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Existence and Uniqueness of Weak Integral Solutions for

Sine-Gordon Equations
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1 Introduction

Let {2 be an open bounded subset of R with the smooth boundary I' = 8Q, Q = (0,T) x Q
and ¥ = (0,7) x I.
In this paper we study the existence and uniqueness of weak integral solutions for damped
sine-Gordon equations with non-homogeneous Dirichlet boundary condition:
% ., dy

a5 T o

92 T 25 ~PAy+ysiny+hy=f in Q,

y=g on X, (1.1)

1(0,2) =wo(e) and L(0,2) = (), s e,

where o, 3,7 € R, 8 > 0 are physical constants, h is a multiplier function, f is a forcing function,
g is a boundary forcing function, and yg, ; are initial values. The equations in (1.1) describe
the dynamics of a Josephson junction driven by a current source by taking account of damping
effect(cf. [2]).

For the homogeneous Dirichlet boundary condition, i.e., g = 0, we proved the existence and
uniqueness of weak solutions for (1.1) in [5] in the abstract evolution equation setting. For the
results of strong solutions we want to refer to [6)].

If g is regular enough, then we can transform the equations in (1.1) into the equations with

the homogeneous boundary condition. In deed, we can construct v such that

Y=g on I



83

Put z = y—1. Then z satisfies the following equations with the homogeneous Dirichlet boundary

condition: o2 5
z z . R
—(,)t—2+a-8—t—-ﬁAz+'ys1n(z+1/J)+hz—f in Q,
z2=0 on X,
0z
Z(O,J,‘) = Z()(IL‘), E(Oax) = 21(23), S Qy
where 29(z) = yo(z) + ¥(0,z), 21(z) =yi(z) + %’te(O,x) and
Py oy

f=f—§2——04—87+ﬂA1/)—h1/7-

But in the control theory, two forces f and g can be regarded by the control variables. In this
case it is more general to assume the control variables not to be regular(cf. [3]).

Anyway we cannot utilize the method in [5] in proving the existence and uniqueness of weak
solutions for (1 1). Therefore, we utilize the method of transposition and solve the equations
(1.1) under weaker assumptions on the data than those in [5]. That is, it is our main purpose
of this paper to establish a new well-posedness result for (1.1) with non-homogeneous Dirichlet
boundary conditions, by using the method of transposition which is suitably set for our nonlinear
case. | ‘ |

This paper is largely composed of two parts except for introduction. In section 2, we review the
results of the existence and uniqueness of weak solutions for the damped sine Gordon equations
with g = 0 in (1.1). In section 3, we modify the method of transposition in order to solve our
purpose, and we prove the existence, uniqueness and continuous dependence of weak integral

solutions for (1.1) by using the method of transposition.
2 Damped sine Gordon equations with g =0

We consider the damped sine-Gordon equations with homogeneous boundary condition:

% oy
a2 %%t

BAy +ysiny+hy = f in Q,

y=0 on X, (2.1)
y(0,z) = yo(z) in Q and %(O,x)=y1(x) in Q,

where a,7 € R = (—00,00), 8 > 0, A = V2 is the Laplacian, h € L*°(0,T;L®(?)) is a

multiplication function, f is a given forcing function, yo,y1 are initial values.
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In this section, we review the classical well-posedness results for (2.1).
We will solve our purpose in the variational formulations. For this we introduce two Hilbert
spaces H and V by H = L?(2) and V = H}(Q), respectively. We endow these spaces with the

usual inner products and norms

(6,9) = /n $(@)d(2)dz, |6 = (4 ¢)Y2 forall ¢,y e IX(Q),

(4.9) = [ Vo@)- oz, ol = (4,672 for all 4, € (@)
Then the pair (V,H) is a Gelfand triple space with a notation, V < H = H' < V' and
V! = H~1(Q), which means that each of embeddings V C H and H C V' is continuous, dense
and compact. Let us denote (-,-) by the dual pairing between V' and V. By D'(0,T; X) we
denote the space of distributions from D(R2) into X , where X is a Hilbert space. If X = R,
D'(0,T; X) is simply denoted by 7’(0,T). We shall write ¢’ = %‘tz, g" = ‘;—:# , of which derivatives
are taken in the distribution sense D’(0, T; V). We define the Hilbert space of solutions w(0,T)
by
W(0,T) = {glg € L*(0,T;V), g’ € L*(0,T; H),g" € L*(0,T; V")}

with the scalar product defined by

T T T
(f,9)w = /0 (f, 9)dt + /0 (', g')dt + /0 (", ",

where (-,-)y+ denotes the inner product on V.
Now for treating the Laplacian operator in the variational form let us introduce the bilinear

form given by
a(6.4) = [ Vo(o)- Voladz = (6,4) forall 4,4 €V = H}@)
Then this form is symmetric, bounded on H(}(Q) x H} () and coercive, i.e.,
a(¢,¢) 2 |Igl|* for all ¢ € H}(Q).

Definition 2.1. The function y is said to be a weak solution of (2.1) ify € W(0,T) and y

satisfies
(W"(),9) + (a¥/ (), 8) + Ba(y(-), ) + (ysiny(-), #) + (A(-)y(-),8) = (£(-), $)
for all ¢ € V in the sense of D’'(0,T),

¥(0) = yo, ¥'(0) = u.
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Remark 1. Form the boundedness of the bilinear form a(-,-) on V x V, we can define the
bounded operator A € L(V,V') such that a(¢,¥) = (A¢,¥) for all ¢,¢ € V. Hence from
Definition 2.1, we can deduce the nonlinear damped second-order evolution equations described

by -

y dy
A Y ; —f
7 +adt + BAy +ysiny + hy = f in (0,7), (2.2)

O =weV, LO)=yeH
in the weak sense of V/. We note that the operator A in (2.2) is an isomorphism from V onto
V' and it is also considered as a self-adjoint unbounded operator in H with dense domain D(A)
inV and in H,
DA)={peV: Ap € H}.

The following theorem on the existence, uniqueness and regularities of solutions for (2.1) is

proved in [5].

Theorem 2.2. Let o,y € R, 3> 0, h € L*®(0,T; L>(Q)) and f, yo, 41 be given satisfying
f € L2(0,T; L*(Q)), wo € Hy(), y1 € L*(Q).
Then there is a unique weak solution y for (2.1) or (2.2), and y has the regularities ’
y € C([0,T; Hy (), ¢ € C([0,T); L*(®))-
Furthermore we have the estimates:
P OR + 9O < cllwl® + [l + 112z orall t€0.T] (2.3)

where ¢ is a constant depending only on «, 3,7 and ||h|| L (0,T;L0())-

Remark 2. Theorem 2.2 is true even though we replace siny with sin(yz +y) for some fixed

yr € L?(0,T; L*()) in (2.1).

3 Damped sine Gordon equations with g # 0
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We consider the damped sine-Gordon equations with non-homogeneous boundary conditions

described by

Py 0y . e
3% +aa - BAy+ysiny+hy=f in Q,
y=g on %, (3-.1)
0 .
y(z,0) = yo(z) and Ey(x, 0) =y1(z) in Q.

Now we want to solve the equations in (3.1) under weaker conditions on the data f,g,yo, 11
than those given in Theorem 2.2 by using the method of transposition, which is studied exten-
sively in [4].

For achieving our aim we must slightly modify the transposition method seen in [4], because
we have to deal with the nonlinear term.

Let h € L>™(0,T; L>®(R)) be fixed. By Theorem 2.2 with v = 0, for each f € L2(0, T; H)

there exists an unique weak solution ¢ = ¢(f) € W(0,T) of the linear problem

#' —of +BAp+hé=F i (0,T), } (32)

¢(T) = ¢'(T) =0.
It is easily verified if we consider the time reversion like t = ¢t — 7.
Let X; be the set of all functions ¢ satisfying (3.2) for each f € L%(0,T; H). We also give an
inner product on Xj; by ]

(8(), @) x,. = (f, 3 1200.:0),

where ¢(f) denotes the weak solution to (3.2) for a given f. Then it is easily checked that
(X3, (- -)x;) is a Hilbert space. Hence the mapping £j : X i = L?(0,T; H) defined by

¢ — ¢" —a¢' + AP + he

is an isomorphism. Since X; C W(0,T) as a set, we have by (2.3) that

d .- N
prie 'flli2emimy < lfllezormy, 3> 0, (3.3)

||£,-:1f||L2(o,T;V) + ||
where ¢ depends on ||A|| Lo (0,T;L>(Q))-
For simplicity of notations, we denote X = X} and £ = L, where h is the function given in
the equation (2.1). Note that X = X} in W(0,T) for any h € L*(0, T; L®(Q)).
The following theorem is now immediate from the isomorphism ¢ € X — ¢" —a¢'+BAp+he €

L2(0,T; H).
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Theorem 3.1. Let I be a bounded linear functional on X. Then there exists a unique solution

y € L?(0,T; H) such that
T
/0 (y,¢" — ad’' + BAP + he)dt = 1(¢), V¢ € X. (3.4)

Now we give the definition of a weak integral solution of (3.1).

Definition 3.2. Let yo € H = L2(Q), y1 € V' = H''(Q), h € L*(0,T; L*(Q)), f €
LY(0,T;V") and g € L*(0,T; H%(I’)). The function y is said to be a weak integral solution of
(3.1) if y € L*(0,T; H) and y satisfies

T T T
[ w6~ o + 0+ norat = [ (5= [ (s
0 0 T 0
a0, 80)) + (10, 60)) — (00, #O) — 8 [ o Ghcdt, VoEX, (39

where (1, #)r is the duality pairing between H %(I‘) and H3 (T).

We note that the definite integral f(;‘r (g, gﬁi)rdt appeared in (3.5) is well-defined, because of
9 ¢ 12(0,T; H=3(T)). |
Now we look for the weak integral solution (cf. the case of v = 0 in (3.5)) of (3.1) as the sum

yL + z, where yy, is the weak integral solution of the equations with non-homogeneous boundary

condition: 52 5
YL YL s
proan BAyL +hyr=f in Q,
yr =g on X, (3.6)
0 .
yL(z,0) = 10(z), —=(z,0) =y1(z) in D

ot

and z is the weak solution of the equations with homogeneous boundary condition:

9%z 0z

-a?+a5t———,8Az+'ysin(yL+z)+hz=0 in Q,

z=0 on X, (3.7)
0z .
2(z,0) =0, Ef(x’ 0)=0 in Q.

Theorem 3.3. Let o,y € R, 8> 0, h € L®(0,T;L>()) and the data f,g, yo, %1 be given

satisfying

feLN0,T; HY(Q)), g€ L' 0,T;HI(T)), o€ L), yi€H (D).
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Then there is a unique weak integral solution y;, € L2(0, T; L%(Q)) for (3.6) in the sense of (3.5)
(or in the sense of v = 0 in (3.5)), where
1(8) = yo,u1, f,91($) = (em0,4(0)) + (y1,6(0)) — (30, ¢'(0))
T T a¢
+ [ o= [ 16,62 ca (3.9
0 0 n
Proof: 1t is easily shown from the trace theorem and inequality (3.3) that ! defined in (3.8) is

a bounded linear functional on X. Therefore this theorem follows immediately from Theorem

3.1.

Now we are ready to state our main theorem.

Theorem 3.4. Under the assumptions in Theorem 3.3, there exists a unique weak integral
solution y € L?(0,T; L%(2)) for (3.1). In addition the solution y is continuously depending on
the initial data yo,y; and forcing and boundary functions fs9.

Proof. By Theorem 2.1 and Remark 2, we have a weak solution z of (3.7). It is easily verified
by using integration by parts that this z is a weak integral solution of (3.7). Hence the sum
Y = z + yy, satisfies the equations (3.5). This proves the existence of a weak integral solution y
of (3.1). It is left to prove the uniqueness and the continuous dependence of solutions. We shall
show the continuous dependence on the data yq, v, [, g

Let y*,i = 1,2 be the weak integral solutions of (3.1) corresponding to yj, yi, fi,g%,i = 1,2

satisfying the required conditions in Theorem 3.1. Then by Definition 3.2, y! — y?2 satisfies

T
/0 ' —v* L(o)dt = Uy — 43,98 — 42, F' - £2,9" — g%(9)
T
—y / (siny' —siny?, ¢)dt, V¢ € X, (3.9)
0

where ! is the bounded linear functional given by (3.8).

Here we use the mean value theorem of integral form
T T 1
/ (siny' — siny?, g)dt = / ( / cos(y® + A(y' — 3?))d) (v — ¢?), $)dt.
0 o Jo
. 1
Put h = 'y/ cos(y? + A(y! — y?))d\. Then it is clear that
0

1
h=h+~ / cos(y? + Ay — y2))dX € L®(0, T; L™(R)).
0
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The function /& depends on y' and y2, but the norm (| Al oo (0,T;L>(q)) i independent of y! and

y2. If we use this h, then (39) is rewritten by

T
/0 (v' — o2 Li(d)dt = lys —v3, vt —yi f1 = 29" = 9%l(¢), VoeX, (3.10)

where L; : X; — L?(0,T; H) is given by L;(¢) = ¢" — a¢’ + BA¢ + ho. If we take ¢ =
¢(y* — y?) € Xj, such that L;(¢) = y! — y? in (3.10), which is possible owing to X = X} as a

set, then we have

T
/0 ' — ?2dt = I[yd — vd, vt — o3, 11 - f1 9" = @%l(e(yt — D). (3.11)

By similar calculations as in Theorem 3.1, the functional [ is bounded on X ;, and [ satisfies

llyd — vé, 91 — i, f1 = 29" = °l((y" — v°))|
< llyp = wol + llvd = villve + 151 = Pl + 19" = 91 zmrd o)
x|y - y2”L2(O,T;H)’ (3.12)

where ¢} is independent of y! and y?. Thus from (3.11) and (3.12) we have the continuous

dependence

ly' - y2||L2(0,T;H) < c(lys —vol + llvi —willv + It - f2”L1(0,T;V’)
1 2
The uniqueness of weak integral solutions follows from (3.13). This completes the proof of
theorem.
Remark 3. We can easily extend Theorem 3.4 to general equations in which o and BA are

replaced by the differential operators depending on (¢,z). Also we can extend the equations

having bounded C'-class nonlinear function terms.
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