using algebraic topology. Examples of algebraic
spaces X are classifying spaces BG of algebraic groups.

1. CHOW RING, MILNOR K-THEORY, ETALE COHOMOLOGY

We use some category Spc of (algebraic) spaces , defined by Voevodsky, where schems A,
quotients A;/Az and colim(A,) are all contained ([Vo2],[Mo-Vo]). Here schemes are defined
over a field k with ch(k) = 0. The motivic cohomology is the double indexed cohomology
defined by Suslin and Voevodsky directely related with the Chow ring, Milnor K-theory and
étale cohomology,

(CH)  For a smooth scheme X, H?"™™(X)= CH"(X) : the classical Chow group.

(MK) H™"(Spec(k)) = KM(k), the Milnor K-group for the field k.

For a smooth variety X of dim(X) = n. The Chow ring is the sum CH*(X) = &;CH'(X)
where
CH*(X) = {(n —i)cycles in X}/(rational equivalence).
Here the rational equivalence a = b is defiend if there is a codimension i subvariety W in
X x P! such that @ = p, f*(0) and b = p, f*(1) where P! is the projective line, p(resp. f) is
the projection for the first (resp. second) factor.
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The multiplications in CH*(X) is giving by intersections of cycles. Let k = C. Let P™
be the n-dimensional projective space. Then CH*(P™) = Z{L,,_;} where L,_; 2 P* % is an
n — i-dimensionalsubspace of P™. Hence the product is L, i.L,_j = L,_;_j. This shows

that
Ln -Cj‘ —\
»

CH*(P") = Z[y)/(y"*") = H*(CP")

Ly cpnL
identifying y* = L,,_;. K Ps n
- Len-¢
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Since Spc contains colimit, we can consider the infinite projective space P> = BG ,,, and
the infinite Lens spce colim,(A™ — {0}/Z /p) = Ly = BZ /p. The Chow rings of BZ /p are
are given in [To 1]

(1.1) CH*(P®)= H™*(P®)21[yl, CH*(BL/p)= H*"*(BL/p)=1ly]/(py)
with deg(y) = (2,1). For product of these spaces |
(1.2) CH*(P® X ... xP®) 2 Z[y1, 0, Yn]

(1.3)  CH*(BZ/p X ...x BL/p) = Z[y1, synl/(PY1;---PYn)-

Here note that CH*(X) % He*™(X(C)) for the last case. Even if H*(X(C)) is generated by
even dimensional elemets, there are cases that CH*(X) % H*(X(C)), e.g., the K3-surfaces
have the cohomology H2(X(C)) & Z22 but there is a K3-surface such that CH!(X) = Z*
for each 1 <1 < 20.

The Milnor K-theory is the graded ring &, K (k) defined by KM (k) = (k*)®"/J where
the ideal J is generated by elements a ® (1 — a) for a € k*. Hence KM(k) = Z and by
definition KM (k) is just the multiplicative group k* but written additively in the ring K, M (k).
Hilbert’s theorem 90, which is essentialy said that the Galois cohomology H'(G(k,/k); k3) =
0, implies the isomorphism KM (k)/p = k* /(k*)P = H'(G(k,/k);Z /p) for 1/p € k. Similarly
we can define a map (the norm residue map) for any extension F of k of finite type

(BK) K)(F)/p— H™G(Fs/F)ipg")

where u$" is the discrete G(F,/F)-module of n-th tensor power of the group of p-roots of
The Bloch-Kato conjecture: is that this, map is an jsomorphism for all field k and the
Milnor conjecture is its p = 2 case. This conjecture is solved when n = 2 by Merkurjev-
Susulin[Me-Su], and for p = 2 by. Voevodsky [Vol] by usig the motivic cohomology.

Notice that H™(G(ks/k); u@™) = HZ,(Spec(k), p") the étale cohomology of the point..
The étale cohomology H}(X;Z /p) has the properties ; ,

(E.1) If k contains a primitive p-th root of 1, then there is the additive isomorphism

. | ‘ HT(X,u®™) = HR (X1 /p).
(E.2) ' For smooth X over k =C, ‘
HP(X;Z/pN) = H™(X(C);Z/p") forall N2> 1.

The last cohomology is the usual mod p ordinary cohomoldgy of C-rational point of X. Of
course H,(Spec(C);Z /p) = Z /p. 1t is known that K} (R)/2 = H¢,(Spec(R);Z /2) = Z /2{p]
with deg(p) = 1 for the real number field. Here p = {-1} € KM®R)=R*/R2 Let F, be
a local field with residue field k, of ch(k,) # 2. Then KM (F,)/2 = H},(Spec(Fy);Z/2) =
A(a, B) with deg(c) = deg(B) = 1. Thus we know &, H™™(pt;Z /2) for these cases.

n M , oﬁafu’\ : N ,/r,k

L B fo o, ®n
K’S(‘SY“’C(@)/P‘: —t HM(M’HP. )
iR I SRS
GRSV T whn£=GC
B - 2 — 3;
h=2m
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2. THE REALIZATION MAP

In this section we consider the relation to the usual ordinary cohomology. Let R be Z or
Z /p. The motivic cohomology has the following properties [Vo2].
(C1) H**(X;R) is a bigraded ring natural in X.
(C2) There are maps (realization maps)
te" : H™™(X;R) - H™(X(C); R)

which sum up £"* = @ ,t0"" the natural ring homomorphism.
(C3) There are ( the Bockstein, the reduced powers )
operations

B:H**(X;Z/p) —» H**'*(X;Z/p)

P HY*(X;7 [p) - H* AP~ Din+p-1)( X 7 /)

which commutes with the realization map tc.
(C4)  For the projective space P™, there is an isomorphism

H**(X x P"/P™=1; R) = H**(X; R){1, '} H™(x (€2 2p)

with deg(y’) = (2n,n) and ¢ (y’') # 0. -

Here we consider some examples. Recall H*(C P> =P>®(C);Z/p) = Z /ply], deg(y) = 2
and H*(BZ /p(C) = BZ/p;Z /p) = Z [ply] ® A(z) with Bz = y (when p = 2, y = z2). From
the above properties (C1), (C2), we easily see that ¢ is epic for X = P*. Moreover there
is 2’ € H“Y(BZ/p;Z/p) such that tc(z') = z and from (C2), we also see i is epic for
X = BZ/p.

To see these facts hold for other spaces, we recall the Lichtenbaum motivic cohomology
[Vo2]. Lichtenbaum defined the similar cohomology H;**(X; R) by using the étale topology,
while H**(X; R) is defined by using Nisnevich topology. Since Nisnevich covers are some
restricted étale covers, there is the natural map H**(X; R) — H;"*(X; R). We say that the
condition B(n, p) holds if

B(n,p) : H™™(X; Z(p)) =3 HL"’”(X; Z(p)) foralm<n+1

and all smooth X. The Beilinson-Lichtenbaum conjecture is that B(n, p) holds for all n, p.
It is proved that the B(n,p) condition is equivalent the Bloch-Kato conjeture (BK) for
degree n and prime p. Hence B(n, p) holds for n < 2 or p = 2. Moreover Suslin-Voevodsky

proves
(L-E) If1/p € k, then for all X,

Hp™™(X;Z/p) = HZ(X; u3").

Now we compute H**(pt = Spec(k);Z/p). For a smooth X, it is known the following
dimensional conditions.
(C5) For a smooth X, if H™"(X; R) % 0, then

m<n+dim(X), m<2n a

%'\ m<n /’/ %
H7x : 26) 2 Hatl 1) 5

i BG,P OK

nd m>0.
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Hereafter this paper,we assume that k contains a primitive p-th root of 1 and B(n,p)
holds for all n but X = Spec(k). Then

H™™(pt;Z [p) = H (pt; pg™) = Hp(pt;2/p)  if m<n
and H™"™(pt;Z/p) = 0 otherwise. Let 7 € H%!(pt;Z /p) be the element corresponding a
generator of HO,(Spec(k); up) = H,(Spec(k);Z /p). Then we get the isomorphism
H**(Spec(k); Z /p) = H,(Spec(k);Z /p) ® Z /p|7]
since 7 : HZ} (pt; u;?”) = HZ(pt; uf?("“)). Inparticular, for the real number field R and a
local field F,, with the residue field k,, of ch(k,) # 2

(21)  H"*(Spec(R);2/2) = 7/2[p,7] with deg(p) = (1,1)

(2.2) H**(Spec(F,);Z/2)=Z7/2[r]® A, ) with deg(a) = deg(B) = (1,1).
For k = C, B(n,p) condition holds for X = Spec(C), indeed KM(C) = 0 for n > 0.
Therefore
(2.3) H"™*(Spec(C);Z/p) = Z/p|r] with deg(r) = (0,1).
When k = C, if B(n,p) condition holds for X, then it is immediate that
(24) [TTUEYN(X:Z/p) = HY(X(C);Z/p)®Z/plr, 77V
where the degree is defied by deg(z) = (m,m) if z € H™(X(C);Z /p).

Next we compute cohomology of P* and BZ /p. For any (algebraic) map f: X — Y in
the category Spc, we can construct the cofiber sequence

X —>Y - cone(f)=Y/X
which induces the long exact sequence (Voevodsky [V2])
(2.5) H**(X;R) — H**(Y;R) « H**(Y/X : R) — H* "*(X;R).

In particular, we get the Mayer-Vietoris, Gysin and blow up long exact sequences.

By the cofiber sequence P"~! — P™ — P™/P"~! and (C4), we can inductively see that

(2.6) H™*(P™;Z/p)= H"*(pt;Z/p) ®Z/plyl/(y™**') with deg(y) = (2,1)
Since B(1,p) is always holds, H"!(Lp;Z /p) = H'(L3;Z/p). Hence there is the element
g’ € HYY (L}, Z /p) with tc(z') = z € HY(L;Z /p). The Lens space is identified with the
sphere bundle associated with the line bundle
(A" —{0}) xa—gop A — (A" —{0})/(A —{O}) =P".

Where (A™ — {0}) X(a—{o}) A is the identification such that (z;,2) ~ (a~'z;,aPz) € (A™ —
{0}) x A. Hence we get the cofibering Ly — P ZP, Pn. Thus we get the additive iso-
morphism H**(Lp;Z/p) = H**(P™;Z/p){1,z}. This induces the ring isomorphism for
p=odd

(@7 H**(Lp;Z/p) = 7/plyl/(y™*") ® A(z) ® H**(pt;Z/p) with deg(z) = (1,1).
However note that when p = 2, we see 2 = y7 +zp [Vo3] where p € HY(pt;Z /p) = k*/k?*

represents —1. (hence p = 0 when 4/ — 1 € k*.) This is proved by the wellknown facts
{a,a} = {a, -1} € KM (k). : ,

A\ 2 .
2y F _
- T X ‘é (jz 9 .
i e
H Gectr)s 2 H¥B24 5 2/2)

%=C

107



COMPUTATIONS OF CHOW RINGS AND THE MOD p MOTIVIC COHOMOLOGY OF CLASSIFYING SP

Let us say that a space X satisfies the Kunneth formula for a space Y if H**(X x

Y;Z/p) = H**(X;Z/p) ®@nemn(prz/p) H* (Y2 /).
By the above cofiber sequences, we can easily see that P™ and BZ /p satify the Kunneth
formula for all spaces. In particular, we have the ring isomorhisms

(2.8) H**(P% x ... xP®Z /p) = 7 /plys, ..., yu] ® H**(pt; Z /p)

(29) H**(BZ/px...x BZ/p;Z[p) 2 Z/ply1, ... yn) ® A(21, ..., ) ® H**(pt; Z /p)

( when p = 2, 22 = y;7 + z;p).

This fact is used to defined the reduced power operation P* in (C3). Since the Sylow
p subgroup of the symmetric group S, of p-letters, is isomorphic to Z /p, we know the
isomorphism

H*(BS,;1/p) = H'(BL/p;Z/p) = 2 /plY J@ A(X)
with identifying Y = yP~! and X = zyP~2. If X is smooth (and suppose p is odd for easy
of arguments), we can define the reduced powers (of Chow rings) as follows. Consider maps
H>*(X;Z/p) —'— HZP*P(XP xs, BSp) —2— H*(X;Z/p) ®pgon H**(BSy;Z/p)

where i) is the Gysin map for p-th external power, and A is the diagonal map. For deg(zr) =
(2n,n), the reduced powers are defined as

(2.10) A*i(z) = ZP‘(;,;) @Y™ + BPi(z) @ XY™—i-1,

Hence note deg(P*) = deg(Y*) = deg(y*P~V) = (2i(p — 1),i(p — 1)).

Voevodsky defined 4 for non smooth X also and by using suspensions maps, he defined
reduced poweres for all degree elements in H**(X;Z /p) for all X [Vo 3].

Moreover we can see (Ho-Kriz [H-K]) ’

(211) H**(BGLn;Z[p) 21 /plcy,...,cn) ® H**(pt; Z /p)

where the Chern class ¢; with deg(c;) = (2i,1) are identified with the elementary symmet-
ric polynomial in H**(P® x ... x P®;Z /p). So we can define the Chern class p(a) €
H?**(BG;Z /p) for each algebraic group G and for each representation p : G — GL,,.

3. H**(X;Z/p)/Ker(tc) AND OPERATION Q;
In this section we always assume that X is smooth and k = C. Define a bidegree algebra
by \
3.1)  R™(X;Z/p) = OmaH™™X;L/p)/Ker(t"™).
Suppose that B(n, p) condition holds. By isomorphisms (B, p),(L-E),(E1) and (E2), we have
H™™(X;Z/p)= H™(X;Z /p) = HZ,(X; u®™) = HT,(X;Z /p) = H™(X(C);Z/p).

The realization map ¢ induces this isomorphism. Let F; = Im(t*) . Then \U;F, =
c C

H*(X(C);Z /p) and define the graded algebra grH*(X(C);Z /p) = ®F;;1/F;. Thus we get
the additive isomorphism ;
h™*(X;Z /p) = grH*(X(C);Z /p) ® Z /p|7]

of bigraded rings. However the ring structures of both rings are different, in genéral. The co-
homology h**(X;Z /p) is isomorphic-to a Z [7]-subalgebra B of H*(X(C);Z /p)®Z /p[r, 7]
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with deg(z) = (|zl,|x|) such that B[r~!] = H*(X(C);Z/p) ®Z /p[r,7~1]. Namely there is a
Z /p-basis {ar} of H*(X(C);Z/p) such that B = Z/p{r*ar}®Z/p|r] for some t; > 0.
Here we recall the Milnor primitive operation @; = [Qi-1, P”Pl]

Qi : H**(X;1/p) — H* ~0 =) (X: 2 /p)
which is derivative, Q;(zy) = Qi(z)y + zQi(y). Note also Q;(7) = 0 by dimensional reason
of H**(pt;Z /p) = Z /p[T]. ‘ ,
Lemma 3.1. If0# Qi,...Qi,z € H**(X;Z/p), thenz is a Z /p|r])-module generator.

Proof. If z = z'7 ,then 7Q;,...Q;,(z") # 0. But @;,..Q;,(z") =0 € H?**~1(X;Z /p) since
H™"(X;Z /p) =0 for m > 2n. O

Define the weight by w(z) = 2n —m for an element z € H™"(X;Z /p) so that w(z") = 0 for
z' € CH*(X)/p. Of course we get w(zy) = w(z) + w(y), w(Pzr) = w(z) and w(Qi(z)) =
w(z) - 1.

Corollary 3.2. Suppose that B(n,p) holds. If x € H*(X(C);Z/p) and Q, Qi () #0,
then there is a Z /p[7)-module generator ' € H™™(X;Z /p) so that tc (z') = z and for each
0<k<n, Q..Qi (z) is also a Z /p|r]- module generator of H**(X;Z /p).

Proof. By B(n,p) condition, t#" : H™"(X;Z/p) = H™(X(C);Z/p). Hence there is an
element 2’ € H™™(X;Z /p) with t¢ (z') = z. This means w(z') = n and w(Q;, ...Qs., (z)) =0.
From the above lemma, we get the corollary. O

/\

n \ N ", ; ) . ’ ' )
H ()f{{C);%DHO K?x ?ﬁi_s , Ony QX
i RO 26)  CHOO

Now we consider the examples. The mod 2 cohomology of BO(n) is H*(BO(n);Z /2) =
Z /2[w1, ..., ws) where the Stiefel-Whiteney class w; restricts the elementary symmetric poly-
nomial in H*(B(Z/2)™2/2) = Z/2[z4,...,z,]. Each element w? is represented by Chern
class ¢; of the induced representation O(n) C U(n). Hence ¢; € CH*(BS(n);Z /2) =
H?**(BO(n);Z/2). ' Co -

Proposition 8.3. h**(BO(n);Z/p)  Z/2[c1, > Cal ® A1, ) ® Z /2[7]
where deg(c;) = (2i,1), deg(w;) = (5,1) and w? = *c;.

Since Q;—1...Qo(w;) # 0, each w; is a Z /2[r}-module generator. However even h*"* (BO(n);Z/2)
seems very complicated. Consider the case X = BO(3). The cohomology operations act by

Sq* : Sq? Sq? :
Wy —2— wiws + w3 —— wow + wiws +wrwi + wowz —— wiw? + w?

Sq! Sq* , ,
w3 — w3zwi L —— wiwwz -

Theorem 3.4. There is the isomorphism :
R**(BO(3); Z /2) = I /2[c1; 2, cs){1, w1, w2, Qowa, Qrwz, w3, Qows, Q1ws} ® Z/2[r].

where Qowg = T"l(w1w2»+ w3), .-
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W.S.Wilson ([W],[K-Y]) found a good Q(i) = A(Qo, ..., @;)-module decomposition for
X = BO(n), namely,
(32) H'(X;Z/2)=@_1Q()G: with Qo...QiG; € tc (CH*(X)).
Here G-, is quite complicated , namely, it is generated by symmetric functions

2i;+1 2ix+1, 251 2jq
Loyt Tt m Tl K+ g <,

with 0 <4; < ... <4pand 0 < j; <... < j, ; and if the number of j equal to j, is odd, then
there is some s < k such that 2i, + 2° < 2j, < 21, + 251,
Then w(G;) > i in h**(X;Z /p), that means
Proposition 3.5. Givenig the weight by w(G;) = i+1, we have the incusion for X = BO(n)
h**(X;Z2/2) C (@:iQ()Gi) ® Z /2[7].
One problem is that the above inclusion is really isomorphism or not. The similar de-
composition holds for X = (BZ /p)" and the above inclusion is an isomorphism. The case

X = BO(3) is also isomorphism. Since the direct decomposition of BO(3) is complicated
to write, we only write here that of SO(3) since O(3) 2 SO(3) x Z /2.

(3.3) H*(BSO(3);Z/2) = Z /2[ws, w3] = Z /2[cy, c3]{1, w2, w3 = Qowa, waws = Q w,}
= Z /2[c2, c3]{w2, Qows, Q1wz, c3 = QoQ1w2} ® Z /2[cy)

2 7/2[c2, c3]Q(1) {w2} © Z/2[c,).

Since there is the isomorphism O(2n+1) = SO(2n+1) xZ /2, the cohomology of BSO(2n+1)
is reduced from that of BO(2n+1). However note that the situation for BO(2n) is different.

The extraspecial 2-group 2};*2" is the n-th central product of the dihedral group Dg of
order 8. It has a central extension

(34) 0-2/2-G-V=0"2/2-0
Let H*(BV;2/2) = Z /2|z,,...,Z2a). Then Quillen proved [Q2]
(3.5)  H*(BG;Z/2)=1/2[z1,...,224)/(f, QoS -, Qn-2f) ® L [2[wan).
Here w;n is the Stiefel-Whiteney class of the real 2" dimensional irreducible representation
restricting non zero on the center and f = 3, Z2;—122; € H2(BV;Z /2) represents the central

extension (3.4).
Leting y; = z? in H*(BG;Z/2), we can write  f2 =" 0 19,

(Qk-11)* = QoQrf = Zy§:—1y2i ~ Y2193
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k-1

k—1
Qk-1f =D Y3i_1%2i — T2i-1Y5:
Now we consider in the motivic cohomology H**(BG;Z/2) and change y; = 7~ 1z2. Since
f =0¢€ H?%(BG;Z /2), we can see that Qx—1 f = 0 and QxQo(f) = 0 also in H**(BG;Z /2).
However for general n, 3 y2iy2i—1 # 0 in H**(BG;Z /2). Let

(3.6) A= (Z/2ly1,-,¥2n,c20]/(QoQkS; +; QoQn f)

®A(.’I71, 0y T2 wZ")/(f7 Q0f7 0y Qn—Zf)) ®Z /2[T]
Lemma 3.6. For G = 21;*2”, there is a map A — H**(BG;Z /2) which induces the injec-
tion A/(f?) C h**(BG;Z/2).
When m = 0,1,—1 mod 8 and m > 0, we say that Spin(m) is real type [Q2]. When
Spin(m) is real type, from Quillen, we know that H*(BSpin(m);Z/2) C H*(BG;Z/2)
where G = 21""'1, and h is the Hurwitz number (for details see [Q2]).

Corollary 3.7. Let G = Spin(m) be real type and the Hurwutz number h, and let
A= (Z /2[C2, €355 ++3Cm; CZh]/((Q1Q0w2)7 ceey (QhQOwZ)

®A(’LU2, oy Win, ’U)2h)/(’U)2, Q0w2) vy Qh—2w2)) QL /2[T]
where w;,i < m (resp.wqn) is the Stiefel-Whitney class of the usual SO(m) representation
(resp. of the irreducible 2" -dimensional spin representation). Then we have a map A —
H**(BG;Z /2) which induces the injection A/(cz) C h**(BG;Z/2).

We study Spin(7) and the exceptional Lie group G,. The cohomology of G is given
by H*(BG2;Z/2) = Z /2[ws, ws,w7] where w; is the Siefel-Whitney class of the inclusion
G2 C SO(7). The cohomology H*(BSpin(7);Z/2) = H*(BG2;Z/2) ® Z [2[wg].

Corollary 3.8. Let A =Z/2[cs,cq,cs,c7] @ A(ws, we, w7) @ Z/2[r]. Then there is the map
A — H**(BGa;Z/2) which induces the injection A/(cz) C h**(BGo;Z/2). Similar facts
hold for BSpin(7) tensoring Z /2[cs].

The cohomology operations are given

Sq? Sqt Sq* Sq? Sqt 2
Wy > Weg > Wy  WaW7 — WrlWe — Weq

Q1Qo(wswe) = w2, Q2Q1Qo(wswewr) = wi.

Proposition 3.9. Let w(wg) = 2, w(wa,e)) = 2 and w(wer)) = 3 with tc (Wiy, ... iin)) =
w;, ...w;,,. Then we have the injection

h**(BGa;Z [2) C Z /2[ca, cs, c1)

®Z /2{1, w4, SPw4, Q1 w4, Q2wy, ST*Q2ws, W(4,6), W(a,6,7)} ® Z/p[T].

Remark. If t3° ® Q is epic, then we can take wy € h*?(BG;Z /2),i.e.,w(wy) = 2.
The kernel Ker(tc)2** is not so big for X = BG,. Indeed, it is known that

CH*(BG2) = Zg)[c2, ¢4, s, 7]/ (27(c2 — 4cq),2c7,02¢7), for some r > 0.
The cohomology operations are given in H*(BSO(7);Z/2) ‘ -

Q1Qowz = w2, Q2Qows = w?, Q3Qows = wiw] + wiw} + wiwj.
Hence we have c3 =0, ¢5=0 czc7 =0 in CH*(BG;) but ¢z # 0.
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From here we consider the case p = odd. One of the easist examples is the case G = PGL3
and p = 3. The mod 3 cohomology is given by ([K-Y],[Vel])

(Z /3[y2){y*} ® Z /3{1, 42, y3, ¥7}ys]) ® Z /3[312]

It is known that y2,y3, 42 and y,2 are represented by Chern classes. Moreover Q;Qo(y2) =
ys. Hence these elements are in the Chow ring, namely,

h***(BPGL3;Z /3) = (Z /3ly2l{y3} © Z /3lys]) ® Z /3[yr2)-
The cohomology operations are given

B p! B
Y2 > Y3 * Yr > Ys

Thus we get h**(PGL3;Z /3) completely.
Theorem 3.10.
h**(BPGL3;Z /3) = (Z /3[y2l{y*} ® 2/3{1} ® Z/3[ys] ® Q(1){y2}) ® Z /3[y12] ® Z /3[7]
Next consider the extraspecial p-group G = p.l,fz". When n > 2, even the cohomology
ring H*(BG(C);Z /p) are unknown, while it contains the subring

B= Z/plyb -y Y2n, cp"]/(QlQOf, ---QnQOf)'

k J
where f = Y " 2129 for Bz; = y; and QxQof = Y Yoi—1y5; — yh;_1¥2: Since f =0 €
H?*2(BG,Z /p), we have

Proposition 3.11. Let G = p**?" and A = B®Z/p|r]. Then there is an injection A C
H**(BG;Z/p)
142

We consider the case n = 1 here. Let us write E = p;™°. The ordinary cohomology is
known by Lewis [L], [Te-Y3], namely,

He"*™(BE)/p = (Z/ply1, 2]/ (41v2 — v19%3) ® Z /p{c2; .-, cp-1}) ® Z /plcy)-

H*(BE) = Z [ply1, y2, ¢p){a1, 02}/ (4102 — 1201, 3502 — 1fa1) |ai| = 3.
Theorem 3.12.
h**(BE;Z/p) = ({1,807 '}(H*(BE)/p) — {07 '1}) ® Z /p[7]
where w(He¥*"(BE)/p) = 0,w(H°¥(BE)) = 1 and 6;1 ascents the weight one.

Proof. Since all elements in Hév*™*(BE) are generated by Chern classes, we have the iso-
morphism h?**(BG;Z/3) = He**"(BE)/p. We know H°¥(BE;Z /p) is generated as a
Heve"(BE)/p-module by two elements a;, a; such that Qa; = yic, [Te-Y3].

The mod p-cohomology is written additively H*(BE;Z/p) = {1,8,'}H*(BE)/p. Here
3y is the (higher) Bockstein. All elements in H°%(BE) are just p-torsion and we can
take a} € H%(BE;Z/p) such that B(a!) = a;. Thus we take a} € H>2(BE;Z /p) so that
a; € H¥%(BE;Z /p). , :

Next consider elements z = 3, Y(y), y € H**(BE)/p. If y € (Ideal(y1,y2)), then
8, (y) = L zib; for b; € H****(BE)/p, and hence we can take w(d,'(y)) = 1. For other
elements y = ¢;c with-¢ € Z /p|c,], we can prove ([Ly]) that thse elements are represented
by transfer from a subgroup isomorphic to Z /p x Z /p. Therefore we can also prove that
w(8,(y)) = 1. Thus we complete the proof. |
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