Inequalities Involving Unitarily Invariant Norms and Operator Monotone Functions¹

X. Zhan (Peking Univ. & Tohoku Univ.)

Joint work with F. Hiai (Tohoku Univ.)

We consider square complex matrices. A norm $\|\cdot\|$ on the space of $n \times n$ matrices is called *unitarily invariant* if

$$||UAV|| = ||A|| \quad \forall A, \forall unitary U, V.$$

Such a norm is determined by a symmetric gauge function Φ on \mathbb{R}^n :

$$||A|| = \Phi(s_1(A), \ldots, s_n(A))$$

where $s_1(A) \ge s_2(A) \ge \cdots \ge s_n(A)$ are the singular values of A, that is, the eigenvalues of $|A| \equiv (A^*A)^{1/2}$.

Examples of unitarily invariant norms are:

Schatten p-norm $\|\cdot\|_p \ (1 \leq p \leq \infty)$:

$$||A||_p \equiv \{\sum_{j=1}^n s_j(A)^p\}^{1/p}.$$

Then $||A||_{\infty} = s_1(A)$ is the spectral norm and $||A||_2 = \{\sum_{i,j=1}^n |a_{ij}|^2\}^{1/2}$ is the Frobenius norm.

Fan k-norm $\|\cdot\|_{(k)}$ $(k=1,2,\ldots,n)$:

$$||A||_{(k)} \equiv \sum_{j=1}^{k} s_j(A).$$

For Hermitian matrices A, B, we write $A \ge B$ to mean that A - B is positive semidefinite. In particular, $A \ge 0$ means that A is positive semidefinite.

We consider only continuous nonnegative functions on $[0, \infty)$. f(t) is called *operator monotone* if

$$A \ge B \ge 0 \implies f(A) \ge f(B)$$
.

¹This paper appeared in Linear Algebra Appl. 341(2002) 151-169.

Here f(A) is defined by the usual functional calculus via the spectral decomposition of A.

Examples of operator monotone functions are:

$$t^p \ (0$$

1. Convexity of certain functions involving unitarily invariant norms

Theorem 1. Given matrices $A, B \ge 0$, $\forall X$, real number r > 0, and any unitarily invariant norm, the function

$$\phi(t) = \| |A^t X B^{1-t}|^r \| \cdot \| |A^{1-t} X B^t|^r \|$$

is convex on the interval [0,1] and attains its minimum at t=1/2. Consequently, it is decreasing on [0,1/2] and increasing on [1/2,1].

Corollary 2. For $0 \le t \le 1$,

$$|| |A^{1/2}XB^{1/2}|^r ||^2 \le || |A^tXB^{1-t}|^r || \cdot || |A^{1-t}XB^t|^r ||$$

$$\le || |AX|^r || \cdot || |XB|^r ||$$

Note that this interpolates the known matrix Cauchy-Schwarz inequality

$$||||A^{1/2}XB^{1/2}|^r||^2 \le ||||AX|^r||| \cdot ||||XB|^r||.$$

Corollary 3. Let A, B be positive definite and X be arbitrary. For every r > 0 and every unitarily invariant norm, the function

$$g(s) = \| |A^{s}XB^{s}|^{r} \| \cdot \| |A^{-s}XB^{-s}|^{r} \|$$

is convex on $(-\infty, \infty)$, attains its minimum at s = 0, and hence it is decreasing on $(-\infty, 0)$ and increasing on $(0, \infty)$.

The case r=1, X=B=I (the identity matrix) of this result says that the condition number

$$c(A^s) \equiv ||A^s|| \cdot ||A^{-s}||$$

is increasing in s > 0, which is due to A. W. Marshall and I. Olkin (1965).

2. Norm inequalities for operator monotone functions with applications

A norm on $n \times n$ matrices is said to be normalized if $\|\operatorname{diag}(1,0,\ldots,0)\| = 1$.

All the Fan k-norms (k = 1, ..., n) and Schatten p-norms $(1 \le p \le \infty)$ are normalized.

Theorem 4. Let f(t) be a nonnegative operator monotone function on $[0, \infty)$ and $\|\cdot\|$ be a normalized unitarily invariant norm. Then for every matrix A,

$$f(||A||) \le ||f(|A|)||$$
.

This inequality is reversed when the norm is normalized in another way.

Theorem 5. Let f(t) be a nonnegative operator monotone function on $[0, \infty)$ and $\|\cdot\|$ be a unitarily invariant norm with $\|I\| = 1$. Then for every matrix A,

$$f(||A||) \ge ||f(|A|)||$$
.

Given a unitarily invariant norm $\|\cdot\|$, for p>0 define

$$||X||^{(p)} \equiv ||X|^p||^{1/p}.$$

Then it is known that when $p \ge 1$, $\|\cdot\|^{(p)}$ is also a unitarily invariant norm.

Corollary 6. Let $\|\cdot\|$ be a normalized unitarily invariant norm. Then for any matrix A, the function $p \mapsto \|A\|^{(p)}$ is decreasing on $(0, \infty)$ and

$$\lim_{p\to\infty}\|A\|^{(p)}=\|A\|_{\infty}.$$

The above limit formula remains valid without the normalization condition on $\|\cdot\|$.

We denote by $A \vee B$ the supremum of $A, B \geq 0$: $A \vee B = \lim_{p \to \infty} \{(A^p + B^p)/2\}^{1/p}$.

Theorem 7. Let A, B be positive semidefinite. For every unitarily invariant norm, the function $p \mapsto \|(A^p + B^p)^{1/p}\|$ is decreasing on (0, 1]. For every normalized unitarily invariant norm, the function $p \mapsto \|A^p + B^p\|^{1/p}$ is decreasing on $(0, \infty)$ and

$$\lim_{p \to \infty} ||A^p + B^p||^{1/p} = ||A \vee B||_{\infty}.$$

The above limit formula remains valid without the normalization condition.

3. Norm inequalities of Hölder and Minkowski types

Theorem 8. Let $1 \le p, q \le \infty$ with $p^{-1} + q^{-1} = 1$. For all matrices A, B, C, D and every unitarily invariant norm,

$$2^{-\left|\frac{1}{p}-\frac{1}{2}\right|} \|C^*A + D^*B\| \le \||A|^p + |B|^p\|^{1/p} \cdot \||C|^q + |D|^q\|^{1/q}.$$

Moreover, the constant $2^{-|\frac{1}{p}-\frac{1}{2}|}$ is best possible.

Theorem 9. Let $1 \leq p < \infty$. For any A_i, B_i (i = 1, 2) and every unitarily invariant norm,

$$2^{-\left|\frac{1}{p}-\frac{1}{2}\right|} \| |A_1 + A_2|^p + |B_1 + B_2|^p \|^{1/p}$$

$$\leq \| |A_1|^p + |B_1|^p \|^{1/p} + \| |A_2|^p + |B_2|^p \|^{1/p}.$$

Main Ingredients of the Proofs

• Integral representation: A nonnegative operator monotone function f(t) on $[0, \infty)$ is represented as

$$f(t) = \alpha + \beta t + \int_0^\infty \frac{st}{s+t} d\mu(s)$$

where $\alpha, \beta \geq 0$ and $\mu(\cdot)$ is a positive measure on $[0, \infty)$.

• Dual norm: Given a norm $\|\cdot\|$ on $n \times n$ matrices, the dual norm of $\|\cdot\|$ with respect to the Frobenius inner product is

$$||A||^D \equiv \max \{|\operatorname{tr} AX^*| : ||X|| = 1\}.$$

If $\|\cdot\|$ is a unitarily invariant norm and $A \geq 0$, then by the duality theorem we have

$$||A|| = \max \left\{ \operatorname{tr} AB : B \ge 0, \, ||B||^D = 1 \right\}.$$

• Theorem [conjectured by F. Hiai and proved by by T. Ando and X. Zhan, Math. Ann. 315 (1999)]: Let $A, B \geq 0$, and $\|\cdot\|$ be a unitarily invariant norm. If f(t) nonnegative operator monotone on $[0, \infty)$, then

$$||f(A+B)|| \le ||f(A)+f(B)||.$$

If g(t) is strictly increasing on $[0,\infty)$ with g(0)=0, $g(\infty)=\infty$ and the inverse function g^{-1} on $[0,\infty)$ is operator monotone, then

$$||g(A+B)|| \ge ||g(A)+g(B)||.$$