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Existence of Bounded Solutions to
Linear Differential Equations (I)

EXEEKF WIS (Toshiki Naito)
PIgEAFEB B IEE (Jong Son Shin)

Abstract

We deal with linear differential equations of the form dz/dt = Az(t) + f(t)
in a Banach space X, where A is the generator of a Cy-semigroup on X and f
is a periodic function. In this paper, we give a method to show the existence of
bounded solutions and a structure of them. As results, we can obtain criteria
for the existence of quasi-periodic, periodic, asymptotically periodic solutions.

1 Introduction

Let X be a Banach space and R the real line. In this paper we investigate criteria
on the existence of bounded solutions to the linear differential equation of the form

d
g 4(t) = Au(t) + f(2). (1)

Throughout the present paper we make the following assumption.

Assumption : A:D(A4) C X — X is the generator of a Cy-semigroup U (t), and
f:R = X is a 7-periodic function.

If z(t) is a continuous function which satisfies the following equation

z(t) = U(t)z(0) + /ot U(t—s)f(s)ds, teR, :=][0,00), (2)

then it is called a (mild) solution to Equation (1).

The purpose of this paper is to give criteria for the existence of bounded solutions
and a structure of bounded solutions to Equation (1). The relationship between the
existence of bounded solutions and the existence of T-periodic solutions is charac-
terized by the Massera type theorem. To complete the Massera type theorem, it is
practically and theoretically important to show the existence of bounded solutions.
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2 The existence of bounded solutions

In this section, we give criteria on the existence of bounded solutions to Equation
(1). For a solution z(t) of Equation (1) such that £(0) = zo, z(n7) is expressed as

z(nt) = U(nT)z0 + Sn(U(7))bs,
where

S ZU kr), bf= / U(r — s)f(s)ds.

The solution z(t) of Equatlon (1) is bounded on R+ if and only if a:('n/r) n =
1,2,---, are bounded. If we take zo = by(resp. zo = 0), then z(n7) = Sp11(U(7))bs
(resp. z(nt) = Sp(U(7))bs). Hence a solution z(t) of Equation (1) such that
£(0) = b; (or z(0) = 0) is bounded on R, if and only if

lim sup || S, (U (7))by]| < oo. (3)

n—00

Based on this relation, we give criteria on the existence of bounded solutlons to
Equation (1). The following result can be found in [2].

Theorem 2.1 Let Z be a subset of X. Assume that for any x € Z there exists a
positive number az > 0 such that ||Uz(n7)z|| < oy for alln € N. Then the following
three statements are equivalent :

1) Every solution z(t) of Equation (1) such that z(0) € Z is bounded on R,.

2) Condition (3) holds.

3)

, t
limsup|| | U(t— s)f(s)ds|| < oo.
0

t—o00

2.1 The case of finite dimension

We will check Condition (3) for the case where X = C™, A = (a;;), an m x m matrix.
Let the characteristic polinomial of A be factorized as follows :

B(N) = det(Al — A) = (A= A)™ -+~ (A = A)™,

where Aq,--+, )\ are the distinct roots of ®(A\), and m; + --- + m¢ = m. Put
Ap =1 Gp +sz, ap, b, € R. Denote by P, : C™ — M,, the pr03ect10n corresponding to
the direct sum decomposmon C™ = M1 & @ M[, where M, := N((A — A\ I)™)
is the generalized eigenspace corresponding to Ap.

Theorem 2.2 For 7 > 0, b € C™, the vector sequence {Syn}, given as

n—1
Sy 1= Sn(eTA)b = E eF™4p,
k=0
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is bounded if and only if for everyp =1,---,¢, the following conditions hold :
(i) If ap > 0, then P,b = 0.
(ii) The case where a, =0 ;
(a) if b, € 27Z, then P,b = 0.
(b) if Tb, & 27Z, then Ppb € N(A — )\ I).
(iii) If ap < O, then P,b is arbitrary.

To prove the theorem, the following lemma is needed.

Lemma 2.3 Let Q(t) be a vector in C*, whose component s a polinomial of t,
and A =a+1ib € C,a,b € R. The vector sequence {R.}, given as

R, = Z e*Q(j),

is bounded if an only if the following conditions hold :

(i) In the case where a > 0, Q(t) = 0.

(ii) In the case where a = 0, if b € 27Z, then Q) =0; if b & 2nZ, then
Q(t) = c (a constant vector).

(iii) In the case where a < 0, Q(t) is arbitrary.

Proof Set z =¢*. Then R, = > i=12Q(j). If {R,} is bounded, the sequence
{Rn — R,_1}%, is also bounded and

IR = Ros|| = [|2"Q(n)]| = e™|Q(n)].

Hence in the case where a > 0, Q(t) = 0 if and only if {R,} is bounded. If-a < 0,
then Q(¢) is arbitrary if and only if {R,} is bounded. So, we see the case where
a = 0. We note that

1Bn — Ra-1ll = [|Q(n)].

From the definition of Q(t) it follows that {Q(n)} is bounded if and only if Q(¢t) = ¢
(a constant vector). If b € 27Z, then z = 1, and so, R, = nc. Namely, ¢ = 0 if and
only if {R,} is bounded. If b & 27Z, then z # 1. Hence we have

n+1
C

1-2
1Rall = 15

2
<
—ll < T—llcll,

which implies that {R,} is bounded. Therefore the proof of the lemma is finished.
a
The proof of Theorem 2.2 C™ is decomposed as

C"=M;®---®M,.



Take a circle C, centered at \,, whose radius is sufficiently smale and its disk does
not contain the other points A;, ¢ # p. Then the projection P, is expressed as

1

P,=—
P VAL Cp

(M — A)'dA.

Then P, is a bounded op'erator having the following properties :
PC"=M,, AP,=PF,A, P,P,=0(p+#4q), PB2=PF, Pi+P+---+P =1

Furthermore, et4 is decomposed as follows :

£ np—1
t
e = ZCAPtQp(t)Pp, Qp(t) = Z ET(A - )‘pI)k-
p=1 k=0
Using those facts, we have
n-1 _ n—-1 £ . £ n-1 '
Sn(eTA) = ZCJTA = ZZ eJTAPQp(J‘T)Pp = Z Z CJTAPQp(jT)Pp'
j=0 j=0 p=1 p=1 j=0

Since P,P, = 0(p # q), P? = P,, it follows that

n—1
PoSu(e™)b =Y e™*Q,(jT)Ppb := Rh.

J=0

Hence, the sequence {S,(e74)b},cn is bounded if and only if for every p=1,--,¢,
the sequence { RE},en is bounded. Since

np—1

k
. 3T -
QP(JT)PPb = § : ]kF(A - AIJI)k-Ppba D € {1721 e 72}1
k=0 )

we have, by Lemma 2.3, the following facts.

i) If a, > 0, then Q,(j7)Ppb = 0, from which we have F,b = 0.

ii) If a, < 0, then Q,(j7)Ppb is arbitrary ; that is, Pyb is also arbitrary.

iii) Let a, = 0. If 7b, € 27Z, then Q,(j7)Ppb = 0 ; that is, P,b = 0. If 7b, & 272,
then Q,(j7)P,b = c(constant vector). Notice that (A — A, I)Ppb = 0 if and only if
Qp(§7)Pyb = P,b. This means that ¢ = F,b ; namely, Pb € (A — M\,I). Hence we
obtain the conclusion of the theorem. 0O '

2.2 The case of infinite demension

We consider the condition 2) in Theorem 2.1 from the point of view of the spectrum
of A in Equation (1).
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Suppose that we(U) := limy—,0o t " log a(U(t)) < 0. Then exp(tw.(U)) <1, (t >
0). This implies that there exists a v >0 such that o(U @) N{z:|z| > e}
and 0(A) N {z : Rz > —~} consist of finite number of normal eigenvalues and that
o(A)N{z : =y < Rz < 0} = 0. Hence o(A) N {z : Rz > —y} consists of finite
number of normal eigenvalues \;,j = 1,2,---,7, with nonnegative real parts. Set
a; = RA;j,b; = S);. Assume that a; =0for1 < j < gq (< r) and that a; > 0 for
¢ <Jj < r. Thus 1 is a normal eigenvalue of U(1). Set go(A4) = {Fi:1<j<q}
and 04 (A) = {}j : ¢+1 < j <r}. We understand that o, (4) = @, provided g=r.

Let M; be the generalized eigenspace of A corresponding to A;. Since ), is a
normal eigenvalue of A, n; := dim M, is finite and there exists a positive integer m;
such that M; = N((A; — A)™). The space X is decomposed as follows:

.
X=Y®Z Z=Mo@®M,, Y=|JR(NI-A)™),
j=1
My=M;®---06M;,, My=M,;,0---&M,

The subspaces Y and M; are closed in X and dimZ =n; 4+ ny + --- + n, =: d.
If we define P; as in Section 2.1, where (A — A)™! is understood as the resolvent
operator R(), A), then P; : X — M; are projections such that P;P, = 6;:P; and
APz = P; Az for z € D(A). If we set

PPt Pttt PoR—I—P @

then P : X -+ Z and Py : X — Y are projections. Y,M; and Z are invariant
subspaces of U(t).
Since U(t)z = U(t)Pyz + U(t) Pz, we have

2 (U M)zl < 1Sa(U (7)) Pozll + [|Sa(U (7)) P

It follows from Proposition 4.15 in [6] that there are an £ > 0 and a constant K >1
such that
|U(t)Poz|| < Ke || Pyz|| forall z € X, t>0.

Hence we have

n—1 .
K
ISn(U (7)) Pozll < K~ e™0"|| Poz|) < T —o=eor 1 Poxll < 00
k=0 —e€

Asaresult, ||S,(U(7))z||,n =1,2,-- -, are bounded if and only if |Sa(U(7))Pz||,n =
1,2,---, are bounded.

Since d = dimZ < 00, Az, the restriction of A to Z, is regarded as a d x d matrix
with eigenvalues A;,1 < j < r, and U(t)Pz = exp(tAz)Pz for all z € X. Thus we
have the following result from Theorem 2.2.
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Theorem 2.4 Assume that o(U(t)) and o(A) are as in the above. Then S,(U(7))z,
n=1,2,---, are bounded if and only if the followzng conditions hold:
(i) Forgq<j<r, Pjx=0.
(ii) For 1 <j <gq,
(a) if Tb; € 27Z, Pjx = 0 ;
(b) iof Tb; ¢ 27I'Z,l)j.’L' € N(Az - /\JI)

Corollary 2.5 Assume that o(U(t)) and o(A) are as in the above. Then the solu-
tion z(t) of Equation (1) such that z(0) = by is bounded on Ry if and only if the
following conditions hold :
(i) Forg< j<r, Pjby =0.
(ii) For 1<j<g,
(a) if 7b; € 27Z, Pjby = 0 ;
(b) if Tb; & 2nZ, P;bs € N(Az — /\JI)

Combining Theorem 2.4 with Theorem 2.1, we obtain the following result.

Corollary 2.6 Suppose U(t) is a bounded Cy-semigroup such that w.(U) < 0. Then
every solution of Equation (1) is bounded on Ry if and only if for j =1,---,q the
following conditions hold :

(a) If 7b; € 27Z, then Pjb; =0 ;

(b) If Tb; & 2nZ, then Pjb; € N'(Az — A\I).

Using Corollary 2.5, we obtain the following result on the existence of a T—penodlc
solution to Equation (1). : |

Theorem 2.7 Assume that we(U) < 0 and that by satisfies the conditions (i) and
(ii) in Corollary 2.5. Then Equation (1) has a T-periodic solution.

Proof Since {S,(U(7))bs}n is bounded, it follows from Corollary 2.5 that the
solution xz(t) of Equation (1) such that z(0) = by is bounded on Ry. Since 1 is a
normal point of U(7), we see that R(I — U(7)) is a closed subspace of X. Therefore
the fixed point theorem by Chow and Hale implies that Equation (1) has a 7-periodic
solution. O

3 A structure of bounded solutions

In this section we will give a structure of bounded solutions obtained in Section 2.
Throughout this section, we assume the following conditions :

1) we(U) <0,

2) 1 is a normal eigenvalue of U(7),

3)

lim sup ||Sp (U (7))by]| < 0.

n—oo
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We use the same notations for the points in 0(A) N {z : Rz > 0} as in Section 2.
Denote by SP and SPx the set of all 7-periodic solutions of Equation (1) and the
set of all solutions of the equation (I — U(7))z = by, respectively. They are affine
spaces. If we take an vector zo € SPx, then SPx = 1o+ N(I - U (7)). Set

Suppose that 7b; € 27Z for 1 < j < p(< q) and that Th; €2nZforp+1< j<gq.
Since 1 is a normal eigenvalue of U(7), it follows that, p > 1 and

NI -U(1)) =N(A-ib])®--- ®N(A —ib,I) =: Noo C N, (5)
cf. Proposition 4.13 in [6]. Hence SPx = ¢+ Ngo. Let P and P, be defined by (4).

Proposition 3.1 The following results hold.

1) U(t)x is bounded for t > 0 if and only if t € Y & Ny ; that is,
() P € M(A— NI for1<j<q
(i) Pir =0 forq+1<j<r.

2) U(t)z is T-periodic if and only if z € Ngg ; that is,
(iii) Poz =0
(iv) Pix € N(A~1ibI) for 1< j <p.
(v) PBe=0forp+1<j<r.

Proof U(t)z is bounded if and only if U (t)z = U(t)Pyz and PU(t)z = U(t) Pz
are bounded. Since PyU(t)z is bounded for all z € X, it suffices to check the
boundedness of U(t)Pz. Since P = P, + --- + P,, {U(n7)Pz}, is bounded if and
only if {U(n7)Pjz},,j =1,2,---,r, are bounded. Since

m;—1 m m;—1 t”'
DRz = e 3™ 24— 1y Biall = e 3 L4 - 1)y

m=0 m=0

for 1 < j < r, the assertion 1) is easily derived from this relation.

Similarly U(t)z is 7-periodic if and only if PoU(t)z = U(t)Pyx and PU(t)z =
U(t)Pz are T-periodic. If U(t)Pyx is T-periodic, we have Pyz = U (n7) Pz for all
n=1,2,---. Since U(t)Pyz — 0 as t — oo, we have P,z = 0.

IfU(t) Pz is T-periodic, U(t) Pjz is T-periodic for 1 < j < r. It follows at first that
Pjz € N(A—1b;jI)for1 < j < gand that Pz =0forq+1 < j <r. Ifp+1 <j<gq,
and if P;z # 0, then U(t) Pjz = €®'Pjz is not T-periodic. Consequently, z € Ng,.
Clearly, if z € Ny, U(t)z is T-periodic. O

Theorem 3.2 A solution z(t) of Equation (1) is bounded on R, if and only if
z(0) € Y & N,.



Proof The solution z(t) is written as Equation (2) in Introduction. Notice that
the integral in this equation is bounded if and only if Condition 3) holds. Hence
z(t) is bounded if and only if U(¢)z(0) is bounded. From Proposition 3.1 we have
the result in the theorem. O

The following result follows from Condition 3) and Theorem 3.2.

Corollary 3.3 The following assertions hold true.
1) SPx #0, SPx C Y ®No.
2) M(b;) C Y ®Ng, where M(by) is the linear space generated by {U(n7)bs}2,.

Theorem 3.4 Take a T-periodic solution ug(t) of Equation (1). Then the followmg
statements are valid.
1) Any bounded solution z(t) of Equation (1) on Ry is written as

z(t) —uo(t)+Ze"’J‘x + Z ettity; +Uy(t)y0,

7j=1 j=p+1

with some vectors t; € N(A—1b;I),1<j<q, andyo €Y.
2) Any T-periodic solution u(t) of Equation (1) is written as

p
u(t) = uo(t) + ) _ euj,
j=1
with some vectors u; € N (A —ib;I),1 < j <p.

Proof Since uo(t) is the 7-periodic solution of Equation (1), uo(0) € SPx C
Y & No. Let z(t) be a bounded solution of Equation (1) on Ry. Then it follows
from Theorem 3.2 that £(0) € Y & Ny. Therefore 2(0) — uo(0) € Y & No ; it is
expressed as ‘ ‘

z(0) — uo(0) = ZCUJ + Yo,

where z; € N(ib;] — A) and yo € Y. Since z(t) — uo(t) is a solution of the homo-
geneous equation, we have

z(t) — uo(t)

U (t)[w(O) — uo(0)]
= U(t)Zx,+U(t) Z z; + Uy (t)yo

—p+1
= Ze"” s+ 3 ¢y + Ur O
j=p+1

as required. The remainder is obvious. Therefore the proof of the theorem is com-
pleted. O
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Corollary 3.5 The following statements are valid.

1) There is a T-periodic solution to Equation (1) ; diim SP = -

2) There is an asymptotically T-periodic solution to Equation (1).

3) If p < q, there is an asymptotically quasi-periodic solution to Equation (1).

4) If p = q, every bounded solution is an asymptotically T-periodic solution to
Equation (1). :

5 Ifp=q=r, and if R()\, A) := (AT —A)™! has a pole of order 1 at \ = Aj,1<
J £ p, then all T-periodic solutions of Equation (1) are stable.

Proof Statements 1,2,3,4) are trivial. Assume that the conditions in 5) hold.
Then we have X = Y@®N,. Hence there is a positive constant H such that lU(t)z] <
Hi|z|| for t > 0,z € X. Let uo(t) be a 7-periodic solution of Equation (1). Then for
every solution u(t), u(t) — ug(t) is a solution of the homogeneous equation. Hence
u(t) — uo() = U(t)(u(0) — uo(0)), which implies [lu() — uo(¢)|| < H|[u(0) — uo(0)||
for t > 0. Therefore the assertion 5) is valid. O :

In a subsequent paper, we will consider the case where

lim sup S, (U (7))by | = oo.
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