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Coherent States and Some Topics in
Quantum Information Theory

¥ —3% (Kazuyuki Fujii) *
MEHMKRE FENPHE
Department of Mathematical Sciences
Yokohama City University
Yokohama 236-0027
Japan

In the first half we make a general review of coherent states and generalized
coherent ones based on Lie algebras su(2) and su(1,1). In the second half we make
a review of recent developments of both swap of coherent states and cloning of
coherent states which are main subjects in Quantum Information Theory.

1 Introduction

The purpose of this paper is to introduce several basic theorems of coherent states and
generalized coherent states based on Lie algebras su(2) and su(1,1), and to give some
applications of them to Quantum Information Theory.

In the first half we make a general review of coherent states and generalized coherent
states based on Lie algebras su(2) and su(1,1).

Coherent states or generalized coherent states play an important role in quantum
physics, in particular, quantum optics, see [1] and its references, or the book [2]. They
also play an important one in mathematical physics, see the book [3]. For example, they
are very useful in performing stationary phase approximations to path integral, [4], [9],
6.

In the latter half we apply a method of generalized coherent states to some important
topics in Quantum Information Theory, in particular, swap of coherent states and cloning
of coherent ones.

*E-mail address : fujii@yokohama-cu.ac.jp
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Quantum Information Theory is one of most exciting fields in modern physics or math-

ematical physics. It is mainly composed of three subjects
Quantum Computation, Quantum Cryptgraphy and Quantum Teleportation .

See for example [7], [8], [9] or [10], [11]. Coherent states or generalized coherent states
also play an important role in it.

We construct the swap operator of coherent states by making use of a generalized
coherent operator based on su(2) and moreover show an “imperfect cloning” of coherent

states, and last present some related problems.

2 Coherent and Generalized Coherent Operators Re-
visited

We make a some review of general theory of both a coherent operator and generalized
coherent ones based on Lie algebras su(1,1) and su(2).

2.1 Coherent Operator

Let a(a') be the annihilation (creation) operator of the harmonic oscillator. If we set
N = a'a (: number operator), then
[N,al] =a!, [N,d] = —a, [al,a] = -1. (1)

Let H be a Fock space generated by a and af, and {|n)| n € N U {0}} be its basis. The
actions of a and af on H are given by

aln) = v/n|n — 1), a'|n) = vn +1jn + 1) ,N|n) = n|n) (2)
where |0) is a normalized vacuum (a|0) = 0 and (0|0) = 1). From (2) state |n) for n > 1
are given by

(ah)”
In) ="7Za7 —=10) - 3)

These states satisfy the orthogonality and completeness conditions
[e o]
(min) = bmn , Y In)(n|=1. (4)
n=0
Let us state coherent states. For the normalized state |z) € H for z € C the following
three conditions are equivalent :

(i) alz) =z|z) and (z|z) =1 (5)
(i) |2) =230 Zmin) = e 0) (6)

(i) |2) = e*'~%0). (7)
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In the process from (6) to (7) we use the famous elementary Baker-Campbell-Hausdorff
formula

eAtB _ e—%[A,B] eleB (8)

whenever [A,[A, B]] = [B,[A, B]] =0, see [1]. This is the key formula. 7
Definition The state |z) that satisfies one of (i) or (ii) or (iii) above is called the coherent
state.

The important feature of coherent states is the following partition (resolution) of unity.

LZ e = S impemi =1, )

T n=0

where we have put [d?z] = d(Rez)d(Imz) for simplicity.
Since the operator

D(z)=¢€*""" for z€C ©(10)

is unitary, we call this a coherent (displacement) operator. For these operators the fol-
lowing property is crucial :

D(z + w) = e"#%"®) D(;)D(w) for z, we C. (11)
From this we have a well-known commutation relation |
D(z)D(w) = e**~** D(w)D(z). (12)

Here we once more list the disentangling formula of D(z) for the latter convenience :

t—z ~11.2 t 3
e —Z%a |2} e*le— 70

=e2 el g—Zagza! (13)

2.2 Generalized Coherent Operator Based on su(l,1)

Let us state generalized coherent operators and states based on su(1,1). Let {ky,k_, k3}
be a Weyl basis of Lie algebra su(1,1) C si(2,C),

01 0 0 1{1 0
k*‘(o 0)’ k‘"(—lo)’ k"'"i(o —1)‘ (14)

(K3, k4] = ks, (ks k-] = —k_, [k+’k—] = —2ks. (15)

We note that (ki)' = —k_.
Next we consider a spin K (> 0) representation of su(1,1) C si(2,C) and set its
generators {K,, K_, K3} ((K4)! = K_ in this case),

Then we have

(K3, K4) = Ky, [Ks,K_]=-K_, [K. K_]=—2Ka,. (16)
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We note that this (unitary) representation is necessarily infinite dimensional. The Fock
space on which {K,,K_, K3} act is Hx = {|K,n)|n € NU {0}} and whose actions are

Ky |K,n) = /(n+1)(2K +n)|K,n +1),
K_|K,n) = \/n2K +n —1)|K,n — 1), (17)
Ks|K,n) = (K +n)|K,n),

where |K,0) is a normalized vacuum (K_|K,0) = 0 and (K,0|K,0) = 1). We have
written |K,0) instead of |0) to emphasize the spin K representation, see [4]. From (17),
states |K,n) are given by | '

_ (K"
lKan>_\/le’0), (18)

where (a), is the Pochammer’s notation
(@)p=ala+1)---(a+n—1). (19)

These states satisfy the orthogonality and completeness conditions

(K,m|K,n) = 6nn, Y |K,n)(K,n| =1k. (20)

n=0

Now let us consider a generalized version of coherent states :
Definition We call a state

|z) = eK+~#K-|K 0) for 2z € C. (21)

the generalized coherent state (or the coherent state of Perelomov’s type based on su(1,1)
in our terminology).
This is the extension of (7). See the book [3].

Then the partition of unity corresponding to (9) is

/’ 2K —1 tanh(|z|)[d?2]
C

(1 - tanh?(|2])) | 2}z

2K —1 [dzd 0
=/D T (1 _ K|2)2|C><C| = ?—;_‘alK,nMK?nI = 1k, (22)
where |
C—-D :ZD—)C:((z)E t_a%.)_z and |<-> = (1—|C|2)KeCK+|K,O>. (23)

||
In the process of the proof we use the disentangling formula :

2K+ —ZK_ _ o(Ky Jlog(1-|CP)Ks —CK- _ e~ CK- g~ 1o8(1-ICP)Ks o(Ky (24)
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This is also the key formula for generalized coherent operators. See [3] or [14].
Here let us construct an example of this representation. First we assign

1 2 1 1 1
= (a = —qa? =—(ala+= 25
K+_2(a) ,K— 2(1 ,K3 2(aa+2>, ( )
then it is easy to check

[K3aK+] = K+ ) [K3’K—] =-K_, [K+,K—] = —-2K; . (26)

That is, the set {K,, K_, K3} gives a unitary representation of su(1,1)with spin K =
1/4 and 3/4, [3]. Now we also call an operator

S(z) = ext@-2 g5 ;e (27)

the squeezed operator, see the papers in [1] or the book [3].

2.3 Generalized Coherent Operator Based on su(2)

Let us state generalized coherent operators and states based on su(2). Let {j4,7-,73}
be a Weyl basis of Lie algebra su(2) C sl(2,C),

P () Y ) NPT R

[j3,j+] =J+ [j31j—] =-J-, U+’j—] = 2Js. (29)
We note that (j,) = j_.
Next we consider a spin J (> 0) representation of su(2) C sl(2, C) and set its generators

{J4,J-, Ja} ((J4 )T = J0),
s, Iyl = Ty, [Js,J)=—d_, [Jy,J_] = 2Js. (30)

Then we have

We note that this (unitary) representation is necessarily finite dimensional. The Fock
space on which {J;,J_, J3} act is H; = {]J,n)|0 < n < 2J} and whose actions are

JilJyn) = /(n+1)(2J = n)|J,n + 1),
J_|J,n) =/n(2J —n+1)|J,n — 1), (31)
J3|J,n) = (=J +n)|J,n),

where |J,0) is a normalized vacuum (J_|J,0) = 0 and (J,0]J,0) = 1). We have written
|J,0) instead of |0) to emphasize the spin J representation, see [4]. From (31), states
|J,n) are given by

) = \/%—_,%u, 0). (32)
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These states satisfy the orthogonality and completeness conditions

2J
(J,m|,n) = 8mn, 2 [Jin)(Jin| =15 (33)

n=0

Now let us consider a generalized version of coherent states :
Definition We call a state

|z) = e+=%#/-|J,0) for z€ C. (34)

the generalized coherent state (or the coherent state of Perelomov’s type based on su(2)
in our terminology).
This is the extension of (7). See the book [3].

Then the partition of unity corresponding to (9) is

/ 2J +1 tan(|z|)[d?z] 12)(2]

m (1+tan®(|2])) |2|

e R )
—/C s (1 + In|2)2|n><77| = 7;)[], n)(‘]anl =1y, (35)

where

CoC:zrn=n(z) = t—ari—illil-)—z and |n) = (1 + |n|2)—Je"J+|J,0). (36)

In the process of the proof we use the disentangling formula :

ezJ+ -zJ- _ enJ+ elog(1+|n|2)J3e—ﬁJ_ = e—-ﬁJ_e— log(1+|n|2)J3enJ+ . (37)

This is also the key formula for generalized coherent operators.

2.4 Schwinger’s Boson Methhod

Here let us construct the spin K and J representations by making use of Schwinger’s
boson method.
Next we consider the system of two-harmonic oscillators. If we set

G=a®1l, o' =a'®1; a;=1®4q, a)' =1®d, (38)
then it is easy to see
[a,-,aj] = [a,-*,ajT] = 0, [a,-,ajT] = 5,']', i,j = 1,2. (39)

We also denote by N; = a;'a; number operators.
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Now we can construct representation of Lie algebras su(2) and su(1,1) making use of
Schwinger’s boson method, see [4], [5]. Namely if we set

su(2): J, =alay, J_ =aya,, J53= % (alfal - az"az) , (40)
su(l,1): Ky =a'e), K. =aa,, K3 = ; (01101 +azla; + 1) , (41)
then we have
su(2): (s, Iyl =Jdy, [Js,Jd] = —J_, [Jy,J_] = 25, (42)
su(1,1):  [K3, Ky]= Ky, [K3,K_]=-K_, [K;,K_]= —2Ks. (43)

In the following we define (unitary) generalized coherent operators based on Lie algebras
su(2) and su(1,1).
Definition We set

su(2): Uj(z) = e'=='a g5 5 € C, (44)
su(l,1): Ugk(z2) = grn'lal=-Tma g, € C. (45)

For the details of U;(z) and Uk(z) see [3] and [4].

Here let us ask a question. = What is a relation between (27) and (45) of generalized
coherent operators based on su(1.1) 7  The answer is given by the following :
Formula We have

W(=DSi(2)S:(=2)W(=3) " = Ux(2), | (46)

where S;(z) = (27) with a; instead of a.
Namely, Uk(z) is given by “rotating” the product S;(2)S;(—z) by W(—%). This is an
interesting relation. The proof is relatively easy, see [13] or [11].

Before closing this section let us make some mathematical preliminaries for the latter
sections. We have easily

tsin(|t])

T

tsin(Jt])
|¢]

so the map (a1,a;) — (Us(t)a,Us(t)™1, Us(t)azUs(t)) is

cos(|t|) tain(lt) )

(Us(t)arUs(t)™, Us(t)a2Us(t)™ l)"(“l"‘z)(——’%ﬁﬂ coJE'un

Us(t)a,Us(t)™ = cos(|t|)a, — a,, (47)

Us(t)aUs(t)™! = cos(|t|)ay + as, (48)

We note that .
( COS(ltI) tsin(]t])

stn M € SU 2 .
— Lol cos(|t|)) @)
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On the other hand we have easily

Uk (t)a Uk (t) ™ = cosh(|t|)ay — -ts—mT]tll(jﬂa;, (49)
Uk (t)alUx (1) = cosh(|t|)a} — E}%ﬂ)—al, (50)

so the map (al,a;) — (Ug(t)a Uk (2)71, UK(t)a;UK(t)_l) is

_1 t -1y _ 1y [ cosh(lt]) —éin—“h'(m
Uk ()anlt)™ Uk (QasUic®)™) = (01, 02) | _ssimbi)  g(je) )

We note that .
( COSh(Itl) _tsmh“t“

. It € SU(1,1).
__tsmlltzl!]t“ COSh(It‘) ) ( )

3 Some Topics in Quantum Information Theory

In this section we don’t introduce a general theory of quantum information theory (see
for example [8]), but focus our attension to special topics of it, that is,

e swap of coherent states
e cloning of coherent states

Because this is just a good one as examples of applications of coherent and generalized.
coherent states and our method developed in the following may open a new possibility.
First let us define a swap operator :

S:HOH —>HOH, Sa®b)=b@a foranyabeH (51)-

where H is the Fock space in Section 2.

It is not difficult to construct this operator in a universal manner, see [11] ; Appendix
C. But for coherent states we can construct a better one by making use of generalized
coherent operators in the preceding section.

Next let us introduce no cloning theorem, [17]. For that we define a cloning (copying)
operator C which is unitary

C:HOH—HROH, ChQ|0))=hQh foranyheH. - (52)

It is very known that there is no cloning theorem
“No Cloning Theorem” We have no C above.
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The proof is very easy (almost trivial). Because 2h = h + h € H and C is a linear

operator, so
C(2h ® |0)) = 2C(h ® |0)). (53)
The LHS of (53) is
C(2h®|0)) =2h®2h =4(h ® h),

while the RHS of (53)
2C(h ®0)) = 2(h ® h).

This is a contradiction. This is called no cloning theorem.

Let us return to the case of coherent states. For coherent states |a) and |8) the superpo-
sition |a) + |B) is no longer a coherent state, so that coherent states may not suffer from
the theorem above.

Problem Is it possible to clone coherent states ?

At this stage it is not easy, so we will make do with approximating it (imperfect cloning
in our terminology) instead of making a perfect cloning.
We write notations once more.

Coherent States |a) = D(a)|0) for a€C
Squeezed-like States |[8) = S(8)[0) for B e C

3.1 Some Useful Formulas

We list and prove some useful formulas in the following. Now we prepare some param-
eters a, €, & in which ¢, x are free ones, while a is unknown one in the cloning case. Let
us unify the notations as follows.

a : (unknown) a = |ale, (54)
€ : known € = |ele’, (55)
K : known K = |kle®, (56)
Let us start.
(i) First let us calculate
S(e)D(a)S(e)2. (57)

For that we show

S(€)aS(e)~! = cosh(|e|)a — e*sinh(|e|)al. (58)
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Proof is as follows. For X = (1/2){e(a')? — &?} we have easily [X,a] = —ea! and
[X,a!] = —€a, so
S(e)aS(e)™ = e*ae™™ = a+ [X,d] + = [X [X,a]] + [X, [X,[X,a]]] +

e e|e|2T
SeCetgres et

{”%Jr }e ||{"+||+ Jo

= cosh(|e])a — Mﬂl t = cosh(|e])a — e®sinh(|e|)a.

From this it is easy to check

S(eD(2)5(e)7" = D (aS(e)a'S(e) ™" — &S(g)aS()™)

= D (cosh(|e|)o + e*sinh(|e|)a) (59)
Therefore ¥
_ D(ela) if ¢=2x
: 1 — 60
S(e)D(@)5(e) { D(eMa) if ¢=2x+n (60)
By making use of this formula we can change a scale of a.
(ii) Next le us calculate
S(e)S(a)S(e)~". (61)

From the definition

$(6)S()S(e)~* = S(e)exp {% (a(a")? ~ aa?) } (7" =
where , | ,
Y = a(S()a'S(e)™!) — a(S(e)asS(e)") "
From (58) and after some calculations we have
Y = {cosh?(|e|)a — e**sinh*(|e|)a} (ah)? — {cosh?(le])a — ¢ #sinh?(|e|)a} a?

N (—e % + e'a)
2

= {cosh2(|e|)a - e2i¢sinh2(|e|)6¢} (a)? — {coshz(lel)& - e'2i¢sinh2(|e|)a} a®

sinh(2|e|)(a'a + aa)

+ (—e " **a + e*a)sinh(2|¢|)(a'a + %) (<= [a,a'] =1),
or
1 2 2 ;. 12(|.\A 201 Nr _ a—2i6 o b2
§Y = {cosh (le])a — e**®sinh (|e|)a} K, — {cosh (le])a — e™**?sinh ([el)a} K-
+ (—e%a + e%a)sinh(2|¢|) K3 (62)
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with {K,, K_, K3} in (25). This is our formula.
Now
—e%a + e%a = |a|(—e " *) 4 &(*X)) = 2i|a|sin(¢ — X),

so if we choose ¢ = x, then e*¢a = e**e~*X|a| = a and
cosh?(|e|)a — e¥*sinh?(|e|)a = (cosh2(|e|) - sinhz(lel)) a=a

, and finally
Y = o(a')? — aa’.

That is,
S(e)S(a)S(e)™! = S(a) <= S(e)S(a) = S(a)S(e).

The operators S(¢) and S(a) commute if the phases of € and a coincide.
(iii) Third formula is :  For V(t) = €N where N = a'a (a number operator)
V(t)D(a)V(t)~! = D(e*a). (63)
The proof is as follows.
V(t)D()V(2)™ = exp (aV(1)a'V(1)™ - aV(t)aV (1))
It is easy to see

V(HaV ()™ = ™ae N = a +[itN,a] + ZitN, itN,a]] + ---
(=ity

2 a+---=e‘“a.

=a+ (—it)a +
Therefore we obtain
V(t)D(a)V(t)™" = exp (ae"a’ — Ge~"at) = D(e"a).
This formula is often used as follows.
la) — V(t)le) = V() D(a)V(t)7'V(2)[0) = D(e"a)|0) = |e"a), (64)

where we have used

V(#)l0) = o)
becase N|0) = 0. That is, we can add a phase to a by making use of this formula.

(iv) Fourth formula is :  Let us calculate the following

2(al)2-2(a;)2+£(al)?2 = B(a;)? '
Us(t)Sy(e) Sa(B)Ua(t)" = Uy (t)el S Son ey ~dien Yoyt = X (65)



= UsalUs(0)) - S OaUs ™)’
+ g(UJ(t)a;UJ(t)_ly - g‘(UJ(t)azUJ(t)—l)2-

From (47) and (48) we have

X= %{ 2(Ith)e + szn2(|t|) } %{ 2(|t|)5t+——'—"t Sil::lz(‘tl)[f} a?
+s {cos2(nt|)ﬂ Pein “' } { 2(jep)f + 222 ) Sil’:l}'t')a} ?
+ (Bt - ai)i’;%ltﬁalaz (Bt — ”t)smz(ltll D aas.
If we set

Bt —at = 0 < Bt = o,
then it is easy to check

t2sin?(|t])
i

2sin?(]t|)

cos*(|t])a + P

=a, cos’(|t|)8+ a=f,

so, in this case, . .
1 1_ -
X = 501(“{)2 - 5““? + 53(‘1;)2 - -z-ﬁag :
Therefore
Us(t)S1(@)S2(B)Us ()™ = S1()S2(B)-
That is, S;(a)S2(8) commutes with U;(t) under the condition (67). .

3.2 Swap of Coherent States

The purpose of this section is to construct a swap operator satifying
1) ® |ag) — |oz) ® |en).
Let us remember U;(x) once more
Us(k) = e"“'{“r'_‘“‘“; for k€ C.
We note an important property of this operator :

Us()10) ® [0) = [0) ® [0).

183

(66)

(67)

(68)

(69)

(70)
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The construction is as follows.
Us(k)lea) ® |az) = Us(x)D(a1) ® D(az)|0) ® [0) = Us(5) D1 (1) Da(2)[0) @ 0)
= Us(k)D1(0) Dy(2)Uys(x)~'U;(x)|0) ® |0)
= Us(k)D1(0n) Dy(a2)Us(x)71[0) ® [0) by (70), (71)

and

Us(5)D1(a1)Da(a2)Us(5)™ = Us(k)exp {alal — &1a; + ogal — &2412} Ujs(k)™!
= exp {al (Us(k)arUs(£)™) — a1 Us(k)a,Us(k)™?

+aa(Us(x)aaUs(x) ™)' ~ aaUs(k)arUs ()™}
= exp(X). (72)

From (47) and (48) we have
X = {cos(|m|)a1 + Eﬁ(lﬁ—l)aez} al — {cos(|n|)&1 + Maz} a

e =
Kst ksin(|k
#{coten = 0 ot Lo - =2 o,

SO

exp(X) = D, (cos(|fc|)a1 + Maz) D, (cos(|n|)az - Mal)

|« |l
=D (cos(|x,|)a1 + mzlnT(llnl)az) ®D (cos(|n|)a2 - Ezlr;('ﬂal) .
Therefore we have from (72)
o) @ ) — feos(il)oa + ") @ eonleias — EUD

If we write « as |«|e's, then the above formula reduces to
la) ® laz) — |eos(|k|)oq + e?sin(|x|)az) ® |cos(|&])az — e *sin(|k|)ay).
Here if we choose sin(|x|) = 1, then
o) ® laz) — |eaz) @ |[—e ) = |e¥ar) ® |+ qy).

Now by operating the operator V = e=*N @ /(*+™N where N = ata from the left (see
(64)) we obtain the swap

) ® laz) — |az) ® |ay).
A comment is in order. In the formula we set a; = a and az = 0, then the formula
reduces to '

Us(k)Ds(@)Us(x) ™ = Di(cos(|x|)a) Dy(—e~sin(|x)cr). (73)
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3.3 Imperfect Cloning of Coherent States

We cannot clone coherent states in a perfect manner likely
la) ® [0) — |a) ® |a) for a € C. (74)

Then our question is : is it possible to approximate ? We show that we can at least make
an “imperfect cloning” in our terminology against the statement of [18].

Let us start. The method is almost same with one in the preceding subsection, but we
repeat it once more. Operating the operator Uy(«) on |a) ® |0)

Us(x)le) ® [0) = Us(x) {D(a) ® 1} 10) ® |0) = Us()D1(x)|0) ® |0)
=U; (k) D1(e)Us(x)Us()|0) ® |0) = Us(x)D1(a)Us(x)7'10) ® |0) by (70)
=D (cos(|x|)a) Dy(—e™sin(|x]))|0) ® |0) by (73)
=D (cos(|k|)e)) Da(e ™+ sin(|x[))|0) ® |0)
={D(cos(|x|)) ® D(e~* ¢+ sin(|x[)a) } [0) @ |0).

Operating the operator 1 ® e'*+mN on the last equation

D(cos(|x])ar) ® e*+mN D(e~***sin(|x|))|0) ® |0)
=D(cos(|&|)a) ® e B+MN D (=64 gin (|| )a)eE+MNO+MN|0) @ |0)
=D(cos(|k|)a) ® e 6+MN D=8+ sin(|k|)a)e~0+MN|0) ® |0)
=D(cos(|k|)a) ® D(e”*+Msin(|x|)ae’®*™)|0) ® [0) by (63)
— D(cos([xl)a) ® D(sin(|xl)a)[0) & [0
— fcos(lsl)o) @ |sin(lx])a).

Namely we have constructed
) ® [0) — |eos(|k])e) ® |sin(|«[)er). (75)

This is an “imperfect cloning” what we have called.

A comment is in order. The authors in [18] state that the “perfect cloning” (in
their terminology) for coherent states is possible. But it is not correct as shown in [11].
Nevertheless their method is simple and very interesting, so it may be possible to modify
their “proof” more subtly by making use of (60).

Problem Is it possible to make a “perfect cloning” in the sense of [18] ?

3.4 Swap of Squeezed-like States ?

We would like to construct an operator like

181) ® 1B2) — |B2) ® |By)- (76)
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In this case we cannot use an operator Uj(k). Let us explain the reason.
Similar to (71)

Us(r)|B1) ® |B2) = Us(x)S(B1) ® 5(5:)0) ® [0)
= Us(£)51(81)52(82)10) ® |0)
= U(£)S51(B1)S2(B2)Us(x)|0) ® [0). (77)

On the other hand by (65)

Uis(8)S81(B1)S2(B:)Us (k) =

where

x = g {eostiipn + LD g oty - L st + It

+3 {c"sz(lnl)ﬂ ¥ L""')ﬂ} (a})? - %{wszunl)ﬁz 4 msin(jx]) ("“')ﬂl}

I I
sm(2]n|) sin(2|x|)

+ (B2k — B1E) ala} — (Bsf — Bik)———Laja; .
2| 2|x|

Here an extra term containing a!a} appeared. To remove this we must set B2k — 1k = 0,
but in this case we meet

Us(8)51(61)S2(B2)U (k)" = $1(81)S2(B2)

by (68). That is, there is no change.
We could not construct an operator likely in the subsection 3.2 in spite of very our efforts
, SO we present

Problem Is it possible to find an operator such as U;(k) in the preceding subsection
for performing the swap ?
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