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Stable Regions Represented by Time Delays

KERRTEBAFTEE IRAFEAR (Sadahisa Sakata)
KERFFIL K% T %88 X t#%T (Tadayuki Hara)

1. Introduction

‘We consider the equations
i(t) = az(t — 7) + bx(t — h) (1)

and

z(t) =az(t— 1)+ b/t z(s)ds, (2)
t—h

where 7 > 0 and h > 0, and either of a or b is nonzero.
In [3], the authors discussed the region of (a,b) with fixed 7 and h for which the zero
solution of (2) is asymptotically stable. Our new interest is the region of (7, h) such that the
zero solution of (1) or (2) is asymptotically stable. In what follows, such a region is called
stable region.
In case a = b < 0, it was shown by Stépan [4] that the zero solution of (1) is asymptotically
stable if and only if
T—h 7r) s

—a(‘r+h)cos(1_+h§ =

5"
(See Figure 2.1.) Hale and Huang [2] gave the stable region for
E(t) = ax(t — 7) + bz(t — h) + cxz(t) (1)

in case a # b, assuming that the region is connected. On the other hand, Elsken [1] showed
that the unstable region for (1)’ in connected.

In section 2 we shall discuss the stable region for (1) in a different way from [2]. In section
3 we shall discuss the stable region for (2) in a similar way to section 2. In both sections,
the connectedness of the stable region is assumed.

Let a and b be fixed. For each (7,h) on the boundary curve of the stable region, the
characteristic equation of (1) or (2) has the zero root or a pair of purely imaginary roots
tiw. The outline of our method is the following: We shall express T and h by the multi-
valued functions of w and obtain the boundary curve of the stable region by the parametrized
curve (7(w), h(w)) in the Th-plane.

2. Stable region for (1)

The characteristic equation for (1) is expressed as
A =ae™ +be M, (3)
where we may assume |a| > |b|]. This equation has the zero root A = 0 only if

a+b=0. (4)
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In order to find the boundary of the stable region, suppose (3) has a pair of purely imaginary
roots +iw, w > 0. Then 7, h and w must satisfy

acoswT +bcoswh =0

and
asinwt + bsinwh = —w,
and so an elementary calculation shows

w? +a? - b?

Sin WT = —T (5)
and
w2 —a2+ b
) __w—-ae+Y 6
sin wh e , (6)

if ab # 0. Since a + b > 0 implies that (3) has a positive root, we may assume that a and b
fulfill the inequality a + b < 0. Hence we need only consider three cases:

Casel a=b<0 CaseIl a<b<0 Caselll a<0<b<-a
Now, note that (5) and (6) hold only if w satisfies the inequalities

w? + a% — b2

1< ———<1 | (7)
2aw
and
w? —a? + b2
1< ——X<1. 8
- 2bw - ( ).
On the other hand, (3) implies
abcos wt - coswh = —a? cos®* wr = —b? cos? wh.

Hence we have the following proposition.
Proposition 2.1. If coswT - coswh # 0, then sgn(ab) = —sgn(coswr - cos wh).
In Case I, both of (7) and (8) mean that w satisfies
0 <w< —2a.

w?+a2-=b% __

Since —442=t- = —£ — 0 as w — +0, w7 tends to 2nm 4+ 0or (2n+ 1)7 — 0 as w — +0.
Similarly, wh tends to 2mm + 0 or (2m + 1)m — 0 as w — +0. So, by Proposition 2.1, we
obtain the curves defined for w € (0, —2a]:

T= % {2n7r + Sin™! (——;—a)}

(9)
e (om0 (-2)
and
r=2{enryr-sn (-3)} (10)

h= % {2m7r + Sin™! (—-;—a)}
forn > 0and m > 0. ‘

The boundary of the stable region consists of the 7-axis, h-axis and the curves (9), (10)
for n = m = 0. The stable region for the case of @ = b < 0 is illustrated by the shaded
portion in Figure 2.1.



124

In Case II, (5) and (6) hold only if
—a+b<w< —-a-b

Considering the variation of sinwr, we have the curves defined for w € [-a + b, —a — b):

2 2 _ 2
w 2aw

(11)

2 2__b2
=1 {(zn+ 1)7 — Sin™! (_u_)}
w 2aw

and

12
h=Lomn s (~SZOHY .
R b 2bw
forn > 0and m > 0.
Figures 2.2-2.4 illustrate the stable regions for the case of a < b < 0.
In Case III, we have the curves defined for w € [—a — b, —a + b):
2 2 _ p2
T = 1 {2n7r + Sin™! (—-&)—Lb) }
w 2aw (13)
h=1{omn 4 ginm (-2 0+
T w 2bw
and
2, 2 _ p2
T= 1 {(2n +1)m — Sin™! (—m)}
w 2aw (14)
2 _ 2 p2
h=%{mm+1n—sm*(—ﬂ—§bii)}

for n > 0 and m > 0.
Figures 2.6-2.8 illustrate the stable regions for the case of a < 0 < b < —a.
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Fig.24 (a=-1,b=-0.1)
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3. Stable region for (2)

The characteristic equation for (2) is

0
A=ae +b / eMds. (15)
—h
This equation has the zero root only if
a+bh = 0. (16)
On the other hand, if ) is a nonzero root of (15), then X satisfies
A =ade™ 4+ b(1 — ™). (17)
Suppose (17) has a pair of purely imaginary roots +iw, w > 0. Then 7, h and w sa.tisfy
awsinwt + b(1 — coswh) = —w? (18)
and
aw coswt + bsinwh = 0, (19)
and hence
: w(w? + a® + 2b)
sinwr = — 2a(w? + ) (20)
and
w?(w? — a?)
=14+ ——=.
coswh + 25(w? + b) (21)

Moreover, (19) ensures the following proposition.
Proposition 3.1. If coswr - sinwh # 0, then sgn(ab) = —sgn(cos wr - sin wh).

If both of a and b are nonnegative, then a + bh > 0 for any h > 0, and so (15) has a
positive root. Therefore we may assume that either of a or b is negative. So, we classify sets
of a and b into ten cases:

Casel a<0, 8b>a? Case6 a<0, b< —a?
Case2 a<0, 0<8b<a? Case7 a=0, b<0
Case3 a<0, b=0 Case8 a>0, b< —q?
Cased a<0, —-a’<b<0 Case9 a>0, b= —qa?
Case5 a<0, b= —qa® Case10 a>0, —-a2<b<0

Now we shall find the curves in the Th-plane such that for any (7, h) lying on any one of
those curves, (15) has a pair of purely imaginary roots tiw, w > 0. In case w? + b # 0,
according to Proposition 3.1, a calculation shows that 7 and A are expressed as follows:

Case 1
2, 2
r=1 2nm + Sin~! (_w(w +a’ +2) }
w 2a(w? +b)
20,2 _ 2 (22)
h-—l 2mm 4 Cos™! 1+M
T w 2b(w? + b)

for0O<w<—-a, n>0, m>0
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=L on+1)r s _w(w+a+ 20)
w 2a(w? +b)
2,2 _ g2 (23)
h=l omm — Cos™? 1+w_(i_—__(ﬁ
w 2b(w? + b)
for0<w<—a, n>0, m2>1
Case 2
—a—vaZ —8b
curve (22) for 0<w < a 2a 8,n20,m20
or
—a— va?—8b
curve (23) for 0 <w < 2 2a , n>0, m2>1
or
—a— VaZ —8b
curve (22) for a 2a 8 <w<=-a, n>0, m>0
or
—Jaz —
curve (23) for a 2a 8b§w_<_—a, n>0, m>0
Case 3 .
T-——‘—z—a', h>0
Case 4 ‘
r=2lons + Sin™! _w(w® + a7+ 2b)
w 2a(w? +b)
20,2 _ o2 (24)
h=-1— 2mm — Cos™* 1+£u__(_w_—_q_)
w » 2b(w? + b)
JaZ =
for0<w§2—+—;——~—89, n>1 m2>1
or _
T = 1 (2n + 1) — Sin™! _w(w2 +a’ + 2)
w 2a(w? +b)
1 ) w?(w? — a?) (25)
h=;{2m7r+Cos (1+_—2b(w2+b))}
JaZ =
for 0<w§ﬁ—g——89, n>0, m2>0
or '
— Va2 —
curve (24) for —a<w < ot 2a 8b, n>0 m>1
or
— Va2 —
curve (25) for —a<w< ot 2a, Sb, n>0, m>0
Case 5

T= % {2n7r + Sin™! (—-;—a)}
= L fomn—con (1- ) 0
w 2a?

for O<w<—-2a, n>20, m2>1
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or

or

Case 9

or
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1
7'=a{(2n+1)7r—Sin‘1 (—%)} |
h=£}-{2m7r+Cos (1—2%225)} (27

for 0<w$.—2a, n>0, m>0
curve (24) for 0<w< —a, n>0, m>1

curve (25) for O<w<-a, n>0, m>0

a+\/a2 —a+ va? - 8b

curve (24) for ——— < w < 5 y,y n>1, m>0
- Va2 -
curve (24) for /—(a?+2b) <w < ot 2a 8b, n=0, m>0
VaZ —g§] —a+vVaZ =
curve (25) for a-i-_;_S_waS ot 2a 8b, n>0, m>0
7>0, h= T
—2b

curve (22) for 0<w<a, n>1, m>0

curve (23) for 0O<w<a, n>0, m>1

—a+vVaZ —8b vVaZ —8b
curve (22) for et 2a 8 SwS&g—s, n>1, m>0

va? — 8b
curve (22) for \/-—(a2+2b)<w$a+*;8—, n=0, m>0

= % {(2n +1)7 — Sin™! (—w(;z(:: ::)%)) }
h=- {(2m +1)m = Cos™ ( 2b((:2:r(;>;))}

—a+ va? - < a+ va?—8b
2 - 2

(28)

I/\

for —, n2>0, m>0

curve (22) for 0<w<2a, n>1, m>0

curve (23) for 0<w<2a, n>0, m>1



vase LU

or

or

or

—a+ Va2 —8b n
2 b

curve (22) for 0 <w <

curve (23) for 0 <w <

—a+ va?—8b n
2 bl

a+ va?—8b n
2 b

curve (22) for a w <

curve (23) for a <w <

a+ vVa?—8b n
2 b

On the other hand, in case w? + b = 0, (18) implies

aw sinwt — becoswh = 0.

Then it follows from (19) that

and

bcos(wh —wr) =0,

aw sin(wh — wr) = —b

bsin(wh — wT) = —aw.

Since w? = —b, (31) and (32) yield

w? =a?® = -b.
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(29)

(30)
(31)

(32)

Thus, w? + b = 0 holds only if b = —a?. Moreover, we have from (30) that if w?+b =0 then

wh=w¢+~72£-sgna+2k7r

for some integer k. Finally, we need to note that the characteristic equation (15) has the
zero root for h = —a/b when ab < 0.

Figures 3.1-3.11 illustrate the stable regions for (2). In addition, the stable region for the

case of a = 7, b = —4 is empty.
oo S o

Fig.3.1 (Casel;a=-2,b=1)

Fig.3.2 (Caselja=-2,b=
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Fig.3.6 (Case5;a=-2,b= —4)
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Fig.3.8 (Case7;a=0, b= —4)
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Fig.3.9 (Case8;a=1,b=—4) Fig.3.10 (Case9;a=2,b=—4)

/

3 \ _, t

Fig.3.11 (Casel0;a =3, b= —4)
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