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ABSTRACT

Let T = U|T| be the polar decomposition of an operator T. Aluthge
defined an operator transformation T = |T|’:‘U |T|% of T which is called
Aluthge transformation. In this report, firstly, we shall show w(T") > w(T)
for any operator T, where w(T') means numerical radius of 7.

Secondly, we shall show the following relations: (i) If T' is an n X n matrix,
then W(T) > W(T). (ii) If N(T*) D N(T), then W(T) D> W(T), where
W(T) means numerical range of T'.

Lastly, we shall show that T = VUlfl is also the polar decomposition,

- where |T|3|T*|3 = V||T|%|T*|%

is polar decomposition.

1. INTRODUCTION

In what follows, a capital letter means a bounded linear operator on a complex
Hilbert space H. An operator T is said to be positive if (T'z,z) > 0 holds for all
z € H. For each T € B(H), we write W(T) for the numerical range of T, that is,

W(T) = {(Tz,2) : ||l=l| =1}

W(T) and w(T') mean the closure of W(T') and the numerical radius of T', respec-
tively. An operator T is said to be spectraloid if w(T) = r(T), where r(T) is the
spectral radius of T'.



Let T = U|T| be the polar decomposition of T. Aluthge defined an operator
transformation T of T by T = |T'|zU|T|? in [1]. We call this transformation Aluthge
transformation. Many authors have studied Aluthge transformation and there are
many result on properties of this transformation. For example ‘o(T) = o(T) holds
for all T € B(H)” in [2, 4, 9], and as a nice application of Furuta inequality [6], “if
IT| > |T*|, then |T|? > |T*|? holds” in [1, 9).

As fundamental properties of Aluthge transformation, ||T|| > IT|| and r(T) =
r(f) hold, obviously. And a result on the spectrum of Aluthge transformation
stated above was shown in [2, 4, 9]. Moreover as a result on the numerical range of
Aluthge transformation, I.B.Jung, E.Ko and C. Pearcy showed that “if T is a 2 x 2
matriz, then W(T) > W(T)” in [10].

On the other hand, the polar decomposition of Aluthge transformation has been
discussed in [1], but the concrete form has not been obtained, yet.

In this report, firstly, we shall show a property of Aluthge transformation on the
numerical radius, that is, w(T) > w(T) for all T € B(H). And as an application
of this result, we shall show a characterization of spectraloid operators via Aluthge
transformation. ‘ | ,

Secondly, we shall show the following inclusion relations: (i) If T is an n x n
matrix, then W(T) > W(T). (i) If N(T*) D N(T), then W(T) > W(T). (i) is an
extension of above result by I.B.Jung, E.Ko and C.Pearcy in [10].

Lastly, we shall obtain a concrete form of the polar decomposition of T.

2. NUMERICAL RADIUS

By considering the definition of Aluthge transformation, we can obtain the rela-
tions ||T|| > |T|| > r(T) = r(T), easily. In this section we shall show the following
result:

Theorem 1 ([Y]). Let T € B(H). Then w(T) > w(T).
To prove Theorem 1, we prepare the following results:

Lemma 2 ([Y]). Let T = U|T| be the polar decomposition of T. If there ezists
another decomposition T = V|T|, then T = IT|2U|T|z = IT|zV|T|z.

Proof. Let H = N(|T|3) @ N(|T|2)*.
In case z € N(|T|3). Tz = |T|3U|T|iz = 0 = |T|3V|T|3z.
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In case z € N(|T|z)! = m There exists y € H such that z = |T|3y. Then
we have
Tz = |T|3U|T|3z = |T|3U|Tly = |T|3Ty
= |T3V|Tly = |T}RV|T|}z.
Hence we have T = |T|3U|T|7 = |T|iV|T| on H = N(|T|}) & N(|T|3)*. O

Lemma 3 ([Y]). Let A be a positive operator, and X € B(H). Then the following
inegquality holds:

|A"X A" — zI|| < ||AX — 2I|"|| XA = 2I||*™"  for allT € [0,1] and z € C.
To prove Lemma 3, the following result is very important:
Theorem A ([7]). Let A and B be positive operators, and X € B(H). Then the
following inequalities hold:
(i) |A"XB"|| < || AXB|I"|| X||*=" for r € [0,1].
(ii) |A™XBr|| > |AXB|I" || X]|I*" forr > 1.

Proof of Lemma 3. We may assume that A is invertible in this proof. Hence we
have

JAT XA — 2| = | A"(X A — zI) A |
<|AXA-zD)A7Y"|IXA - zI||*" by (i) of Theorem A
= ||AX - 2I|"| XA - 2I||*"" forallT €[0,1] and z € C.

O

~

Let T = U|T| be a decomposition of T. Then by Lemma 2, we have T =
IT|3U|T|3. So that we obtain the following inequality by putting A = |T|, X = U

and r = 1 in Lemma 3.

(2.1) \T — 21| < IT|U = 2I)|3||T — zI||3 for all z € C.
Theorem B ([3]). Let T € B(H). Then w(T) <1 is equivalent to

IT— 21 <1+ {1+|2}* forallzeC.
Proof of Theorem 1. Firstly, we shall show that for each S € B(H),
(2.2) w8 <1 = wS)<1.
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Let S = U|S| be the polar decomposition of S. Then we have

(|S|Uz,z) = (U*U|S|Uzx,x) = ( ”gz” ”gz”) (U*Uz,z).

Then W(|S|U) c W(S)W(U*U), and we obtain
(2.3) w(|S|U) < w(S).
If w(S) < 1, then w(|S|U) < w(S) < 1 by (2.3). By Theorem B, we have
IS —2I| <1+ {1+]2]*} forallzeC
and
IISIU = 2I|| <1+ {1+ |2}2 forall z € C.
Hence by (2.1) we obtain
NS =20 < ||S|U = 2I||3||S — 2I||Z < 1+ {1+ |2|*}* forall z€C.
And w(S) < 1 follows from Theorem B

Secondly, put S = -1% Then S = (T) and w(S) < 1. Then by (2.2), we have
w@ =@
w(T) ~
Hence the proof of Theorem 1 is complete. a

Related to Aluthge transformation, for each natural number n, I.B.Jl/l_n\g_,/ E.Ko
and C.Pearcy defined n-th Aluthge transformation T, of T by T, = (fl?_’l) and
To=T in [10]. By using n-th Aluthge transformation, we showed some properties
of Aluthge transformation on operator norms, and pointed out that Aluthge trans-
formation has similar properties to powers of operators in [13, 14, 15]. An operator
T is said to be normaloid if ||T|| = r(T') which is equivalent to ||T|| = [|T™||= for all
natural number n. It is well known that “every normaloid operator is spectraloid.”
Related to normaloid operators and spectral radius, we obtained the following re-
sults:

Theorem C ([14]). Let T € B(H). Then the following assertions are equivalent:
(i) T is normaloid.
@) |T|| = ||IT%|| for all natural number n.

Theorem D ([15]). Let T € B(H). Then lim ITall = r(T).



As an application of these results, we obtain a characterization of spectraloid
operators which is a parallel result to Theorem C as follows:

Corollary 4 ([Y]). Let T € B(H). Then the following assertions are equivalent:
(i) T is spectraloid. .
(i) w(T) = 'w(ﬁ) for all natural number n.
Proof of Corollary 4. Since ||T|| > w(T) > r(T'), we have
lim w(T7) = r(T)
by Theorem D. And by Theorem 1, we obtain the following inequalities:
w(T) > w(@) > - > w(T).

Hence the proof is complete. ' a

3. NUMERICAL RANGE

In the previous section, we showed a relation between w(T") and w(T), and ob-
tained a characterization of spectraloid operators. On the other hand, I1.B.Jung,
E.Ko and C.Pearcy obtained an extension of Theorem 1 in case T is 2 x 2 matrix,
and have conjectured a relation between W(T') and W(T) as follows:

Theorem E ([10]). Let T be a 2 x 2 matriz. Then W(T) > W(T).

Conjecture ([10]). For every T € B(H), W(T) > W(T).

In this section, we shall show a relation between W(T) and W(T) as a partial
solution of above conjecture:

Theorem 5 ([Y]). Let T = U|T| be a decomposition. If U is isometry,
then W(T) > W(T).

To prove Theorem 5, we cite the following result:
‘Theorem F ([5]). Let T € B(H). Then
W(T) = [{A:1A—pl < w(T - pD}.

ueC
Proof of Theorem 5. First, we shall show the following assertion: If S = V|S| is a
decomposition such that V is isometry, then for each A € C,

(3.1) w(S-A)<1 = w(S-A)<L1.
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By (2.1), we have the following inequalities:
|5~ =IIl < WSV = 21|35 - 21|}
(3.2) = |[V* (S —2D)V|E|S— 2|7 by V*V =1I
<|IS—=zI| forallzeC.
Assume that w(S — AI) < 1. Then by (3.2) and Theorem B, we have

IS — AT = 2| < IS~ A —2I|| <1+ {1+]2*}} forallz€C.
Hence we obtain w(S — AI) < 1 by Theorem B.

T ©
f — = e ——
Next, for each p € C, put S (T — pul) and A w(T — ul)
|T|

—————— holds,and S =U ——m——— is a decomposition such that U is isometry,
w(T — pl) ~

w(T — pl)
~ T
I S —A) <1 . i
and also S W@ — aD) Moreover w(S — AI) < 1. Then by (3.1), we obtain

Then |S| =

It is equivalent to
w(f—uI)Sw(T——uI) for all p € C.
Hence the proof is complete by Theorem F. - a

By Theorem 5, we obtain the following extension of Theorem E.
Corollary 6 ([Y]). If T is an n X n matriz, then W(T) D wW(T).

Proof. Since T is an n X n matrix, there exists a unitary matrix U such that T =
U|T|. Since it is in the finite dimensional case, W(T') and W (T) are both closed,
and the proof is complete by Theorem 5. a

Corollary 7 ([Y]). Let T € B(H) with N(T*) D N(T'). Then

WT >WT)DW(T)D---D W(T,) hold for all natural number n.

Proof. Since N(T*) > N(T), we can choose an isometry U such that T' = U ||
Then we have W(T) D W(T) by Theorem 5. So we have only to prove N (T*) o
N(T) if N(T*) > N(T).

By the definition of Aluthge transformation, N(T) D N(T) and N (T > N (1
hold, easily. So we shall show N(T) > N(T).
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Let £ € N(T). Then by N(|T|3) = N(T) C N(T*) = N(|T*|%), we have
Tz = |T|3U|T|?z = 0 => Tz = |T*|3U|T|3z = 0.
Hence we obtain N(T') > N(T), and N(T*) > N(T) = N(T). So that the proof is

complete by Theorem 5.

O

At the end of this section, we would like to summarize some good properties of

Aluthge transformation. We remark that in case an operator T is invertible, T can
be rewritten as T = |T|3T|T|7, in other words, T is similar to T. So we would like
to summarize some properties of Aluthge transformation, powers of operators and

operators which is similar to T as follows:
Results on T, Results on T™ Results on S7IT'S
o(Ty) =0(T) (1, 4,9] | o(T") = o(T)" a(S7ITS) = o(T)
r(T,) = r(T) r(T™)~ =r(T) r(S7ITS) = r(T)
w(T,) < w(T) w(T™)= < w(T)
Conjecture n W(S-1TS) = coo(T) (8]
||| §J|T|| 1= < T
lim [T = () 18] | Bim (T = (7) |inf |S'TS) = r(T) 1)

Results on f’f,:

There exists a counterexample

(w(T,) < - < w(T) < w(T)

W(T,) C --- c W(T) c W(T) if N(T) C N(T*)

w(T*)» < w(T1)51 < - < w(T)

1Tl < --- < |IT) < Il

1 —11—==
1T~ < |7~ < --- < ||T|

In above tables, coo(T) means convex hull of o(T).

Counterexample ([11]). Let

2
T=(0 “), a>b>0.

Then we have T?" = a2"b?"],

2 0
T2+l — g2np2nT

(i) Counterexample of ||T™||* < |[T™}||=1 < --- < Tl
By the above matrix T', we have

_1
ITI=a® 7> =ab and [T***||=e = {a™™|T|}= =ab(3)™" .

b

Hence we obtain |[T2"+1||%%1 > ||T2"||% by a > b > 0.



(i) Counterexample of w(T™)= < w(T"“l)ﬁ <. <w(T).
By the same way to (i), we have

2 b2
w(T) = “1=, w(T*)% =ab
and
) 1 a2 +b2 ﬁ
w(T2ﬂ+1)-§m — {a2"b2"w(T)}§'rﬁ——l = ab .
2ab
a2 + b2

Hence we obtain w(T2"*1)%+1 > w(T?)% by a > b > 0 and > ab.

2

We can understand that 7 has some good properties related to T and S~1T'S,
and has some better properties than 7™. Moreover we conjecture the following
assertion.

Conjecture. For any operator T, does ﬂW(ﬁ) = coo(T) hold?

4. POLAR DECOMPOSITIOﬁ
In this section, we shall obtain the polar decomposition of T as follows:
Theorem 8. Let T = U|T| and
(41) TR =V||T|%|T*]%

be the polar decompositions. Then T = VU |T| is also the polar decomposition.

By Theorem 8, we can obtain the polar ‘dec‘;omposition of n-th Aluthge transfor-
mation for any natural number n, because the partial isometry which appears in the
polar decomposition of Tisa product of two partial isometries.

Proof. (i) Proof of T = VU|T)|.
VU|T| = VU(IT|3U*|T|U|T|?):U*U
= V(IT*|3|T||T*|%)3U

=v|ThriE|u
=|T|3|T*|3U by (4.1)
= |T|2U|T|z =T.

(ii) We shall show N(T) = N(VU). Since N(|T|3|T*|2) = N(V), we have
N(T) = N(IT|3U|T|3) = N(IT|3|T*|3U) = N(VU).
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(iii) We shall prove that VU is a partial isometry. Since N(VU)L = N(|T|) =
R(|T'|) hold by (ii), for any z € N(VU)* = R(|T)), thete exists {y,} C H such that
z = lim |T|y,. Then we have

n—oo
IVUz|| = VU lim |Tlyall = || km VU|Tlyall = || lim Tyl by ()
= lim | Fyall = lim [|Flgall = || lim (Fiyn] = =]
that is, VU is partial isometry.
Therefore the proof is complete. O
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