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Applications of Phase Plane Analysis of a Liénard System to-

Positive Solutions of Schrédinger Equations

BIRKY BAETI ¥R £IREB (Jitsuro Sugie)
BEXE BSATHMRE WLHBEA (Naoto Yamaoka)

1. INTRODUCTION
We consider the semilinear elliptic equation
Au+ f(z,u) =0, T €, (1)

where () is an exterior domain of RY with N > 3, that is, G, = {z € RV: |z| > a} C Q
for some @ > 0. Throughout this paper, we assume that f(z, u) is nonnegative and locally
Hoélder continuous with exponent « € (0,1) in M x J for every bounded domain M C Q
and for every bounded interval J C R.

It is very famous that de Broglie’s wave function

#(@t) = e (- 2) ote)

is a solution of the Schrodinger equation for a free particle of mass m, momentum p and
kinetic energy E:
j2

., 0
zhazl) = —%Azﬁv,

where A = h/2r (h is Planck’s constant) and

v(z) = Aexp (i(pr;””)) .

This equation is generalized into the Schrodinger equation with the potential V' and the
nonlinearity .

b = 3 Ay + V(@ — o(z, )
If it has standing waves solutions of the form
P(z,t) = exp (—ZETt) u(z),
then the function u(x) must satisfy the elliptic equation
Au + i—T(E - V(z))u+ g(z, Ju|)u = 0,

which is of the form (1). In quantum mechanics, such are called stationary Schrodinger
equations.
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The aim of this paper is to give sufficient conditions under which equation (1) has a
positive solution in an exterior domain of RV, :

For a bounded domain M C Q, let C***(M) denote the usual Holder space. For
simplicity, CZ*(Q) is defined as the set of all functions u: Q — R such that u € C2t*(M)

loc

for every bounded domain M C Q. A functionu € C2+%(Q) is called a solution of (1) in 2

loc

if it satisfies equation (1) at every point z € (). Similarly, a function u € CZt*(Q) is called
a supersolution (resp., subsolution) of (1) in Q if it satisfies the inequality Au+ f(z,u) <0
(resp., > 0) at every point z € Q.

A typical example of (1) is the Emden-Fowler equation
Au+ p(z)u” =0, z €,

where p(z) is nonnegative and locally Holder continuous in © and + is a positive num-
ber. From this fact, equation (1) is often discussed under a sublinear or a superlinear
hypothesis. For instance, equation (1) is said to be sublinear (resp., superlinear) if there
exists a y with 0 < v < 1 (resp., 7 > 1) such that f(z,u)/u" is nonincreasing (resp.,
nondecreasing) in u for each fixed r = |z| > 0. ‘

Many studies have been made on the existence of a positive solution of (1) in the linear
case, the sublinear case and the superlinear case (see [2, 4, 5, 6, 7]). In this paper, we
intend to examine another case in addition to these cases. For example, consider the case
that

) = p(o) (u+ miﬁ) )

for all sufficiently small u. Then equation (1) is neither sublinear nor superlinear (of
course, equation (1) is not linear). In fact, differentiating f(z, u)/u”, we have

& (1) -2 (o0 i)

Hence, if 0 < v < 1 (resp., v > 1), then f(z,u)/u” is increasing (resp., decreasing) for
u > 0 sufficiently small. In the case (2), for any k > 1, there exists a positive interval I
such that ‘

p(z)u < f(z,u) < kp(z)u
for all z € Q and u € I. Hence, from this point of view, we may say that equation (1) is
almost linear in such cases as (2).
For sublinear Schrédinger equations, Swanson [7, Theorem 2.4] gave the following
sufficient condition for the existence of a positive solution under the assumption that

0 < f(z,u) < up(|z],u) (3)

for all z € Q and v > 0, where o(r,u) is locally Hélder continuous with exponent
o € (0,1) and nonincreasing in u for each fixed r > 0.

Theorem A. Under the assumption (3), equation (1) has a positive solution in an
exterior domain if

/ c’orc,o(r, c)dr < oo (4)

for some ¢ > 0.
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Consider the case that f(z,u) = u/4|z|? with 8 > 2. Then assumption (3) is satisfied

with ¢(r,u) = 1/4r#. Since
ro(r,c)dr = 1 dr
( ’ ) 4rp-1"""

for any ¢ > 0, condition (4) is satisfied if 8 > 2, but it does not hold if B = 2. Hence,
Theorem A is inapplicable to the case 8 = 2. However, the equation

u
A —_ =
u+ 1zp 0
has a positive solution, because its radial solutions are represented as the form of
(Kl + K, lOg'.’EI)le_l/2 if N= 3,
u(z) =
Kslz|* + Ky|z|>~N-> if N>4,

where K; (i = 1,2, 3,4) are arbitrary constants and z is the root of 224+(N-2)z+1/4=0.
Assumption (3) is not compatible with the superlinear case and the almost linear case.
Hence, instead of (3), we assume that

0< f(z,u) < % (5)

for all z € Q and u > 0, where h(u) is locally Lipschitz continuous and positive for u > 0,
and h(0) = 0. We also prepare the following notation to present a theorem which can be
applied to these cases. Write

L]_(U) = 1’ Lﬂ+1(u) = Lﬂ(u’) ln("’)? n= 1727 Tty

where
Li(u) = 2|logul, lnt1(u) = log{l,(u)},
and set :

a 1
Sp(u) = —_—
@ =2 mwr
Define ey = 1 and e, = exp(en—;). Then we have

Int1(u) = log{l,(u)} >0 for 0 <u < 1/\/e,,

and therefore, the function sequences {L,(u)}, {l.(u)} and {Sn(u)} are well-defined for
u > 0 sufficiently small. To take some concrete forms of Sn(u), for u > 0 sufficiently
small,

1 1
+ + !
4(logu)® * 4(log u)? (log(2| log ul))?

SI(U) = 1, Sz(u) =1+ S3(U) =1

4(log u)?’

and so on.
Our main result is stated in the following:
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Theorem 1. Assume (5) and suppose that there ezists a positive integer n such that

hw) _ (N —2)?
u 4

Sn(u) (6)

for all u > 0 sufficiently small. Then equation (1) has a positive solution u(z) in an
ezterior domain with limg_0 u(z) = 0.

2. A SUPERSOLUTION AND A SUBSOLUTION

We will prove the main result by use of the so-called “supersolution-subsolution”
method. The lemma below yields from a result of Noussair and Swanson [5, Theorem
3.3].

Lemma 2. If there ezists a positive supersolution U of (1) and a positive subsolution u
of (1) in Gy such that u(z) < u(z) for all £ € Gy U Cy, where b> a and Gy = {z e R":
|z| = b}, then equation (1) has at least one solution u satisfying u(z) = w(z) on C, and
u(z) < u(z) < u(x) through Gbs.

To apply Lemma 2, we have to find a suitable positive supersolution of (1) and a
positive subsolution of (1) which is not greater than the supersolution. For this purpose,
we consider the nonlinear differential equation :

d? N-1d 1
Zﬁw =+ ———’I" ET—‘w + T_z'g(w) = Oa T > a, (7)

where g(w) satisfies a suitable smoothness condition for the uniqueness of solutions of
the initial value problem and the signum condition

wg(w) >0 if w#0. (8)
Then we have the following nonoscillation theorem for equation (.

Lemma 3. Assume (8). If there ezists a positive integer n such that

gw)  N=2F¢g u) ©)

w 4

for w > 0 or w < 0, |w| sufficiently small, then all nontrivial solutions of (7) are
nonoscillatory.

Proof. Using phase plane analysis of a Liénard system, Sugie et al. [10, Lemma 3.2]
proved that under the assumption (8), all nontrivial solutions of the equation

2 1
—w + ;711) -+ r—'g(UJ) = (10)
are nonoscillatory if

98 < Zsu(ol) (11)
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for w > 0 or w < 0, |w| sufficiently small. Hence, the lemma is true for N = 3.
Suppose that N > 4. Let

T=(N=-2)r"? and w(r)= w(r).

Then equation (7) becomes

a2 2 d 1,
d—'r5v+ —'U+T—2§('U)=O,

Tdr
where g*(v) = g(v)/(N — 2)%. This equation has the form of (10). It follows from 9
that

gw _ g(w) 1
w (N =2y = o0

for w > 0 or w < 0, |w| sufficiently small, that is, (11) is satisfied with g(w) = g*(w).
Hence, by Lemma 3.2 in [10] again, we see that all nontrivial solutions of (7) are nonoscil-
latory in the case N > 4. : O

By virtue of Lemma 3, we can choose a solution of (7) which is eventually positive.
In the next section, we will show that the positive solution is a supersolution of (1). To
get a positive subsolution of (1), we need to estimate the asymptotic behavior of positive
solutions of (7) as follows.

Lemma 4. Assume (8) and (9). Then there erist a positive number b > a and a positive
solution w(r) of (7) such that lim,_,o, w(r) = 0

oY ~2w(b) < “2w(r) for r > b.

Proof. From Lemma 3 we see that equation (7) has a positive solution. Let w(r) be the
positive solution. Then there exists a b > a such that

w(r) >0 for r>b.

The change of variables r = e* and w(r) = £(s) transforms equation (7) into the Liénard
system

d

L= 00 "
ds’ 9is)-
Let (£(s),n(s)) be the solution of (12) corresponding to w(r). Then we have
&(s) >0 for s> logh. (13)

By (8) we obtain

%n(s) <0 for s> logh. (14)
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It is well known that the zero solution of (12) is globally asymptotically stable (for
example, see [1, 3, 8]). Hence, we conclude that the solution (£(s),n(s)) tends to the
origin as s — oo. This means that w(r) approaches the zero as r — oo.

We will show that n(s) > 0 for s > logb. Suppose that 7(so) < 0 for some so > logb.
Then, by (12)—(14) we have

d d
el —_ — = <
TE(s) < E(5) + (N = Dg(s) = n(s) < m(so)
for s > so. Integrate this inequality from sq to s to obtain
£(s) < &(so) +n(s0)(s — sg) = —00 as s — .

This is a contradiction to (13).
Since n(s) > 0 for s > logb, we see that

' dg's-g(s) > —(N —2)¢(s) for s >logb.

Hence, integrating the both sides, we have

bV 2 (logb) < eND%¢(s) for s > logd,
namely, b¥ ~?w(b) < r¥~2w(r) for r > b. Thus, the lemma is proved. O

We are now ready to prove the main theorem.

3. PROOF OF THE MAIN THEOREM

Consider the nonlinear differential equation

@2 N-1d 1 | o

where a is the number given in (1) and

h(w) for w > 0,
h*(w) =
—h(—w) for w < 0.

Then, from assumption (5) we see that h*(w) satisfies the signum condition (8), and
therefore, equation (15) is in the type of (7). Also, by condition (6) we have

) < s (ul

for w > 0 and w < 0, |w| sufficiently small. Hence, from Lemma 3 we conclude that all
nontrivial solutions of (15) are nonoscillatory. For this reason, we can choose a solution
w(r) which is positive for all r > b with some b > a (we may regard b as the positive
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number in Lemma 4). As in the proof of Lemma 4, we can show that w(r) approaches
the zero as r tends to co. Note that w(r) is also a positive solution of the equation

d? N-1d 1
—w +

&Vt T gt ) =0

Let % be the function defined in G, by u(z) = w(r), r = |z| > b. Then, by assumption
(5) we obtain

At(z) + f(z,u(z)) = di;;w(r) + ?%w(r) + f(z,w(r))
< g+ T )+ Lot

- j‘?zw(r) + #%w(r) + %h(w(r)) —0

Hence, 4 is a supersolution of (1) in G,. We next denote u(z) = b¥ ~2w(b)/|z|¥-2 for
|z| > b. Then, since f(z,u) is nonnegative, we get

& (b”‘zw(b) )  N-14 (b”‘zw(b) )

>
Au(z) + f(z, u(z)) 2 dr? rN-2 r dr rN-2

_ (N —2)(N — 1)bN 2w (b) _N-1 (N — 2)bN—2w(b) —0
N T rN-1 o

This means that u(z) is a subsolution of (1) in G,.
From Lemma 4 we see that

N 2w(b) bV 2w(b)

lxlN_2 - rN-2

u(z) = < w(r) =u(z)

for [z] > b. Hence, by means of Lemma 2, we conclude that there exists a positive
solution u(z) of (1) satisfying u(z) = u(x) = @(z) on C, and u(z) < u(z) < u(z) through
Gs. Since w(r) tends to the zero as r — oo, the positive solution u(z) also tends to the
zero as |z| — oo. This completes the proof. O

4. DISCUSSION

To illustrate the main theorem, we will give some examples which are the almost linear
case. One cannot apply previous results on the existence of a positive solution to those
examples. For brevity, we define the function ¢(u;\) by ¢(0; A) =0 for any A > 0 and

Au 1
_ < —
u+ (iog [u])? for 0<u< o

$(u; A) =
2
BA+l)u—=  for u>l.
e e
Then it is easy to check that ¢(u; ) is continuous for u > 0 and is continuously differen-
tiable for u > 0.
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We first consider the elliptic equation
Au+p(z)p(u;1/4) =0 (16)
in an exterior domain € of R¥ with N > 3. Let

92
fo,u) = p@)dui1/a)  and  lw) = D gui1/4)

Then condition (5) holds and condition (6) is satisfied with n = 2. Hence, as a direct
consequence of Theorem 1, we have the following result.

Example 5. If
(N —2)?
4|z|?

for z € , then equation (16) has a decaying positive solution.

0<p(z) <

Let us take another example to show how sharp Theorem 1 is. For this purpose, we
restrict p(z)/|z|* to any constant.

Example 6. Consider the equation with two parameters

Au+ |—5|3¢(u; A) =0 (17)

instead of (16). Then, from Theorem 1 we have the following conclusions:

(i) if 0 < p < (N — 2)2/4, then equation (17) has a decaying positive solution for all
A>0;

(i) if = (N — 2)%/4, then equation (17) has a decaying positive solution for 0 < A <
1/4.

Proof. Let f(x,u) = u¢(u; \)/|z|* and h(u) = p¢(u; A). Since A and p are nonnegative,
condition (5) is satisfied. Hence, it is enough to check that condition (6) holds for u > 0
sufficiently small. If A = 0, then h(u)/u = p < (N —2)?/4 for all u > 0, that is, condition
(6) is satisfied with n = 1. We assume that X is positive.

(i) We can choose an o > 0 so small that u(1 +&o) < (N — 2)2/4. For any A > 0, we

see that h(w) \ v 2)2
u —
= (4 ) <H e <

for 0 < u < exp(—4/A/eo). Hence, condition (6) is satisfied with n = 1.
(i) In this case, we have '

M - (1 ) < O (1 )

for u sufficiently small, namely, condition (6) with n =2. O
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Recently, by use of phase plane analysis of a Liénard system, Sugie et al. [9, Lemma
4.4] gave an oscillation theorem for equation (10) under the assumption (8) as follows.

Theorem B. Assume (8) and suppose that there erists ¢ A with A > 1 /4 satisfying

g(w) _ 1 A
T L — 1
w 217 Qloglu)? (18)
for |w| sufficiently small. Then all nontrivial solutions of (10) are oscillatory.
To compare with the conclusion (ii) of Example 6, we consider the equation
(VN -2)°
A *(y;A) =
u+ pID #*(u;A) =0, (19)

where

o(u; \) for u >0,
¢"(u; A) =
—¢(—u; \) for u < 0.

It is clear that ¢*(u;)) is odd, and therefore, it satisfies the signum condition (8). As
shown in Sections 2 and 3, the change of variables

v(7) = w(r) = u(z), r=lz] and 7=(N-2)rV2
reduces equation (19) to

£ 2d 1,
F’U'F ;E;'U‘*F E’;¢ ('U,/\) =0.

This is of the form (10). Since

$*(v;A) 1 P,
v 4 (2loglv|)?

for |v| sufficiently small, from Theorem B it turns out that if A > 1 /4, then equation
(19) fails to have positive radial solutions. Hence, together with the second conclusion in
Example 6, we see that equation (19) has a positive radial solution if and only if A < 1/4.
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