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Gevrey Regularity of Solutions of Semilinear Hypoelliptic
Equations on the Plane

Nguyen Minh TRI

§1. Introduction.

In this note we discuss the Gevrey regularity (in particular, the analyticity)
of solutions of semilinear elliptic degenerate equations of Grushin’s type on R2.
Most of the results will appear in [1]. Some results are new and they are presented
here for the first time. We confine ourself with consideration of a model equation.
Precisely, we will consider the following equation

of xOf\ . . . 2

(1) Gk,xf+\Il(a:,y,f,ax,x ay)—O in a domain 2 C R,
where o 52 3
-9 . 20 k10
Gk,x = 3.2 +zx g2 + i)z By

with (z,y) e QCR?,A € C,i=+/—1 and k € Z,,Q is a bounded domain in R2.
Let us define the following quantities

4zk+luk+l

=

Ay = ghtl k41 4 i(k+1)(y —v), A_ = gF+1 4 b+l _ i(k+1)(y — v),
M = A7 g9

R= ($k+1+uk+1)2+(k+1)2(y—'v)2,p=

here we take z;* = e*!"% for 2,2, € C and if z; = re?*,—7 < ¢ < 7 then
Inz; = Inr + ip. First, we will find the uniform fundamental solution of Gk, that
is

Gk,,\Fk,A(x, Y,u, ‘U) = 6(37 - u,y— ‘U),

in the following form
Fk,A(a:’ Y, u, 'U) = F(p)M‘

After some computations we arrive at

GiaFi x = 16(k + 1)2u2k+252k [(uk+l _ $k+1)2 +(k+1)%(y— v)2] %
X MR™3F"(p) + +4(k + 1)ac"-1~u"+1[k(x"”‘f2 + 6?2 4 (k+1)%(y — v)?)-
— (6k + 4)z* W MR 2F' (p) + +(A2 — k?)z*~1ub I MR-1F (p).

[1] N. M. Tri, To appear in J. Math. Sci. Univ. Tokyo.
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Therefore, if F(p) satisfies the following hypergeometric equation

(2) p(1 —p)F"(p) + [c — (1+ a + b)p]F'(p) — abF(p) =0,
with @ = 2—’1%, b= 2%;—)‘2, ¢ = g1, then formally we will have
GraFr =0.

The general solutions of.(2) are

k+X k=X &k
2k+2"2k+2"k+1

E+2+X kE+2—-X k+2 )

F(p)zch( kt2 2%k+2 k+1t

where F(a, b, c,p) is the Gauss hypergeometric function and C,, C2 are some com-
plex constants [2].
§2. Case k is odd.

Since k is odd, we note that 0 < p < 1. Moreover, p = 1 if and only if
z=2u#0,y=v. Ifu=0,v=0then p=0; therefore, from the result of [3]

E+X k=X Kk p) 22+ Pl (k)

, , , = - 10z, 9)
k2 2k+2 k+1 T(EE)T(£25

G,MF(

we should choose ‘
r(&3)T (—fkl*z)

2 +7?:L—17rl‘(—k-%) '

Cr=-

If u # 0 then the singularities of Fi x(, ¥, u, v) will be located at the one of F(p).
On the other hand, F(p), with 0 < p < 1, has singularity only when p = 1. As
p — 1 we have the following asymptotic expansions (see [2])

(kX E=X kN r(eh)
(2k+2’2k+2,k+1’p)__F(M)I\(k—)\)

log(1 —p) + O(l),_

F(k+2+,\ k4+2—X k+2

2%k+2  2k+2 ’k+1’p):‘r(w>r(%) log(1 — p) + O(1).

[2] H. Bateman, and A. Erdelyi, 1953, vol I, p. 74.
[3] N. M. Tri, J. Math. Sci. Univ. Tokyo, vol. 6, 1999, pp. 437-452.
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We expect that Fj »(z,y,u,v) has singularity only when r = 4,y = v. Since
pHI = (4R~1) gy — —1 when (z,y) = (—u,v), we should choose

o))
2=- 1
22+7‘Tf7rf‘(%¢—f)

such that F(p) has no singularity at £ = —u,y = v. Note that the following
conditions

(3) A#E2N(k+ 1)+ k,A # £2N(k+ 1) + k + 2],

where N is a non-negative integer, guarantee that C1,C2 < 0o and hence F(p)
has logarithm growth (if u # 0) at (z,y) = (u,v).
Definition. The parameter A is called admissible if A satisfies the condition (3).

Therefore, if A is admissible then we expect that the function F(p)M , O

29 k=) k+A k=X _k
P(2k+2)r(2l¢+2)F(2k+2’ 2k+2" k_+1’p)

k4 k—)
2+ g4y k WFT 4 TS
2 +17rI‘(k_'_1)A+ AZ

Fk,»\(z’ Y, u, ‘U) ==

E£242 Y (k+2=2 ) p (k424X k+2-) k42
zul ( 2k+2 )L\ okvz ) F\ Sern aegs ki P

k4242 k42-)
22~ rhrar(k42) 4 55 400

b

will be our desired uniform fundamental solution. Indeed, we have

Theorem 1. Assume that )\ is admissible. Then

GeaFia(z,y,u,v) = 6(z — u,y — v).

Remark 1. A similar expression for Fy ¢ is also given in [4].

Let us denote Xj = 2 —iuv*Z X} = = +iu* L and Gia = XoX] +i(A +
k)u"‘la%. Noting that Fi x(z,y,u,v) = Fk (4, v, z,y), from Theorem 1 we can
easily deduce

[4] R. Beals, Journées Equations aux dérivées partielles, Saint-Jean-de-Monts, 1998, pp.

T1_Ta



Proposition 1 (Representation formula). Assume that Q C R? is a bounded
domain with piece-wise smooth boundary, f € C?%(Q) and X is admissible then we
have :

4) flz,y)= /{;Fk,,\(:c, Y, U, v)GL’,‘f(u, v)dudvf—

- Fk,,\(il?, Y, u, 'U)B;.(f(ua ’U), k, _A)ds + / f(u’ U)Bé(Fk,A(a:, Yy, u, 'U), k)ds’
a0 an

where

L(f (u,v), b, =X) = (1 — iuFvp) Xpf(u,v) —i(—A + k)uF=tvy f (u,v),
Bé(Fk,A(:c, Yy, u, ’U), k) = (Vl + z.ukVZ) X{Fk,A(IL', Y, u, 'U),
and v = (v1,3) is the unit outward normal vector on 0.
Now, we re-state a well-known theorem on hypoellipticity of G, as follows

Theorem 2. Gk ) is hypoelliptic if and only if the hypergeometric equation (2)
has no bounded solution on the interval [0,1]. ' ' A

Proof. Here, with the help of Fj x, we give a proof, which is alternative to a
well-known classical proof based on the theory of pseudo-differential operators.
Suppose that f € C%(Q) and Gi »f(z,y) = h(z,y) where h € C>(L2). Then we

can express f through h as in (4), with G}, , f(u, v) replaced by h(u,v). It is clear

that the boundary integrals give C*°(Q2) functions. For the volume integral, we
see that 9—%& = —2—%’1. Therefore, by integration by parts, we can differentiate
the integral in x one time and in y as many times as we want to. ‘And the resulting
functions are continuous. We will complete the proof if we are able to show that if

f € C*1(Q) then f € C™(R) for every positive integer n. This is the case because

we already have ‘—3—;—,@, ayf'_'{ 57 and 8‘9;:{%%, a+B<n-1 belgng to C ((Z) frqm the
above argument and assumption. We have to show that 5#‘:5’3—1:5, 3t e C(Q).
Suppose that all the derivatives of _o°f f 1< j < n — 1 are

By" b ayn—lazi M 6y"_13m-7 H
continuous. We shall prove that a—yn—_?_—ita—mj'.rr € C(€). Indeed, we have

Pf . W®f . 4 10f
(5) b?—h—.’l; EF-“ZA(C -65.
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n—2

Therefore, differentiating 51/,,—_‘3’3——1- both sides of (5) gives

dxI—
of _ " 2h
Qy"—i-19zi+l ~ Pyn—i-19gi-1

- i‘ (f) 2h(2k —1)--- (2K — i + 1)z TS

n—j+19nj—i—1
P Oy oz

- i/‘XJ: (Z) (k=1)(k=2)- (k- i)et~1 L ogn

=0 6!/" - 6.’17-7 ™

Actually, a more detailed examination of the proof of Theorem 2 would show that
the integral operators

K: h— K(h)(z,y) =/Fk,)\(:z, Y, 4, v)h(u, v)dudy,
Q
‘K: h— ‘K(h)(z,y):/ F A (u, v, z, y)h(u, v)dudv
Q

map C§°(R2) into C*>°(£2). In other words, K and K are separately regular. Since
Fj,» is a C* function in the complement of the diagonal of Q x 2, we conclude
that K and 'K are very regular.

Next, we introduce some notations

Ee={(e,B7)€Zi:a+B<t,kt>v>a+(1+k)B—t).

For a function f(z,y) on R2, we write aff,aff, f’:ff, ~Oagf for %%Q,

b

S +8 a8 .
a—aﬂﬁﬂ, %F%;—'jﬂ,x"%%ﬂ, respectively. For m € Z*, let us denote by
H5.(£2) the space of all function f € L?,.(R) such that for any compact K of
2 we have Z(a,ﬁ,'y)eEm ll4Oa,8fllL2(x) < 0o0. Now we are in a position to formu-

late the main theorem of this section.

Theorem 3. Assume that m > 2k% + 6k + 5. Let f be a HP () solution of the
equation (1) and ¥ € G°. Then f € G*. In particular, if ¥ is analytic in its
arguments then so is f.

Proof. The proof of Theorem 3 consists of Theorem 4 and Theorem 5 below. The
proof follows the scheme : f € H2, => f € C®°(Q) = f € A(Q). O

Theorem 4. Let ¥ be a C®°—function of its arguments and m > 2k2 + 6k + 5.
Assume that f € H[%.(Q) is a solution of the equation (1 ) then f € C°(Q2).

Proof. Theorem 4 can be proved with the help of Proposition 2 . O



Propomtlon 2. Let m > 2k + 6k + 5. Assume that f € H (). Then
( ’y’f’ 8:1:’ —5) loc (Q)

Next, put 7o = 2k + 2. For r € Z let ', denote the set of pairs of multi-indices
(a, B) such that T'y = T'} UTZ where

Il ={(a,f):a<ro2a+pf<r}I2={(ap) :a2zr,a+f<r—ro}
Define the following norm '

£, Qly = max 10202,/ + max max_|95%85 1],

SR, e
where |f, Q| = maXz,y)e ('fl + %;E + ‘xk_ai )

Theorem 5. Let f be a C® solution of the equation (1) and ¥ € G°. Then
f € G*. In particular, if ¥ is analytic in its arguments then so is f.

Proof. Theorem 5 can be proved with the help of Proposition 3, Corollary 1,
Lemmas 2-4. [

Proposition 3. Assume that ¥ € G°. Then there exist constants C, D such that
for every Ho > 1,H; > CH2k+3 if
1f,Qa < HoHE ™ D(d-rg—2)1, 0<d<N+1r+2<N

then

for every (o, 8) € Tn+a.

Corollary 1. Under the same hypotheses of Proposition 3 withd < N+1 replaced
byd < N, then - '

wax|0504% (5,0,1, 2 2490 < D (17, s + HoBY 7o NV = o = 1))

for every (a,f) € N1

Since Gi,» is elliptic if z # 0, it suﬁices to cons1der the case (0 0) € Q and Q is
a small nelghborhood of (0,0). Let us define the distance
ma.x{l:n""‘l—uk+1|,(k+1)|y—v|}, for zu >0
max {z**1 + vk, (K + )|y — ol }, for zu <0.

ol 90, ) = {
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For two sets S;, S;, the distance between them is defined as

S ’S = inf 1Y) ’ .
p(S1,S2) sl es p((z,y), (u,v))

Let VT(T < 1) be the cube with edges of size (in the p metric) 2T which are
parallel to the coordinate axes and centered at (0,0). Denote by V¥ the sub-cube
which is homothetic with V7 and such that the distance between its boundary and
the boundary of V7 is §. We shall prove by induction that if T is small enough
then there exist constants Ho, Hy with H; > CH2**3 such that

(6) 1£,Vifln < Ho for 0 <n<6k+4,
and
H n.—ro—2
(7) £Vl <Ho(55) " (n—ro=2)" = Quos

for n > 6k + 4, and 4 sufficiently small. Hence the desired conclusion follows. (6)
follows easily from the C> smoothness assumption on f. Assume that (7) holds
for n = N. We shall prove it for n = N+ 1. Put &' = §(1—1/N), 8" = §(1-4/N).
Fix (z,y) € V{' and then define o = p((z,y),0V7) and & = o/N. Let V;(z,y)
denote the cube with center at (z,y) and edges of length 25 which are parallel
to the coordinate axes, and S;(z,y) the boundary of V;(z,y). Note that o > §,
and V;(z,y) C V. Let Ey, E3(E2, E4) be edges of S5(z, y) which are parallel to
Oz(Oy) respectively. We have to estimate max(z’y)evsﬂ 00, (85 o f)| for all
(a7 ﬁ7 7) € El’ (ah ﬁl) € PN+17 and max(z,y)eVsTl(af-'-alaglf)l for all (alyﬂl) €
I'nt1,01 > 1,81 > 1. Let us abbreviate %, %s,g, %:—5 as 02,088,0208, respec-
tively.

Lemma 2. Assume that (o, 8,7) € E; and (a;1,01) € Tn41. Thenifa; > 1,6, >
1 there erxists a constant C such that ‘ ’

1
max |.,8a,(85 05" f(z,y))| < c(Trh £,V |y + @ (T 4 F))_

(z,)eVT 1

Lemma 3. Assume that (a, 8,7) € E1. Then there exists a constant C such that

1
et |00 0516, 0)| < O T8 11, Yy + Qv (750 4 )

(z,y)eVsT
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Lemma 4. Assume that (o, 8,7) € 21. Then there exists a constant C such that

N—ro+1 11 T 11 L
(zgl)ag/sq"l a8 (ON T f(z,)) | < C(Trr|f,y;,, et +QN(T7.T 4 H1))

Lemma 5. Assume that (o1,B31) € Int1\['n,1 > 1,01 2 1. Then there exists
a constant C such that

(z,y)GVST Hl

max | (8711785 f(z,y))| < C(T’=_*1*T|f,V;‘5IN+1 +QN(Tﬁ—1 + L))

§3. Case k is even.

A. First, we consider the case A = 2N(k + 1), where N is an integer. In
this case we will prove a similar result as in §2 by establishing the explicit uni-
form fundamental solutions of Gk 2n(k+1)- Let us maintain the notations used for
p,Ay,A_, M, Fy ,,... from the very beginning of the paper (now, of course, with
an even k). If (u,v) # (0,v) is fixed then the real pakrts of A, A_ change sign when

T kA _ k=)
(z,y) passes through (—u,v). Therefore, M = A _,_7"j;_"‘TA_§7‘+_2 may have singulari-

ties alone the half-line (z,v) with < —u for an arbitrary complex number A. But
k=X
2

4+

if A = 2N(k + 1) then it is not difficult to see that M = A;fﬁ"_"‘A:m is smooth
alone the half-line (z, v) with < —u, that is M(-,-,u,v) € C®(R*\{(u,v), (—u,v)}).
Moreover, when k is even and u # 0 we have —oo < p < 1. More  precisely,
p — 1 when (z,y) = (u,v), and p = —oo when (z,y) = (—u,v). If N <0 and
p — —oo then from the asymptotic expansions of hypergeometric functions (see [2],
p. 63 ) we should choose the expressions for constants C,, C as in the beginning of
the paper (with X replaced by 2N (k+1)). And we will have FraNk+1) (s u,v) €
C*(R?\(u,v)), with

Fi 2N (k+1) (—%, v,u,v) = 0.

Similar conclusions hold for Fy on(k+1)(Z; Y, 4, v) when N > 0. If N = 0 then
Fk,O(’, -,u,'v) € Coo(R2\(u’ ’U)), with

kn
cot 503

Fro(-u,v,u,0) = ——°¢



Theorem 6. Let ¥ € G°. Assume that m > 2k2 + 6k + 5,A=2N(k+1), and
[ is a H; () solution of the equation (1). Then f € G®. In particular, if ¥ is
analytic in its arguments then so is f.

Proof. Almost all the arguments used for the case when k is odd can be applied
here. Therefore, we only give the sketch of the proof. Instead of the distance p in
§2 we use the following metric

ﬁ((u’ 'l)), (2, y)) = max{l:z:k‘*'l - uk+1|a (k + l)ly - UI}D

B. In this sub-section we will present some computations for finding the funda-
mental solutions of G with source at the origin (0,0) for X other than the values
2N(k + 1) considered in sub-section A. Make the following change of variables

k+1
z = p| sinOI‘iTsign(sinG),y = :_*_ 1 cosf,0 € (—m, ).
Then Gy, » will be transformed into
ign(sin 0) | sin 8] 571 | si 06—2+(k+1)2 “25ing 2 4
sign(sin )| sin sin 32 P sinbo

(tAcosd + (k + 1) sin o)p-la% + (k+1)p~%(kcosd — iAsin 0)%) :

If we seek the fundamental solution in the form Fi x(z,y) = p~*F(6) then F(0)
must satisfy the following equation

(k +1)*sin0F"(6) + (k + 1) (k cos@ — iAsin 6) F'(8)—
(8) —tkAcos@F(0) = 0.

The general solutions of (8) are

k i

o :
F(6) = (C3+C4/ |sins|"FTe™ +'1ds)e7:'¥1,
0

where C3 and C; are some complex constants. Among all these solutions, we
are interested in finding a non-trivial periodic solution. When A = 2N (k+1) -
this case was considered in sub-section A - the periodic solution is F6) = ei%,
and the function Fi x(z,y) = p—%F(0) serves as a fundamental solution. When
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A = (2N + 1)(k + 1) then the periodic solution again is F(0) = e*+T. But in
this case, we have Fy x(z,y) = p~*F(6) is a non-smooth solution of the equation
Graf(z,y) = 0 (see [3]); hence, hypoellipticity for Gg,x fails in this case. If
A # 2N(k+ 1) and A # (2N + 1)(k + 1) then we should choose

T

iC4(eT+T fowlsinsrﬁfe'%fds-{—e—%% f_oﬂlsinsr?%e—mdsv)

Cs = ;
2sin -k_-}——

A

1
to obtain the only periodic solution. In this case, the function Fy, z(z,y) = pFF(0)
will be our desired fundamental solution.
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