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Solvability of non-linear totally characteristic partial
differential equations in the complex domain
- when resonances occur -

Hidetoshi TAHARA (MR &0
Department of Mathematics, Sophia University (XK -8T)

Abstract

Let us consider the following non-linear singular partial differential equation
(t8)™u = F(t,x,{(t0:)’02u}j+a<m,j<m) in the complex domain. When the
equation is of totally characteristic type, the author has proved with H. Chen in
[2] the existence of the unique holomorphic solution provided that the equation

~ satisfies the Poincaré condition and that no resonances occur. In this paper, he
will solve the same equation in the case where some resonances occur.

§1. Introduction.

Notations: (¢,z) € C¢ X Cz, N={0,1,2,...}, and N* = {1,2,...}. Let m € N*, set
N = #{(j,a) e NxN; j+a <m,j <m} (=m(m+ 3)/2), and write the complex
variable z = {zja}; 1 a<m j<m € CN.

In this paper we will consider the following non-linear partial differential equation:

® (3= #(em () (2)) gen)

where F(t,z,2) is a function in the variables (¢,z,2) defined in a neighborhood A of
the origin of C; X Cz x CYY, and u = u(t, ) is the unknown function. Set Ag = AN{t =
0,z = 0}. We impose the following conditions on F(2, z, z):

A,) F(t,z,2) is a holomorphic function on A;
Aj) F(0,z,0) =0 on Ag.

Set I, = {(j,a) e NxN; j+a<m,j <m} and In(+) = {(§,@) € In ; o> 0}.
Then the situation is divided into the following three cases:

Case 1: _ai—(o’x’o) =0 on A for all (j, &) € Im(+); o
sz,a
. oF |
Case 2: V(Oa 0,0) s 0 for some (j,a) € Im(+);
i

Case 3 : the other case.

In the case 1, equation (E) is called a non-linear Fuchsian type partial differential
equation and it was studied quite well by Gérard-Tahara (3][4]. In the case 2, equation



(E) is called a spacially non-degenerate type partial differential equation and it gives
us a kind of Grousat problem: Gérard-Tahara [5] discussed a particular class of the
case 2 and proved the existence of holomorphic solutions and also singular solutions of
(E). In the case 3, equation (E) is called a non-linear totally characteristic type partial
differential equation. The main thema of this paper is to discuss the case 3 under the
following condition:

Aj) %(0, z,0) = O(z*) (as z — 0) for all (j,a) € Iy (+).

§2. Review of the result of Chen-Tahara [2].

Under the condition A3), Chen-Tahara [2] has proved the existence of the unique
holomorphic solution provided that the equation satisfies both non-resonance condition
and the Poincaré condition. We will recall this result now.

By the condition A3) we have (OF/ 02j,0)(0, z,0) = z°; o (z) for some holomorphic
functions c;4(z). Set

(2.1) L) =2"~ 3" ¢al0)Npp—1)---(p— a+1).
j+a<m
j<m

Then equation (E) is rewritten in the form

(2.2) L(tgt—,x%)u
-t 5 st () () 1) (s )

(j,a)EIm

+a(z)t+ R, (t, T, { (t%)j (%) au}(j,a)elm) ’

where S(cj,a)(z) = (¢ja(2) — ¢ja(0))/z, a(z) is a holomorphic function on Ay, and
Ry(t,z,2) is a holomorphic function whose Taylor expansion in (¢,2) consists of the
terms with degree greater than or equal to 2 (with respect to (t,2)). Therefore, it is
easy to see that if L(k,!) # 0 holds for any (k,I) € N* x N the equation (2.2) has a
unique formal solution of the form

(2.3) ut,z) = Y ugtiad.
k>1,1>0
Next, let us consider the convergence of this formal solution. Denote by ¢1,...,cm

the roots of the following equation in X:

X"~ ¥ cal0) X =0.

J+a=m
j<m
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Then, if we factorize L(\,!) into the form

(2.4) LD =A=&@) - (A—&n(l) forleN,
by renumbering the subscript i of &;(l) suitably we have
lim &) =¢ for i=1,...,m.

I—soo 1

Therefore, if ci, .. .,cm € C\ [0,00) we can find a o > 0 such that |L(k, | >ok+1)™
holds for any (k,1) € N* x N with k + [ being sufficiently large. This condition leads us
to the convergence of the formal solution.

Thus, set

(N)(non-resonance) L(k,!) # 0 holds for any (k,!) € N* xN,
(P)(Poincaré condition) c¢; € C\ [0,00) for i=1,...,m;

and we have:

Theorem 1 (Chen-Tahara [2]).  Assume A1), A2) and A3). Then, if the
conditions (P) and (N) are satisfied, equation (E) has a unique holomorphic solution
u(t, ) in a neighborhood of (0,0) € C; x C; satisfying u(0,z) =0 near z = 0.

The purpose of this paper is to solve the equation (E) in the case where the Poincaré
condition (P) is satisfied but the non-resonance condition (N) is not satisfied.

§3. When resonances occur.

Let L(), p) be the polynomial in (2.1), and let &(l) (: =1,... ,m) be as in (2.4).
Set

M = {(k,1) € N* xN; L(k,1) =0},
Mi={(k1)eN"xN; k—&(l) =0} (i=1,...,m).

We have M = M; U--- U M,,. Note that M = @ is equivalent to the non-resonance
condition (N). In the case M # @ we note:

Lemma 1. If the Poincaré condition (P) is satisfied, we have the following
properties: (1) M is a finite set; (2) there is a 0 > 0 such that |k — L&D > o(k+1)
holds for any (k,l) € (N* x N)\M; (i=1,...,m).

For (k,l) € M we set u(k,l) = #{i;&(l) = k} and we say that u(k,l) is the
multiplicity of resonance of L(), p) at (k,1). We denote by p the total number of the
multiplicities of resonances of L(}, p), that is,

(3.1) p= > k).

(kl)eM

The following is the main result of this paper.
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Theorem 2 (when resonances occur). Assume A;), A, ), As) and (P). Then,
equation (E) has a solution u(t,z) of the form

(3.2) u(t, z) = W(t, t(logt),t(logt)?,..., t(log t)", z)

where p is the number in (3.1) and W (tg, t,,.. -y tu, x) 18 a holomorphic function in a
neighborhood of (to,t1,...,t,,z) = (0,0,...,0,0) satisfying w(0,0,...,0,z) = 0 near
z=0.

Sketch of the proof. We set
to=t, ti=t(logt),...,t, = t(log t)*

and set u(t,z) = W(to,t1,...,t,, ). Then we have

%—TW where T—Zt, +21t;—
=0

and our equation (E) is written in the form

d rd\a
— = J —
(3.3) C(x, T, xax)W a(z)t+ Ry (tg,a;, {1‘ (6:1:) W}(j,a)elm)’
where W (to, t,,...,t,,z) is the new unknown function and ‘
Cz,A\p)=L(A\p)—z D S(cja)(z)Mp(p— 1)---(p—a+1).
(4,0)elm

(Step 1) Construction of a formal solution of (3.8). Denote by Hglto,t1,...,¢,]
be the set of all the homogeneous polynomials of degree k in (%o, ty,...,t,). Let us look
for a formal solution W of the form

(3.4) W(to, 1. sty @) = D wrg(to,ty, ..., t,) o
E>1,1>0

with wy g € Hilto, by, .. .,t,,] (for £ > 1). Set

(3.5) we =Y wey(to,...,t,) 7 € Hilto,. .., t,)[[z] (k> 1);
1>0

we have W = Zk>1 wg. By substituting this W into (3.3) and by compa.rmg the
homogeneous part of degree k with respect to to, ¢y, . . -,y in both sides of (3.3) we see
that equation (3.3) is decomposed into the following recursive family:

(3.6)x C’(a:, T,x%)wk = fi (to,:v, {Dj,awp; 1 Sp <k-1,(j,0) € Im}),
k=1,2,...,
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where f; = a(z)tp and fi, (for k > 2) is a polynomial of { Dj, awp, 1<p<k-1,(j,a) €
Im}.
Moreover, by substituting (3.5) into (3.6)x and by comparing the homogeneous part
of degree | with respect to x we see that equation (3. 6)k is decomposed into the following
recursive family:

(3-7)k,l L(T,l)wk,z = Gk, 1=0,1,2,...
with
-1 .
(3.8) gi= 3. O Cai-hT [Rlawen+ P,
(j,0)€Lm h=0

where Cja,1 are the coeﬂiments of the Taylor expansion c;, a(m) Y10 S, 1zt Mo =

1, [Nla = 2A(A-1)-- (A —a+1) for @ > 1, and ¢, are the coefficients of fy =
2,20 dk,1(to, b1, - - -, tu) Tt € Hilto, t1,- -, ty] [[a:]] which are determined by wy, ..., wk—1
provided that w;, ..., wg_1 are of the form (3.5).

Thus, to get a formal solution W in the form (3.4) it is enough to solve (3.7)¢,
inductively on (k,l) in the following way: 1) first we solve (3.7)1,0, then we solve
(3.5)1,; inductively on [ and obtain wy; 2) if wy,...,wg_1 are already constructed, we
solve (3.7)k0, then we solve (3.7)x,; inductively on [ and obtain wyg; 3) repeating the
same procedure, we can obtain a formal solution of (3.3).

Therefore, if the equation (3.7)x, is always solvable in Hi[to,?1,...,t,] we can get
a formal solution W (%o, t1,...,tu, ) of the form (3.4). Though, the equation (3.7), , is
not solvable in Hi[to,t1,...,t,] in a resonant case, and so in this case we must change

our idea: we will consider the equation (3.7)x; in a modulo class

(3-9)ks L(7,l)wky = gky  (mod. Ry),
where Rg = R1 = {0} and for k > 2

Re= |J Hioalto,ts,- ., tu] X (tit; = tytq).
i+j=p+q

This causes no troubles in the solution of (3.2), because f(t,t(logt),...,t(logt)*) =0
holds for any f(to,%1,...,t,) € Rx. Moreover we note that (3.7),; (or (3.9) ;) has the
form (7 —& (1)) - - - (1 — &m(1))wk = gk, and that if resonances occur we have £;(l) = k
for some j € {1,2,...,m}. The following lemma guarantees the solvability of (3.7),

Lemma 2. (1) If (1) # k, for any g € Hilto, t1,...,ta] (with O 5 d<p)
the equation (T — &j(I))w = g has a unique solution w € Hilto,t1,...,td). (2) If
&i(l) = k, for any g € Hilto,t1,...,t4) (with0 < d < p—1) we can ﬁnd a functzon
w € Hilto, t1,...,ta, tay1] which satzsﬁes (1 =&())w =g (mod. Ry ).

Thus, our way of solving the equation (3.7),, (or (3.9) k1) is as follows: if a resonance
does not occur at (k,l) we use (1) of lemma 2 to solve (3.7) ;; while if some resonances



occur at (k,l) we use (2) of Lemma 2 to solve (3.9);;- Note that a new variable 4,
is introduced whenever a resonance occurs. Since a resonance occurs p-times, we must
introduce a new variable also y-times. Our starting point is 910 = a(0)tp € Hiylto).
Hence, finally we obtain a formal solution Wk, at most in Hyltg,t,,...,1,)].

Summing up, we have constructed a formal solution of the form (3.4) which satisfies

(Step 2) Convergence of the formal solution (3.4). Fork = (ko, k1, ..., k) € N#tt
we write |k| = ko + k1 + --- + k, and (k) = k; + 2k, + -+++ pky. For ¢ > 0 and
w= EIFI=k wi thogks .. -t,’i“ € Hilto, 81, . .,t,] we define the norm |w|. by

_ |wgl
l‘lUIc = Ilgz:k c(E) .
It is easy to see

Lemma 3. For any w € Hifty, t,... »tu] we have

ool < (1+ c) k fuwl, -

Forc> 0, p> 0and a function f = 3159 fru(to,t1, - -, ta) 2 € Hilto, 1, ..., ta)[[z]]
we define the norm ||f|lc,, (or the formal norm ||f]], p) by

"f"c,p = Z Ifk,llc p’.

1>0

Similarly, for p > 0 and f(z) = 3,5, fiz' € C[[z]] (the ring of formal power series in
z) we define the norm || f||, (or the formal norm [1flp) by

£, =" 14l A

>0

In Gérard-Tahara [4], we have established a powerful method to prove the conver-
gence of formal solutions of non-linear partial differential equations. We will be able to
apply this method to this case and obtain the convergence of the formal solution W in
(3.4), if we prove the following proposition:

Proposition 1.  Suppose the Poincaré condition (P). Then there are positive
constants ¢ > 0, C > 0 and R > 0 such that the following estimate holds foranyk > 1:

C
(3.10) lolle,, < = Ufelle,, for any 0<p < R.
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Let us show this now. First we note the following basic lemma.

Lemma 4. If the Poincaré condition (P) is satisfied, there are positive constants
¢ >0 and A > 0 which satisfy the following property. In Lemma 2 we can choose a
solution wg, (in both cases (1) and (2)) so that the following estimate holds for any
(k,1) € N* x N:

A
(3.11) [wile € G |9k, 1l -

Proof of proposition 1. If we admit this lemma, Proposition 1 is proved in the
following way. Let ¢ > 0 and A > 0 be as in Lemma 4, and take R > 0 sufficiently
small so that 0 < R <1 and

- 1
(3.12) AQ+ep)™ R Y 1IS(cialllg < =
(4,2)€lm
By (3.8) and Lemma 3 we have
-1 o
gkdle € D S lejai-nl (1+cp) K 1% fwil, + 1ok,il,
(§,0)€Im h=0

and therefore

-1

A4 - A

L lgk,1l, <AQ+cp)™ 1( )ZI hX% leja -l [weple + 5o 19kl -
jaa Elm =

Combining this with (3.11) and (3.12) we have
: A
lwlle, , =3 lwal, 6 <Y oo l9k,1l P
(k+1)
1>0 1>0

- A
<AQ+e)™ o D I1S(eialll, ekl + o Il
(J,2)Elm

1 A
< 5 lwelle,p + 7 Il -

Thus, by setting C = 24 we obtain the estimate (3.10). O
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