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Absence of eigenvalues of Dirac type operators 11
— A gauge invariant condition —

WK -E  K#E BEF (Takasa OKAJI)
Department of Mathematics,
Kyoto Univ.

Abstract This is a continuation of the preceded result [4], which proposed a con-
dition for the absence of eigenvalues of Dirac type operators in an exterior domain.
Unfortunately, the condition given there is not gauge invariant. In this note we take
an effect of magnetic vector potentials into consideration to give a gauge invariant
condition for the absence of eigenvalues.

1 Introduction

If U'C R? is either an exterior domain or the whole space, the eigenvalue problem
for the Dirac operator can be formulated as follows.

(D) a-pu+mPu+Vu+du=0, ue L}(U)* AeR, p=—iV,
where {a; };5:0 is a family of 4 x 4 matrices satisfying
a; = Q;j ,ajak+akaj = 26_7']:, V], k= 0, ,3, ,3 = (@,

m(z) is a real-valued function and V'(z) is a matrix close to a scalar one at infinity.
In [2], the authors has shown, roughly speaking, that (D) admits no nontriv-

ial solutions in L2(U)* provided that there exists a positive spherically symmetric

function g that may diverge at infinity but does not oscillate rapidly such that

V =V(z)+ A~ qg(lz]), m(z) = o(q), as |z| — oo.

This result indicates that the nature of eigenvalue problems for systems is different
from the one for Schrodinger operators when their potential grows at infinity.

In this paper we give a similar result to Dirac type operators with vector potential
of external magnetic field

{%(A-(p—b)+(p—b)-A)+on+V+A}u=O,
where {A4;(z)};=0,1,23 is a family of symmetric matrices (A} = A;) such that

AjAx + AgAj — 26, (Kronecker's Delta) as |z| — oo.

b € CY(U; R?) is a vector potential of external magnetic field V xb and V is a matrix-
valued potential. Our condition which guarantees the nonexistence of eigenvalues



is invariant under any gauge transformation. (In [3] we treated the same problem
when b =0.)

Central method of our approach to this kind of problem consists of a series of
weighted L? estimates based on a local version of the virial theorem. This kind of
strategy was firstly employed in [5] and has been improved in [2] and [3]. We shall
give a minor modification to the local version of the virial theorem in order to treat

the Dirac type operators. Furthermore, at the final stage of our method, we shall

use a new unique continuation theorem which is interesting in itself.

2 Main result
Let {Ax}3_, C C*(U)*** be a family of symmetric matrices such that
(2.1) AjAr + ArAj = 278 ()1, Vj, k=1,2,3,

where G = (g%) satisfies

(2.2) (GE, &) > 5l¢), vz e, £eC?
and
(2.3) g*(z) = 61 = o(1), 7 = |z| — 0.

We are interested in the following Dirac type operator D in U,
3.1
D=3 E{Ak(pk — bx) + (px — bk)Ax},
k=1

where bi(z) € C*(U; R), k=1,...,3. We emphasize that the principal symbol of
D? is scalar by virtue of the assumption (2.1).

To state our further assumption on the derivatives of Ay and b, we shall introduce
a class of scalar functions. If I, = (a,00) and 0 < 0 < -;—, we define

Po(Ia) = {a(r) € C*(Is; R); inf g(r) = goo > 0, [q]- = o(r~'g),
¢(r) = or2g7), ¢ = olr~¢)}.

Here,

[F())- = max(0, (1), f = SF0), ete..

Remark 2.1 €", r%, (s > 0), logr € P(,).
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Thus, we make the following assumptions on the derivatives of A, (k = 1,2, 3)
and b:

(2.4) V. Au(z) = 0 (%) L k=1,2,3
and for some element ¢ of P,,

(2.5) V2Ai(z) =0 (g) , k=1,2,3.
(2.6) V x b=o(r"q).

In addition, Ay € C*(U)*** denotes a symmetric matrix satisfying that for a c(z) €
Cl(U; R)?

(2.7) AjAp + AoAj — 2¢;1 = o(r™Y%,/fg), §=1,2,3
and
(28) [Ao(z)| + le(2)] = o(a), [V.Ao(z)| + V@) = o (£).

Let a be sufficiently large such that
U>D,={zeR? |z| >a}

We shall make the following assumptions on the potential V.

(A-1) V=Vi+V, V=W, V € C}(U)*4,
(A2 V@) < Koz,

(A3) Vite) - aliel)l = o (7).

(A-4) 8 vi(@) - alal} =0 (L.
(A-5) (Ve = 8 }Vile) = O(12) as 7 = .

||

Theorem 2.1 Suppose (2.1)-(2.8). If V(z) satisfies (A-1)-(A-5) with Ko < 1/2,
then Du + Apu + Vu = 0 admits no nontrivial solution in L*(U)*.
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Remark 2.2 It is shown in [2] that the same conclusion as in Theorem 2.1 holds
for the Dirac operator (D) if 2Ky < 1 — by under the conditions (A-1)-(A-4) and
(A-6)-(A-8):

(A6) i)~ mu(lel) = o (L5,
(A7) 8, {m(z) — m(|al)} = o (I%) ,
(A-S) |m1 +'rm'1| < boq(’l'), bo<1. -

3 Proof of Theorem 2.1

3.1 Change of unknown functions

In what follows, r = |z|, w = z/|z| € S?, (u,v) denotes the inner product of
{L2(SH)Y, ||ul| = v/ (u, u) and T'(S?) stands for the tangent space of S2.

Or; = w;0 + =10,

where Q; € T(S?). For I'y = Q4 — irby, we put

3

A= 3 A2y, Ar = 2 S (AT, + T4 @),

j=1
Sr=Ar—A,, St=-5,
J = %(SPA,‘I — A7'Sr), K = -;-(SFA,‘I + AZ1SD).
It turns out
(Jf, ) = {f, Jh), (Kf h) = —(f, Kh), Vf, h € C}(S?).

If u € L%(U)*, the integral

/aoo (Vru/\/q,ru/\/q)dr

is finite, so that u/,/g is more convenient than u itself.
Suppose

0< x€CR;), suppx C [s—1,t+1], x(r) =1, r € [s, ],



p € C3(Ry), ¢’ 0.
Let u € L3(U)* satisfy

Du+(4p+V)u=0, inU.

Define ru
¢ =x(r)etv, v= 7
Then,
(3.1) {=4,0,—i(r™'Sr — A, ) Ao+ V —iA,d /(29)
= —iA.x'e?v +ir[A,, 8, ]¢ == f,
and

(32)  [B —rTK = (r T +¢) +i{(A0+ V)A —ig/(20) AL = ify.

To describe fundamental relations among K, L and A,, we introduce a class
of matrix of vector fields L(r) on S?, depending smoothly in r as follows. Let
T(8%) = {L(r) + Lo(r); L, € T(S?), Lo € L~(S?)} and

Vi={L e C(I,; T(S*)**); 3C(r) >0, C >0, Yu € C*(S?)*,
| Lull < My(r)||Tull + Ma(r)||ull,
My(r) = o(r™), Ma(r) = o(q) as r — oo}.
Similarly,
V0 = {B € C°(S%)*4; IM(r) > 0, M(r) = o(r™°)
| Bull < M(r)llull, Vu € C°(S?)}.
Lemma 3.1
3
2A, KA, = SpA, + A.Sr = (—irw-b+ Y (g5x — Gi)wil5)I + ho(z),
k=1

where hy denotes some matriz-valued function .asymptotically equal to zero. In par-
ticular, K has a scalar principal part, and if ¢’*(z) = §;x, then K = 0.

Proof:
2A,. KA, + 2A3 = SrA, + A.Sr + 2A3

3
= % E (AgApTqwp + ApAqwi Ly + CawpAgAp + wplg ApA,
a,b=1

+ Aa[ra, Ab]wb + wb[Ab, Fa]Aa)
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= > {g%wT, + wpleg™}
1

a,b=

13 .
t3 > {240A4[Ta, w] + A,[Ta, ApJws + wy[Ap, Ta]As}

a,b=1

3
= Z {g“bwbl‘a + wbl"ag“b}

a,b=1
1 3 , |
+ 5 Z {2A4,A5(00p — Wawp) + Ag[Ca, Apwy + wh[Ap, T.)Aq}
a,b=1
3 3
= 2 {g%wla + wplag®} + 3" g% (1 — w?) = 3 g®wuws
a,b=1 a=1 a>b
1 3
'2' Z {Aa[Fm Ab]wb - wb[Faa Ab]Aa}-
a,b=1
In view of . R
Y woly=—irw-b, A2— I =o0(1), Y (1-w))=2
a=1 a=1
and
24, KA, = AT [SpA, + A, Sr]A!
the assumptions (D-3) and (D-4) give the first part of the conclusion. O

Lemma 3.2

2ATJA,- =2 Z(AJA)C — gjkI)(ijk - wkl"j) + ho(x),

i>k
where hy is a similar function in the previous lemma.

Proof: Observe

2A,.JA1- = Z(A]Ak - gjkI)LUij + Z(A]Ak - gjkI)kaj

Jk gk

- Z Aj [Fj, Ak]wk + ho.
5k

In view of .
[Fk,Wj] = ij - w,-wk and Z(wf - 1) = —2,
j=1

3
> Tewy=—-2—irw-b,
=1

we arrive at the conclusion. 0
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Lemma 3.3

(3.3) [w-b,w;Lx —wil'j] = —(wjbk — wibj) — (w;r by — wiT0yb;)

3 3
- Zwew,-(f‘kbg - Pgbk) - ngwk(l‘tbj - I‘jbg).

=1 =1
Proof:
3 3
[w . b, ijk - wkI‘,-] = —((.Ujbk - wkbj) - {wj Zw,-[l"k, b,] — Wk zw,-[l",-, b,]}
i=1 i=1
Using
3
ng[f‘g, fl1=0, Vf € CI(S2),
t=1
we have
3 3
(34) wj Ew,-[‘kb,- — Wk ZwiFjb,- = (1 - z w?)(l"kb] - Fjbk)
i=1 i=1 t#ik
+ Y wew;(Trbe — Tebx) + Y wewi(Tebj — T'jbe)
£#5.k &5,k
3 3
= ngwj (Fkb¢ - F(bk) + Zwewk(l‘lbj — Fjbl)
£=1 =1
3 3
= Zwtwj(rakb, - Tagbk) + EWgwk(Tagbj - Tajbg) + (w,-ra,bk - wkra,b,-).
=1 t=1
O
Lemma 3.4 There exist positive constants § and C such that
3
1 fllzz = 83 ITfllzz — Clifllze, Yf € CH(S*)
j=1
Lémma 3.5
[ro, — K,J) €V, K € V}.
(JA: + AJ) = [K, A €V,
[0r, A;] € VY.
Proof: From Lemma 3.1, Lemma 3.2, Lemma 3.3 and Lemma 3.4 we arrive at the
conclusion.
Let

AoA! = By + By, By = (AoAS! — A1 Ag)/2, By = (AcA;! + AT Ag) /2.
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Lemma 3.6
[K,Ao) € V2, By € gV, VB; € gvg, By—w-cl e \/gvg, VB; € gvg.

Proof: The first two properties follow from the hypothesis (2.7) and Lemma 3.1.
The remaining properties follow from the hypothesis (2.6). O

3.2 A local version of the virial theorem
Lemma 3.7 If L, =8, —r 'K + iw - ¢ and Ay = Ay — w - cAZ!, then

! oo + —2Re [ ia,Ly¢ 1,00
[ @rlrtAo+ V}G,0) = 2Re [~ (r{Vs — i 3 LGhir

;:}-l : t+1
+2Re / (irAng'C, LiC)dr — 2Re / (v, LeC)dr
t+1
—Re [ ([Le, A/ilC, TLC)dr
s—1

t+1 -
+Re / K, Ao+ Vil = (Lo T Ar + ArTL)YC, Q)
=N+ L+ I3+ I+ Is. - '

Proof: This is a simple consequence of
t+1 . . ‘ - ‘
2Re [ (Lo — (7T + ) +i{(Ao + V) AT — ig'/(20)}]A,C, riL.C)dr
| t+1
= 2Re / (irfyiLeC)dr
8— . .
by use of an integration by parts. To see this, it suffices to check

t+1 t+1
Re / (LA, irLiC)dr = Re / {[Ley =34 )G, irLC)dr,

‘ t+1° ‘ t+1
~Re [ (JA,iLQ)dr = ~Im [ AL A+ AL Q)
s—1 s—1
and o
: t+1 ~
Re / (Ao + Va)G, rLiC)dr

= Re [ [~ (0 {r(Ao + V)6, ) + (1K, Ao + VAIG, )l

Remark 3.1 If |z| > a > 1, our assumptions imply
(VY =g+ (V-—g+rd+r(V—-q)2(1-¢)g 1 >e>0.



3.3 L2-weighted inequality
We shall estimate the integrals {I;}5_; from above to obtain

Proposition 3.8 Ift > s is large enough, then
t+1 2 / 2
(35) [~ (- 2Ko = o(1))a}exol? + ¢/ I L (e® Arxv/ /D) Pldr
t+1 2
+ [ Kolleraxw/ valPar
8 t+1
<O+ [ Y ra+ (€1 + 19 hra ] ler arlfar,

where C' is a positive constant independent of choice of ¢ and

b =@ (6 + (7 = olr))@} — 5
~ o(1)¢' — o(1){1 + (#)? + (rle|)?).

The proof of Proposition 3.8 is given in the next section.
Once Proposition 3.8 is established, the proof of Theorem 2.1 follows the argu-
ment presented in [5] or [2]. We shall give a sketch of the proof.

Lemma 3.9 Suppose that v € L2(U). Let 0 < b < 1. If s is large enough,

/oo enr"(losr)zll\/avleT < /s enrb(logr)zn\/ﬁ'U'PdT-

s+l s—1

Proof: Taking ¢ in Lemma 3.8 as ¢(r) = nloglog r, we see that

t t+1

(36) [ (ogr)"llg"?eliPdr < O [ o(1)(1 + n*(logr)*)(logr)"llg~2v|%dr

t+1 s
+{[ "+ [ In(logr)~10gr)"llg~/2v|dr}.

t s—1

The induction hypothesis (logr)"~*,/qu € L*(D,)* gives

+1
lim inf r||(log r)" ' /qu||*dr = 0.

t
t—oo Jt

Therefore, we obtain -
|| togrylv/gelidr < co.

In view of
[o o]

o, 2 (mlogr)”

n!

M
n=0
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we can conclude that

/ ™| /gull?dr < co.

A similar procedure with ¢ = nlogr gives
o N 1

B7) [ —(mr)llg 2ol dr
8 n=2""

N

o0

< C/ 0(1)7'_2(1”’)m2 (m’r’b)"_2|lq_1/2vl|2dr
s—1

= (n—2)!

+Cn [ ll0lfar

for all N =2,3,.... Hence if 0 < b < 1, it follows from

er'b _ — (T.b)n ]

|
n—

that o
/ e" |lv/qv||?dr < +o00, n=1,2,....
s+1

Finally if ¢ = nr®, then k, > 0, so that the conclusion follows from Lemma 3.8.

O

Letting n — oo in the inequality in Lemma 3.9, we have v = 0 on |z| > s + 1.
Therefore, the proof of Theorem 2.1 is completed if we show the unique continuation

property for D, which will be derived in Section 5.

4 Proof of PfopositiOn 3.8

We begin the proof by an elliptic estimate of the Dirac type operator in the polar'

coordinates.

Lemma 4.1 If kg € C*(U)*** is a symmetric matriz,

t+1 ' 1 /
(@1) [ (LKA + 07T + @' = 5+ ko)kA,CIP)dr
t+1 - ' 1 pt+l k2
211 1—1 _ 2 2 L 2
< [T R~ Ao+ V)G + (RE = ko) AClPdr +5 [ SllACIPar

t+1 / d
_ -1 o —(Ly_ T Vieacitd
| { kot [Lno ki) + 40" = (30) 2,,q}n IPdr

+ [ o) 19+ 0+ lhal + o)} kA P
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Proof: The equation k{ should satisfy is

(42) {L, = (r™'J +9(r) + ko) }AkC = €.

Here

$(r) = ¢ — ¢/(20), € = (K — ko)Al — i(V + Ag)k( +ify.

Let
X=L, Y=©"J+9(r)+k).
Then
IXAkC|? + Y A-kC)? + 2Re(X, Y) = [I€]|>
and

t+1 t+1 '
2Re [ (XAKGYAKdr = [~ (Y, XIAKC, ArkC)dr.

The ellipticity of J € T(S?) and Lemma 3.5 imply

(=r 8, )+ 721, Ko, 0) < o () LY ollloll + o + kaolllol)
for any v € C*(S?)%. In view of
[V, X] = —¢' — (Lo ko] +7°2J — 7 2[r, — K, J) + [Y, iw -

and
r 2] =1 (r N T+ Y+ ko) — rH (W + ko),

we obtain (4.1). O
Proposition 3.8 follows from the following Lemmas 4.2—4.4.

Lemma 4.2 For any small € > 0, it holds that

h=2Re [ (Vs - ia L3¢, LGyar

”rql + (1 + e)‘]}||c”2d,r

t+1
< /,_1 {(2+¢€)Kog + rld]+ + o(q) —
s 1
+C{ / 1 /t " } [ra +{¢' + |¢"}ra "] lle?s|dr.
Lemma 4.3 Ifw=(/\/q,

t+1
b < [ =k lAawl? - rg L Al + o)l
+ oDl lICIAw] + Kor™ | Arwl + Clix'e"/ vl }ar.



Lemma 4.4

@) Ltl= [ o(DHa+ (¢ /allersl + IXeroPlar

s t+1
(44) LO([ + [T} ra+ (¢ +1¢"bra ] lews)ar.
Proof: Observe that if M, = r9, — K, then
A M, + M, JA, = A.[J, M, + [A,, M,]J + M. (JA, + A.J). -
In addition, the conditions (A4) and (A5) give |
[K,Vi] = [K,% —q+[K,q] € 9V

In view of these observations and Lemma 3.6, combining Lemma 3.5 with Lemma
4.1 with k =1 and ko = —¢’ + ¢'q™!, we can conclude that

t+1
(45) Li+ I = [ o({(g+ )l + Ix'e?s|}dr.

88—

The Schwarz inequality gives

1 (¢)?
/
< =

so that (4.3) follows from (4.5). (4.4) can be easily verified by use of an integration
by parts. ' a

5 A unique continuation theorem

In this section we shall show that D has the strong unique continuation property.
We say that u € L2 (U) vanishes of infinitely order at zo € U if

/| g lulde=O(R"), R—0, vneN.
r—x0|< .

Theorem 5.1 Suppose (2.1) and (2.2). If u € L} _(U) satisfies
(5.1) ~ Du+Vu=0, VeL2U)™

and vanishes of infinitely order at xo € U, then u s identically zero nU.
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Proof: First of all, we shall reduce D into the classical Dirac operator at zo. In
fact, there exists an orthogonal transformation T’ = (t;x)3,_, such that T'G(xo)T !
is a diagonal matrix H. Under the transformation z = T(z — o) the operator D
has the form

3
IS
D=—: E §{azkAk + Akazk}’

k=1
where

fi,-(:z:) = i t,-kAk(x).
k=1

Then, it is easily verified that

3
AjAk + AkAj = Z tkatjbgab(xo + T_IZ)I.
a,b=1

The diagonal elements of H are denoted by g; > 0, j = 1,2,3, and E = (e;)3 -,
stands for the matrix

e_,-J- = l/ﬁ;, ejk = 0, ] % k.
Under the dilation y = Ez, D has the desired property. Namely,
13, - X
D= 3 Z{Aijj + Dy, A}
e~
with L o
AjA; + ArAj = Gie(y)1, 9;x(0) = dji.

In this new coordinates, it is written

3

(5.2) D=Dy+ Z B;(y)D,, + C(y),
.o3=1 : ’

where Do = ¥°3_, A; (0)D,, is the classical Dirac operator,

B;(y) = O(lyl), B;(y) € C*(0)**, C(y) € C1(U)4,
and U is a domain of R3 containing the origin. We introduce the polar coordinates
y=rw, 7=y, w=y/lyl

In what follows, we use the notation A; instead of A;. Keeping the same notation
as in Section 3.1, we have
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Lemma 5.2
iDru = {8, — r Y (K + J)}A,(ru).

Furthermore,
K, JJvl| = O(r||Jo|| + ||v]|) as r — 0.

Proof: This can be verified in the same manner as in Lemma 3.5 because

AJ'Ak + AkAj = 25]k + O(T') asr — 0.

O
In [1], it has been proved that
1 —on— —on 00 (T
(5.3) i / r=27=2ly 2dy < / =2 Dyv||2dy, v € C2(0)*
for any n € N.

Lemma 5.3 If u € HL_(U)* is a solution to (5.2) vanishing of infinitely order at
the origin, then

[ {luf +|V,ul*tdy < Cexp{—6R"}
lyl<R '
for any small positive R.
Proof: Suppose that h(r) € C*([0, o) satisfies
0<h<1, h=0, on[2,00), h=1on [0,1].

Let M be a large positive number determined later. Applying the inequality (5.3)
to v = h(nM|y|)u(y), we obtain

(5.4) %/r"zn”zlh(nMr)ude < /r‘2"|’D0h(nM|y|)u|2dy.

On the other hand, the ellipticity of D gives

[19rmh(nMryuldy < © [{IDrh(nMr)ul® + [rh(nMr)ul*}dy.
From the triangle inequality, it follqws that
(5.5) %/r"z"lvyh(nMr)ude < n2/'r'2"_2|h(nMr)u|2dy

+C /{|1~7r""h(nMr)u|2 + |lr"h(nMr)u||*}dy.



From (5.2), (5.4) and (5.5)xn~2/4, it follows that

1
(56) [(gr2Ih(nMryul’ + 11—6n-2r-2"|v,h(nMr)u|2}dy

<4 [+ hnMly)*|(D + Q)uPdy

+Cy [ r My {ul + P V,ul}dy

+ Cy(nM)? / 2dy.
2(71, ) 1I<nMr<2 |UI Y
Since
ly| < 2/(nM), on supp{h(nM|y|)},
we obtain
1
5.7 —/ =202\ (0 Mr)ul?dy < C M"’/ 2
(57 5 T My < oMY [ fuPy
if M is large enough. Hence,
*dy < Cemios? | 2qy.
/l;l<l/%;M IU| y=be 1<nMr<2 |'U-| Y

For any small R > 0, one can find n such that 1/(n +1) < R < 1/n, so that

[ykR lul’dy = C’ exp{—(log 2)/R}.

For the sake of Lemma 5.3, if 0 < b < 1, then

/ exp {nr=} {[uf? + |V,u*}dy < oo,
Thus, we can use another Carleman inequality with a stronger weight function.

Lemma 5.4 Ifb > 0, we have

(5.8) ? /r"’ exp {m“b} |Ayuldy < C/exp {nr"’} Ir(D + Q)ul*dy

for any u(z) € CP(U\{0})* and any large positive number n if U is small enough.

Proof: Let ¢ =nr=?/2 with 1 > b> 0. Note

1
Mr=‘l"a,-+§—K
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is skew symmetric. If v = re®u and u € C{°(U) then
irDv = {M, — (J + % +ry¢’) YA
Thus,
69 [~ lIrB+Q@puldr > 5 [TUIM A + 1T+ +ro) Av|PYar
0 T 2o T 2
00 1 , 00 2
Re /0 (M: A, (J + 5 +r¢) Arv)dr — sup|Q)| /0 l[rol*dr
and
: 00 1 ,
(5.10) —2Re /0 (M, Arv, (J + 5 + 1) Arv)dr
= /0 {r(r¢") + [K, J] + [0, J]) Av, Av)dr.
The ellipticity of J implies
(6.11) ([K, J]Awv, Av) + ([r0,, J])Av, Av)
1 1,
< C{rll(J + 5 +re) Al + 7ll(5 + r¢") Aol + (| Arv [} Aol
If U is shrunk sufficiently, it holds

r(r¢') — Criy’ > g—bzr“b — C’gb'r_"+1 > —b%r b

n
4

Therefore, (5.9)—(5.11) gives the conclusion (5.8) with aid of the the Schwarz in-

equality.

The strong unique continuation property follows from Lemmata 5. 4 and 5.3 by

the standard procedure. This achieves the proof of Theorem 5.1.
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