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Weighted Monotone Fock Space and
A Brownian Motion with
the Distribution of Bozejko-Leinert-Speicher

NAOFUMI MURAKI

Mathematics Laboratory, Iwate Prefectural University
Takizawa, Iwate 020-0193, Japan

Abstract. We construct on a weighted monotone Fock space ®, with weight
sequence w = (1,c,c%,c%,---) an example of noncommutative Brownian motion
{Q:t}:>0 such that the distribution u,; of an increment @, — Q,, 0 < s < t, coincides
with the distribution of Bozejko-Leinert-Speicher but that the process {Q:}:>0 is
not isomorphic to the c-free Brownian motion of Bozejko-Leinert-Speicher {Qt}tzo-

1. Weighted Monotone Fock Space

A weighted monotone Fock space ®,, is a deformation of the monotone Fock space ®
through a weight sequence w = {w,},, wp, > 0. It is a special case of interacting
Fock spaces [AcB, ALV]. The usual monotone Fock space corresponds to the case
of trivial weight sequence wy, := 1, n > 1 [Lu, Mul, Mu2]. Let us give the precise
definitions.

Let T = R be the set of all strictly positive real numbers s > 0. Denote by X,
the set of all monotone sequences 0 = (Sp>Sp—1> - -+ >8;) of length n from T, which
are increasing to the left. For each n > 1, ¥,, is the measure space equipped with
the (induced) Lebesgue measure do. ¥, = {A} is the singleton consisting of the
null sequence A with the point mass (= Dirac measure). Denote by H,, the complex
L2-space L?(X,) with a new inner product

<ulv> = wy, /dor u(o)v(o) (u,v € H,).
En

This Hilbert space H,, := (L%(Z,), wy) is called the n-particle space. Then we put

¢, = COH,OHD---OH.D---.
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and call it a weighted monotone Fock space with a weight sequence w = {w,}%2,
Here we identified H, with C through the identification of the function 1 : A — 1
with the unit 1 of C. Also we assume that wy = 1. We denote by Q := 1 the vacuum
vector (€ Hy).

For each one-particle vector f € H;, the creation operator 6}“ on ¢, is defined,
as the left multiplication operator, by

(6fu)(t>0) = f(t)u(o) (u = u(o) € Hn).

The annihilation operator ¢; is defined as the adjoint of 5}". For the vacuum vector
§2, we have 6,2 = 0. The concrete action of 07 onu € Hp, n 2> 1, is given by

(G7u)(0) = "”"“ / dt T@)u(t>0).

t>o

So we put rp, 1= =1,2,3,---, then a weight sequence w = {w,}32, corre-

n— 1
sponds to a sequence r = {rn}n , in the bijective way:

w= (wOawlaw27 v ) — r= (7'1,7'2,T3," ')

under the assumption wy = 1.

Let A, be the C*-algebra generated by the creation and annihilation operators
{6,671 € H1}, and let ¢y(-) =< Q|- Q > be the vacuum state over A,. We
will working on this C*-probability space (A, ¢,,). We often use the short notation
< - >:= ¢(-) to mean the expectation w.r.t. a given state ¢ over a C*-algebra.

2. Brwonian motion

For each f € H,, the canonical operator Qy is defined by Q; = 6, + (Sf By the
spec1ahzat10n = Xou with ¢ > 0, we obtain the creation process D} = 6% | the

annihilation process D; = 6 on’ , and the pair of canonical processes @; = g(: til— Dy
and P, = /=1(Df — D;). Here X, denotes the indicator function of an interval /
on the real line. We are interested in the probability law of the canonical process
{Q¢}eso.

At first let us consider the independence structure of the process {Q:}:>0. Let a
C*-probability space (A, ¢) and a stochastic process {X;};>0 C A be given. Let R
be the ring generated by all the semi-closed interval (s,t] with 0 < s < t. For each
I € R, let A; be the C*-algebra generated by the increments {X, — X,| (s,t] C I}
supported in I. Then a process {X;}:>¢ is said to be a process with independent
increments if, for each increasing finite sequence I; < I, < --- < I, of elements of
R, we have o

$(A1dz--- An) = $(A1)¢p(A2) -~ $(An)
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forall A; € Af,,t=1,2,---,n. Of course I < J means that s < ¢ for all s € I and
allt € J.

Proposition 2.1. {Q:}:>0 is a process with independent increments.

This is a corollary of the following Propisition 2.2. For each I € R, let As'") be
the C*-algebra generated by {Jf,éf'l f € Hy;supp(f) C I}. Then the following is
easily shown.

Proposition 2.2. Let {A{”)|I € R} be the system of C*-subalgebras of (Aw, dw)
defined above. Then for each increasing finite sequence I, < I < --- < I, of
elements of R, we have

¢w(A1A2 T An) = ¢w(Al)¢w(A2) T ¢w(An)
for all A; € .Ag:."), 1=12,---,n.

Proposition 2.2 means that also the pair process (Q;, P;):>o is an independent
increments process.

Proposition 2.3. {Q:}:>0 is a process with stationary increments, i.e.

¢w((Qt+u - Qs+u)?) = ¢w((Qt - Qs)p)
forall0<s<t,allu>0andallp=1,2,3,---.

The proof of Proposition 2.3 will become ovbious in the later. Now we know that
{Q¢}t>0 is a process with independent and stationary increments. Besides {Q:}:>0
is shown to be a scale-invariant process in the following sense.

Let {X;}:>0 C A (resp. {Y;}:>0 C B) be a stochastic process on a C*-probability
space (A, ¢) (resp. (B,¥)). Put Ay := C*({X:|t € T}) and B, := C*({Yilt €
T}) where C*(E) denotes the C*-subalgebra generated by a subset E. Then a
process {X,;}:>o is said to be isomorphic to a process {Y;};>o if there exists some
C*-isomorphism 7 : A9 — By such that 7(X;) =Y, for all ¢ > 0 and that ¢(7(X)) =
#(X) for all X € Ayp. Under this definition, we have

Theorem 2.4. For each A > 0, the scaled process {Q)} := VI,TQM}QO is tsomorphic
to the original process {Q:}¢>0-

Proof. For each fixed A > 0, let us define a map ®,, 5 P,: u o =u 1 as follows.
For each one-particle vector f € #;, we put

105 50 = 51(5)-

Also for each n-particle vector u € H,, we put

i wi = ()3 )
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Besides for the vacuum vector, we put

QO — Q.

!
Then this map u — u' = u, defines a unitary operator on ®,, because we have

<up > =

W / do W (o)v'(0)

o (G () o)

= w,,/ dr u(7) v(7)

= <ulv >,

)+ (5°)

1 1
= wn/-/\—ndau(xa

1

where in the 4th equality we put 7 = + o, and used do = A"d7 because of 0 = A7.

A

This unitary operator ®,, 3 u + u’' € &, naturally induces the transformation of

operators T+ T" as

B, — Py

ol

¢, — P,
Then first we know (67)' = 67, , because we have
(GHu)(t>0) =

(67 u)

u (o)

(67
oM
- (1
() -
(67,

Besides we know (J;)" = dF,, because we have
(67)u') o) = (65u)'(0)
N7 1
- ()@ “)(x °)

- ()7

Wn-1
t>41 %0

)(t>a)

fw)(t> o)
= (6f, u)(t > o).

!
u — u
[ r
1

v — v

(t > 0))

n

1

(5 ) ()iu(xo)

/ dtft)u<t>§a>
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7 ] 2 () 70 ()G
= Yn / ds T,\_(;) -up(s > o)

Wy
n-l,Se

= (87, wa)(9)
= (67, v)(9),

where in the 5th equality we put s = At. So we have (Q;)' = Qy,. By the special-
ization f :=x,,, we get

1 1 1
(X[O,t))'\(s) = ﬁx[o,t) (X 8) = ﬁx[o,,\:)(s)v

and hence 1
Q(x[o.e))" = Q7I:X[o,xe) = ﬁ Qx[o.,\c)'

So we obtain

' —

1
Q) = V—XQ,\:-

Besides it is easy to see that T+ T" is a C*-algebra automorphism of A,, satisfying
¢u(T") = ¢u(T). O

Corollary 2.5. For each ty,t5,---,t; € T, we have
< Qtthz'“Qtz > =< Q;l ;2“'Q;, >

Proof. T s T is a C*-algebra automorphism of A,, satisfying ¢,(T") = ¢, (T).
a

Proposition 2.6. < QsQ: > = min{s,t} fors,teT.

By Propositions 2.1, 2.3 and 2.4, it is natural to interpret the process {Q¢}¢>0
as a noncommutative analogue of Brownian motion.
3. Moments of Canonical Operators

Let a weighted monotone Fock space ®,, with the weight sequence w = {w,} (& r =
{ra}) be given. In this section, we derive some recurrence relations concerning the
moments of the distribution py,, = pyr of the canonical operator Qs on ®,, under
the vacuum state ¢,,. For simplicity we assume that || f ||2= 1. Put p := pg,.

Let us treat the moments of u:

+00
mp = ¢W(Q?) = /;OO xpdp') p= 0, 1,2)3)°".
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The pth moment m,, can be expanded as

m, = ¢(@QF) = &((Dy +D5)")
- ¥ #Dy--pop)

€1v52y""€p€{+7_}
= > <Q|Df---DFDFQ >.
51152""’5P€{+’-}
Besides it is easy to see that the contributing terms in the last expression are given
by the sequences of signatures (g,, - - - , €2, €1) satisfying the following two conditions

#{i1<i<l, ei=+} > #{i 1<i<l, ei=-}, l=1,---,p,
#{i [1<i<p, es=+} = #{i [1<i<p, ==}

Such sequences (g, - - - , €2, €1) correspond to the noncrossing pair partitions (=NCPP)
of the p points set {p,p — 1,---,2,1} in the bijective way. Besides the noncrossing
pair partitions are identified with the noncrossing diagrams in the natural way. For
example we have '

(_1_—,—’+,+1+,—7_,+7—7+7+) > @ m

For a noncrossing diagram g which is corresponding to a sequence of signatures
(€ps- 1 €2,€1), We put Vi(g) :=< Q| DY --- D?D7Q > . Then we obtain a formula
for the even moments moy

Mo = Z Vr(9)
g: NCPP of
2k points set

Besides we can see that the following recurrence formula for ( g )r := V;(g) hold.

Recurrence relations

(Lol Lo L\ = Lo\ LoV )e - (L))
@ ((gd)r = = (g)e

lg| +1

Gi) (MN\)r =

Here |g| denotes the number of lines in a diagram g. r’ denotes the sequence obtained
by the shift of r = (ry, 79,73, -+), that is, v’ := (r, 73,74, ). For example, the
following figure explains the rule for the calculation of V;(g).



Ty T2
t 1
1 1
6 3

32

T
1
4

Let us write m, = m,(r) to suggest explicitly the dependence onr = (ry, 73,73, - - -).
Using the recurrence relations for V;(g), the 2kth moment my(r) can be rewritten

as
ma(r) = > Vg
g: NCPP of
2k points set

k
j=1 g: NCPP with
#{connected
components} = j

k
>
j=1

ki+---+kj=k
ki >1 'kJ‘Zl
k
J=1 ki+--+kj=

ATPAY AN AN

Ve({a)) - vi{g))

>

That is we get the recurrence formula

k

ma(r) = 3 X

J=1 ky 4o+ kj

k1> 1,0,k > 1

Another form of recurrence formula is also useful:

k-1

mak(r) =Y

i=0

o1l =k1 -1
lgs| = k; —1
T r
> k—IVr'(!h ) .- ﬁ%’(gj)
ol =k —1 "1 3
lgj| = k; —1
T r
(= pw) - (£ 2w
lg1|=k1—1 "1 lg;1=k;—1 "3
Al ma(k —1)(1") """ T mz(k-—l)(l")-
ky ! k; 9
r T
L gy 1) (r) - -+ = Mg, -1)(r). (3.1)
=k kl kJ
™1
731 () Ma-15(r). (3.2)



Also we note here that 2kth moment mqy(r) is a homogeneous polynomial of degree
k in variables 71,79, -+, 7. So we have for each ¢ > 0

) .k
mgk(CTI,CTQ,C’I"g,"',CT‘n,"') = C mzk(’f'l,’f'z,’f'3,'“,'f'n,"’).

Let us derive a functional equation satisfied by the generating function f(s) =
f(s;r) for the even moments {mqx(r)} of the distribution p = pr = py,r:

flsr) = imzk(r)sk»
k=0

Using the recurrence relations for the moments (3.1), the generating function f(s;r)

can be rewritten as

fsm) = Y mu(e)s*

oo k . BER ‘ )
= 1 + Z Z Z k_l mz(kl 1)(1’) Skl """ k_J mg(k,_l)(r) S

Now we put g(s;r) := %oj — Ma(k— 1)(r ) s*, then this quantity satisfies
=1
, . |
1-g(s;r)’

Also this quantity g(s;r) can be Tewritten as

(r)

. ) . T

osir) = 3 7 mann() s

o

Z/ds mg(k 1) k 1
10

0

OO

ds Z m21 l
=
d

Re o)
k=1
7’1
k=
7'1/
0
a - m)
= Tl/ sz Mok (r') s*
k=0
f . 8 :
r1/ds f(s;r').
0

So we get

g(s;r) = 4r1/ds f(s;r'). (3.3)
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Therefore the moment generating function f(s;r) satisfies the following functional

equation:
1

1 —rlfsds f(s;r’),
0
1.

f(s;ir) =

£(0)

4. An example — the distribution of Bozejko-Leinert-Speicher

In this section, we give an example of weighted monotone Fock space ®,, such that
the probability distribution p; of its associated Brownian motion {Q.}:>o can be
explicitly obtained. This example corresponds to the weight sequence w given by

r = (1'1,7'2,7'3,"‘) = (l,C,C,C,"').

In this case, the quantity g(s;r) is given by
8 .
9(s;1,¢,¢,¢,--7) = 1- /ds f(s;c,cc,---)
0

= /ds Y ma(cec,-- -)s":
0

k=0
from (3.3). By the way, since in general the 2kth moment mg(ry,7s,73,--) is a
homogeneous polynomial of degree k in k variables r, 73, - - -, 7%, we have
ma(c,c,c,---) = Fmyu(l,1,1,--).

Note that ag := mg(1,1,1,---) is just the 2kth moment of the arcsine law with
mean 0 and variance 1 because the weight sequence (1,1,1, - --) corresponds to the
usual monotone Fock space [Mul, Mu2]. Now g(s;r) can be rewritten as

H )
g(sl 1,c, C,C,"') = /dszmm(lylvla'“) (cs)l
0 =0

= /de(CS;l,l,l,"’),
s .

where f(s;1,1,1,---) is just the generating function a(s) := 71-13 for the even
moments of the arcsine law. Hence we have

3 S 1
9(s;1,¢,¢,¢,- %) = 0/dsa(cs) = bfds\/—l———Z(:s

[—%(1‘ - 2cs)%] 1_1

1
= — —(1-2¢s)t.
S c( cs)

s
0
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Using the basic relation f(s) = we obtain the explicit form of the generating

1
1—g(s)’
function f(s) = f(s;r) for the even moments of the distribution y = psr associated

to the Fock space ®,, with the weight sequence r = (1,¢,¢,¢,---), as

(c=1)—+/1—2cs
(c—2)+2s

f(s)

Then the Cauchy transform G,(z) = [*X -Lzdu(€) of the measure p is given by

OOzé'

(1) _ (1—c)z+\/_—%

22 (2—-c)2%2 -2 (41)

Gu(z) = %f

Here we remark that the expression (4.1) is obtained as the specialization a :=1 &
B = \/g of the Cauchy transform G, ,(z) of the distribution of Bozejko-Leinert-
Speicher v, g, which is defined as follows [BLS]:

Vapg = i;a,ﬂ + a (61'1 +5$2)’

_ 1 a?/43? — 12 -
AVa5(T) = X(_yp.5(T) m ot — (a2 = )2 dz, (abs. conti. part)
a2 a2 .

2 _ 92 2
laf - 20 0< ﬂ_ < 1 ’
2 a? — B2 o = 2
a = 1 g
<=
0 27 « )

The Cauchy transform of v, is known to be

z(a® - 3% + %Ozz\/zﬁ — 4ﬁ5.

G(z) 22(02 —_ 152) —at

Hence we obtain the explicit form of the measure p as follows.

p=p + b((s& +6€2)v
_V2—z* 2¢c — 12

di(z) = Xx_ \/%\/521( x) 7r2+ (c D dz, (abs. conti. part)

(atomic part)

L=

—C

bz{z
0 (1§c)

Now let us remove the assumption of || f ||.2= 1. For general f € H,, put f =
| f e -u with || u [[.z= 1, then we have < Q% >= (|| f [[t2)? < Q% >. Put
Be 2= fh then we see that p,(dz) = u(dj‘;), and hence p; equals to v ; JE

B v 2
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Since the distribution of Q; dependes only on || f ||p2, the distribution y,; of an
increment Q; — @, coinsides with p;_,.
After all we have

Proposition 4.1. Let {Q.}:>0 be the canonical process on a weighted monotone
Fock space ®,, with weight sequence w = (1,¢,c%,c3,---). Then, under the vacuum
state ¢y, the probability distribution u,; of an increment Q. — Q,, 0 < s < t, of the

process {Q:}:>0 is the distribution of Bozejko-Leinert-Speicher Va,g With parameter
a=+/t—s andﬂ=\/5@_—’l.

2
Remark 4{.2. Note that, by the specializations ¢ = 1 and ¢ = 2 for u, we get the
arcsine law and the Wigner semicircle law, respectively.

c=1 = p(z) = 1_1 (arcsine law)
T2 — z2

2
c=2 = p(z) = % 1- (g) (Wigner semi-circle law)

Remark 4.3. The distribution of Bozejko-Leinert-Speicher v, 5 was obtained in [BSp,
BLS] as the central limit distribution in the c-free central limit theorem. Also the
distribution of its associated Brownian motion {Qt}tzo is given by the distribution
of Bozejko-Leinert-Speicher. We remark here that our Brownian motion {Q¢}e>0
is not isomorphic to the c-free Brownian motion of Bozejko-Speicher {Qt}:zo in
[BSp] although they have the same distribution y; = v, g, for each time ¢ > 0,
with a = v/t and 8 = \/-92‘: The reason is that the correlation function of {Q;}:>¢ is
different from the correlation function of {Qt}:zo- For our Brownian motion {Qz}tgo,
the correaltion < Q,Q:Q:Qs > is not symmetric in two variables s and t. Indeed,
for 0 < s < t, we have

<QuRQQ. > = ws {55 +s(t—9)} + i, (4.2)
whereas we have 1
< QQsQsQ: > = wy {-2-82} + w? s (4.3)

Hence we know < Q,Q.:Q.:Q; >#< Q,Q;QsQ: >, and recognize the non-symmetry
in the roles played by the past s and the furture ¢ (0 < s < t). On the other
hand, for the c-free Brownian motion of Bozejko-Speicher {Q,}:>o in [BSp), it can
be checked that

< QsQ:iQ:Qs > = < 2:Q,Q,Q: >
for 0 < s < t. This concludes that {Q;}:>¢ is not isomorphic to {Q:}:>0. Note that
the expressions (4.2) and (4.3) hold for the Brownian motion {ng)}tzo of general
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weight sequence w. Now let ®™ be the interacting free Fock space over the one-
particle space H; := L2(R,), with the weight sequence A = (A1, A, A3, -+ +), such
that the probability measure p® of its canonical operator Q: coincides with f,.
Such a sequence A always exists (see [AcB]). Then we can check that

< QthQth > = < @QQsQsQ: >

for 0 < s < t. So we observe that also, for each w, the Brownian motion {Qg"’)} on
®,, is not isomorphic to the Brownian motion {QE)‘)} on the corresponding interact-
ing free Fock space ®™ although they have the same distribution v Vi, \/— for each
time ¢t > 0. ’
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