Singular Solutions of the Briot-Bouquet Type Partial Differential Equations

Caritas College, Hiroshi Yamazawa カリタス女子短期大学, 山澤浩司

1 Introduction

In this talk, we will study the following type of nonlinear singular first order partial differential equations:

$$t\partial_t u = F(t, x, u, \partial_x u) \tag{1.1}$$

where $(t,x)=(t,x_1,\ldots,x_n)\in C_t\times C_x^n$, $\partial_x u=(\partial_1 u,\ldots,\partial_n u)$, $\partial_t=\frac{\partial}{\partial t}$, $\partial_i=\frac{\partial}{\partial x_i}$ for $i=1,\ldots,n$, and F(t,x,u,v) with $v=(v_1,\ldots,v_n)$ is a function defined in a polydisk Δ centered at the origin of $C_t\times C_x^n\times C_u\times C_v^n$. Let us denote $\Delta_0=\Delta\cap\{t=0,u=0,v=0\}$.

The assumptions are as follows:

- (A1) F(t, x, u, v) is holomorphic in \triangle ,
- (A2) F(0, x, 0, 0) = 0 in Δ_0 ,

(A3)
$$\frac{\partial F}{\partial v_i}(0, x, 0, 0) = 0$$
 in \triangle_0 for $i = 1, \ldots, n$.

Definition 1.1 ([2], [3]) If the equation (1.1) satisfies (A1), (A2) and (A3) we say that the equation (1.1) is of Briot-Bouquet type with respect to t.

Definition 1.2 ([2], [3]) Let us define

$$\rho(x) = \frac{\partial F}{\partial u}(0, x, 0, 0),$$

then the holomorphic function $\rho(x)$ is called the characteristic exponent of the equation (1.1).

Let us denote by

- 1. $\mathcal{R}(\mathbb{C}\setminus\{0\})$ the universal covering space of $\mathbb{C}\setminus\{0\}$,
- 2. $S_{\theta} = \{t \in \mathcal{R}(\mathbb{C} \setminus \{0\}); |\arg t| < \theta\},$
- 3. $S(\epsilon(s)) = \{t \in \mathcal{R}(\mathbb{C}\setminus\{0\}); \ 0 < |t| < \epsilon(\arg t)\}$ for some positive-valued function $\epsilon(s)$ defined and continuous on \mathbb{R} ,

- 4. $D_R = \{x \in \mathbf{C}^n; |x_i| < R \text{ for } i = 1, \dots, n\},\$
- 5. $\mathbb{C}\{x\}$ the ring of germs of holomorphic functions at the origin of \mathbb{C}^n .

Definition 1.3 We define the set $\tilde{\mathcal{O}}_+$ of all functions u(t,x) satisfying the following conditions;

- 1. u(t,x) is holomorphic in $S(\epsilon(s)) \times D_R$ for some $\epsilon(s)$ and R > 0,
- 2. there is an a > 0 such that for any $\theta > 0$ and any compact subset K of D_R

$$\max_{x \in K} |u(t,x)| = O(|t|^a) \quad \text{as} \quad t \to 0 \quad \text{in} \quad S_{\theta}.$$

We know some results on the equation (1.1) of Briot-Bouquet type with respect to t. We concern the following result. Gérard R. and Tahara H. studied in [2] the structure of holomorphic and singular solutions of the equation (1.1) and proved the following result;

Theorem 1.4 (Gérard R. and Tahara H.) If the equation (1.1) is of Briot-Bouquet type and $\rho(0) \notin \mathbb{N}^* = \{1, 2, 3, ...\}$ then we have;

- (1) (Holomorphic solutions) The equation (1.1) has a unique solution $u_0(t,x)$ holomorphic near the origin of $\mathbb{C} \times \mathbb{C}^n$ satisfying $u_0(0,x) \equiv 0$.
- (2) (Singular solutions) Denote by S_+ the set of all $\tilde{\mathcal{O}}_+$ -solutions of (1.1).

$$S_{+} = \left\{ \begin{array}{ll} \{u_0(t,x)\} & \text{when} & Re\rho(0) \leq 0, \\ \{u_0(t,x)\} \cup \{U(\varphi); 0 \neq \varphi(x) \in \mathbf{C}\{x\}\} & \text{when} & Re\rho(0) > 0, \end{array} \right.$$

where $U(\varphi)$ is an $\widetilde{\mathcal{O}}_+$ -solution of (1.1) having an expansion of the following form:

$$U(\varphi) = \sum_{i \ge 1} u_i(x)t^i + \sum_{i+2j \ge k+2, j \ge 1} \varphi_{i,j,k}(x)t^{i+j\rho(x)}(\log t)^k, \ \varphi_{0,1,0}(x) = \varphi(x).$$

The purpose of this paper is to determine S_+ in the case $\rho(0) \in \mathbb{N}^*$.

The main result of this paper is;

Theorem 1.5 If the equation (1.1) is of Briot-Bouquet type and if $\rho(0) = N \in \mathbb{N}^*$ and $\rho(x) \not\equiv \rho(0)$, then

$$S_+ = \{U(\varphi); \ \varphi(x) \in \mathbb{C}\{x\}\},$$

where $U(\varphi)$ is an $\tilde{\mathcal{O}}_+$ -solution of (1.1) having an expansion of the following form:

$$\begin{split} U(\varphi) &= u_1^0(x)t + u_0^{e_0}(x)\phi_N(t,x) + \sum_{\substack{i+|\beta| \geq 2, |\beta| < \infty \\ [\beta] \leq i+|\beta| - 2}} u_i^\beta(x)t^i \Phi_N^\beta \\ &+ w_{0,1,0}^0(x)t^{\rho(x)} + \sum_{\substack{i+j+|\beta| \geq 2, |\beta| < \infty \\ j \geq 1, [\beta] \leq i+j+|\beta| - 2}} \sum_{\substack{k \leq i+|\beta|_0 + |\beta|_1 \\ +2(j-1)}} w_{i,j,k}^\beta(x)t^{i+j\rho(x)} \{\log t\}^k \Phi_N^\beta, \end{split}$$

where $u_N^0(x) \equiv 0$, $w_{0,1,0}^0(x) = \varphi(x)$ is an arbitrary holomorphic function and the other coefficients $u_i^{\beta}(x)$, $w_{i,j,k}^{\beta}(x)$ are holomorphic functions determined by $w_{0.1.0}^0(x)$ and defined in a common disk, and

$$\begin{split} l &= (l_1, \dots, l_n) \in \mathbf{N}^n, \ |l| = l_1 + \dots + l_n, \ \beta = (\beta_l \in \mathbf{N}; \ l \in \mathbf{N}^n), \\ |\beta| &= \sum_{|l| \ge 0} \beta_l, \ |\beta|_p = \sum_{|l| = p} \beta_l \ for \ p \ge 0, \ [\beta] = \sum_{|l| \ge 2} (|l| - 1)\beta_l, \\ \Phi_N^{\beta} &= \prod_{|l| \ge 0} \left(\frac{\partial_x^l \phi_N}{l!} \right)^{\beta_l}, \ \partial_x^l = \partial_1^{l_1} \cdots \partial_n^{l_n}, \ \phi_N(t, x) = \frac{t^{\rho(x)} - t^N}{\rho(x) - N}. \end{split}$$

The following lemma will play an important role in the proof of Theorem 1.5. At first, we define some notations. We set for $l \in \mathbb{N}^n$, $e_l = (\beta_k; k \in \mathbb{N}^n)$ with $\beta_l = 1$ and $\beta_k = 0$ for $k \neq l$ and for $p \in \{1, 2, ..., n\}$, $e(p) = (i_1, ..., i_n)$ with $i_p = 1$ and $i_q = 0$ for $q \neq p$, and define $l^1 < l^0$ is defined by $|l^1| < |l^0|$ and $l_i^1 \leq l_i^0$ for $i=1,\ldots,n$.

Lemma 1.6 Let $\rho(x)$, ϕ_N and Φ_N^{β} be as in Theorem 1.5. Then we have; 1. $\partial_p \Phi_N^{\beta} = \sum_{|l| \geq 0} \beta_l (l_p + 1) \Phi_N^{\beta - e_l + e_{l + e(p)}}$ for $i = 1, \ldots, n$, 2. $t \partial_t \phi_N = \rho(x) \phi_N + t^N$,

1.
$$\partial_p \Phi_N^\beta = \sum_{|l| \geq 0} \beta_l(l_p + 1) \Phi_N^{\beta - e_l + e_{l+e(p)}}$$
 for $i = 1, \ldots, n$,

2.
$$t\partial_t \phi_N = \rho(x) \phi_N + t^N$$

3.
$$t\partial_t \Phi_N^{\beta} = |\beta| \rho(x) \Phi_N^{\beta} + \beta_0 t^N \Phi_N^{\beta - e_0} + \sum_{|l^0| \ge 1} \sum_{l^1 < l^0} \beta_{l^0} \frac{\partial_x^{(l^0 - l^1)!} \rho(x)}{l^0 - l^1} \Phi_N^{\beta - e_{l^0} + e_{l^1}}$$

Construction of formal solutions in the case 2 $\rho(0) = 1$

By [2] (Gérard-Tahara), if the equation (1.1) is of Briot-Bouquet type with respect to t, then it is enough to consider the following equation:

$$Lu = t\partial_t u - \rho(x)u = a(x)t + G_2(x)(t, u, \partial_x u)$$
 (2.1)

where $\rho(x)$ and a(x) are holomorphic functions in a neighborhood of the origin, and the function $G_2(x)(t, X_0, X_1, \ldots, X_n)$ is a holomorphic function in a neighborhood of the origin in $\mathbf{C}_x^n \times \mathbf{C}_t \times \mathbf{C}_{X_0} \times \mathbf{C}_{X_1} \times \cdots \times \mathbf{C}_{X_n}$ with the following expansion:

$$G_2(x)(t, X_0, X_1, \dots, X_n) = \sum_{p+|\alpha| \ge 2} a_{p,\alpha}(x) t^p \{X_0\}^{\alpha_0} \{X_1\}^{\alpha_1} \cdots \{X_n\}^{\alpha_n}$$

and we may assume that the coefficients $\{a_{p,\alpha}(x)\}_{p+|\alpha|\geq 2}$ are holomorphic functions on D_{R_0} for a sufficiently small $R_0 > 0$. Let $0 < R < R_0$. We put $A_{p,\alpha}(R) := \max_{x \in D_R} |a_{p,\alpha}(x)| \text{ for } p + |\alpha| \ge 2. \text{ Then for } 0 < r < R$

$$\sum_{p+|\alpha|\geq 2} \frac{A_{p,\alpha}(R)}{(R-r)^{p+|\alpha|-2}} t^p X_0^{\alpha_0} X_1^{\alpha_1} \times \cdots \times X_n^{\alpha_n}$$
(2.2)

is convergent in a neighborhood of the origin.

In this section, we assume $\rho(0) = 1$ and $\rho(x) \not\equiv 1$ and we will construct formal solutions of the equation (2.1). In generally, we set $u(t,x) = \sum_{i=1}^{N-1} u_i(x)t^i + t^{N-1}w(t,x)$, and we consider an equation for w(t,x).

Proposition 2.1 If $\rho(0) = 1$ and $\rho(x) \not\equiv 1$, the equation (2.1) has a family of formal solutions of the form:

$$u = u_0^{e_0}(x)\phi_1 + \sum_{m \ge 2} \sum_{\substack{i+|\beta|=m\\ [\beta] \le m-2}} u_i^{\beta}(x)t^i \Phi_1^{\beta}$$

$$+ w_{0,1,0}^0(x)t^{\rho(x)} + \sum_{\substack{m \ge 2\\ j \ge 1, [\beta] \le m-2}} \sum_{\substack{k \le i+|\beta|_0+|\beta|_1\\ +2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta} (2.3)$$

where $w_{0,1,0}^0(x)$ is an arbitrary holomorphic function and the other coefficients $u_i^{\beta}(x)$, $w_{i,j,k}^{\beta}(x)$ are holomorphic functions determined by $w_{0,1,0}^0(x)$ and defined in a common disk.

Remark 2.2 By the relation $[\beta] \leq m-2$ in summations of the above formal solution, we have $\beta_l = 0$ for any $l \in \mathbb{N}^n$ with $|l| \geq m$.

We define the following two sets U_m and W_m for $m \geq 1$ to prove Proposition 2.1.

Definition 2.3 We denote by U_m the set of all functions u_m of the following forms:

$$u_{1} = u_{1}^{0}(x)t + u_{0}^{e_{0}}(x)\phi_{1},$$

$$u_{m} = \sum_{\substack{i+|\beta|=m\\ [\beta] \leq m-2}} u_{i}^{\beta}(x)t^{i}\Phi_{1}^{\beta} \quad for \ m \geq 2,$$
(2.4)

and denote by W_m the set of all functions w_m of the following forms:

$$w_{1} = w_{0,1,0}^{0}(x)t^{\rho(x)},$$

$$w_{m} = \sum_{\substack{i+j+|\beta|=m\\j>1,|\beta|< m-2}} \sum_{\substack{k\leq i+|\beta|_{0}+|\beta|_{1}\\+2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^{k} \Phi_{1}^{\beta} \quad \text{for } m \geq 2$$

$$(2.5)$$

where $u_i^{\beta}(x)$, $w_{i,j,k}^{\beta}(x) \in \mathbf{C}\{x\}$.

We can rewrite the formal solution (2.3) as follows:

$$u = \sum_{m \ge 1} (u_m + w_m) \quad \text{where } u_m \in U_m, \ w_m \in W_m.$$

Let us show important relations of u_m and w_m for $m \geq 2$. By Lemma 1.6, we have

$$Lw_{m} = \sum_{\substack{i+j+|\beta|=m\\j\geq 1, [\beta]\leq m-2}} \sum_{\substack{k\leq i+|\beta|_{0}+|\beta|_{1}\\+2(j-1)}} \left\{ \{i+(j+|\beta|-1)\rho(x)\} w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^{k} \Phi_{1}^{\beta} + k w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^{k-1} \Phi_{1}^{\beta} + \beta_{0} w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)+1} \{\log t\}^{k} \Phi_{1}^{\beta-e_{0}} + \sum_{|l^{0}|=1}^{m-1} \sum_{l^{1}< l^{0}} \beta_{l^{0}} \frac{\partial_{x}^{l^{0}-l^{1}} \rho(x)}{(l^{0}-l^{1})!} w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^{k} \Phi_{1}^{\beta-e_{l^{0}}+e_{l^{1}}} \right\}.$$

We show two lemmas.

Lemma 2.4 If $u_m \in U_m$ and $w_m \in W_m$, then $Lu_m \in U_m$ and $Lw_m \in W_m$.

Lemma 2.5 If $u_m \in U_m$ and $w_m \in W_m$, then the following relations hold for i, j = 1, ..., n

- 1. $a(x)U_m \subset U_m$ and $a(x)W_m \subset W_m$ for any holomorphic function a(x),
- 2. tU_m , $\phi_1 U_m \subset U_{m+1}$ and $t^{\rho(x)} U_m$, tW_m , $t^{\rho(x)} W_m$, $\phi_1 W_m \subset W_{m+1}$,
- 3. $u_m \times u_n$, $\partial_i u_m \times \partial_j u_n$, $\partial_i u_m \times u_n \in U_{m+n}$,
- 4. $w_m \times w_n$, $\partial_i w_m \times \partial_j w_n$, $\partial_i w_m \times w_n$, $\in W_{m+n}$,
- 5. $u_m \times w_n$, $\partial_i u_m \times w_n$, $u_m \times \partial_j w_n$, $\partial_i u_m \times \partial_j w_n \in W_{m+n}$.

Let us show that u_m and w_m are determined inductively on $m \ge 1$. By substituting $\sum_{m>1} (u_m + w_m)$ into (2.1), we have

$$(1 - \rho(x))u_1^0(x) + u_0^{e_0}(x) = a(x), \tag{2.6}$$

and for $m \geq 2$

$$Lu_{m} = \sum_{\substack{p+|\alpha| \geq 2\\ p+|m_{n}|=m}} a_{p,\alpha}(x)t^{p} \prod_{h_{0}=1}^{\alpha_{0}} u_{m_{0,h_{0}}} \prod_{j=1}^{n} \prod_{h_{j}=1}^{\alpha_{j}} \partial_{j} u_{m_{j,h_{j}}}, \tag{2.7}$$

$$Lw_{m} = \sum_{\substack{p+|\alpha| \geq 2\\ p+|m_{n}|=m}} a_{p,\alpha}(x)t^{p} \prod_{h_{0}=1}^{\alpha_{0}} (u_{m_{0,h_{0}}} + w_{m_{0,h_{0}}}) \prod_{j=1}^{n} \prod_{h_{j}=1}^{\alpha_{j}} \partial_{j}(u_{m_{j,h_{j}}} + w_{m_{j,h_{j}}})$$

$$- \sum_{\substack{p+|\alpha| \geq 2\\ p+|m_{n}|=m}} a_{p,\alpha}(x)t^{p} \prod_{h_{0}=1}^{\alpha_{0}} u_{m_{0},h_{0}} \prod_{j=1}^{n} \prod_{h_{j}=1}^{\alpha_{j}} \partial_{j}u_{m_{j,h_{j}}}, \qquad (2.8)$$

where $|m_n| = \sum_{i=0}^n m_i(\alpha_i)$ and $m_i(\alpha_i) = m_{i,1} + \cdots + m_{i,\alpha_i}$ for $i = 0, 1, \ldots, n$. We take any holomorphic function $\varphi(x) \in \mathbb{C}\{x\}$ and put $w_{0,1,0}^0(x) = \varphi(x)$, and by (2.6), we put $u_1^0(x) \equiv 0$ and $u_0^{e_0}(x) = a(x)$.

For $m \geq 2$, let us show that u_m and w_m are determined by induction. By Lemma 2.5, the right side of (2.7) belongs to U_m and the right side of (2.8) belongs to W_m . Further by $m_{j,h_j} \geq 1$, we have $m_{j,h_j} < m$ for $h_j = 1, \ldots, \alpha_j$ and $j = 0, \ldots, n$. Then for $m \geq 2$, we compare with the coefficients of $t^i \Phi_1^{\beta}$ and $t^{i+j\rho(x)} \{ \log t \}^k \Phi_1^{\beta}$ respectively for (2.7) and (2.8), then put

$$\{i + (|\beta| - 1)\rho(x)\}u_{i}^{\beta}(x)$$

$$+ (\beta_{0} + 1)u_{i-1}^{\beta+e_{0}}(x) + \sum_{|l^{0}|=1}^{m-1} \sum_{0 \leq l^{1} < l^{0}} (\beta_{l^{0}} + 1) \frac{\partial_{x}^{l^{0}-l^{1}}\rho(x)}{(l^{0} - l^{1})!} u_{i}^{\beta+e_{l^{0}}-e_{l^{1}}}(x)$$

$$= f_{i}^{\beta}(\{a_{p,\alpha}\}_{2 \leq p+|\alpha| \leq m}, \{u_{i'}^{\beta'}(x)\}_{i'+|\beta'| \leq m})$$

$$(2.9)$$

and

$$\{i + (j + |\beta| - 1)\rho(x)\}w_{i,j,k}^{\beta}(x) + (k + 1)w_{i,j,k+1}^{\beta}(x)$$

$$+ (\beta_0 + 1)w_{i-1,j,k}^{\beta+e_0}(x) + \sum_{|l^0|=1}^{m-1} \sum_{0 \le l^1 < l^0} (\beta_{l^0} + 1) \frac{\partial_x^{l^0-l^1}\rho(x)}{(l^0 - l^1)!} w_{i,j,k}^{\beta+e_{l^0}-e_{l^1}}(x)$$

$$= g_{i,j,k}^{\beta}(\{a_{p,\alpha}\}_{2 \le p+|\alpha| \le m}, \{u_{i'}^{\beta'}(x)\}_{i'+|\beta'| < m}, \{w_{i',j',k'}^{\beta'}(x)\}_{i'+j'+|\beta'| < m}).$$

$$(2.10)$$

Hence we obtain Proposition 2.1. Q.E.D.

3 Convergence of the formal solutions in the case $\rho(0) = 1$

In this section, we show that the formal solution (2.3) converges in $\widetilde{\mathcal{O}}_+$.

Proposition 3.1 Let γ satisfy $0 < \gamma < 1$ and let λ be sufficiently large. Then for any sufficiently small r > 0 we have the following result;

For any $\theta > 0$ there is an $\epsilon > 0$ such that the formal solution (2.3) converges in the following region:

$$\{(t,x) \in \mathbf{C}_t \times \mathbf{C}_x^n; \ |\eta(t,\lambda)t| < \epsilon, \ |\eta(t,\lambda)^2 t^{\rho(x)}| < \epsilon, |\eta(t,\lambda)t^{\gamma}| < \epsilon, \ t \in S_\theta \ and \ x \in D_r \},$$

where $\eta(t, \lambda) = \max\{|(\log t)/\lambda|, 1\}$.

In this section, we put $w_{i,0,0}^{\beta}(x) = u_i^{\beta}(x)$ and $w_{i,0,k}^{\beta}(x) \equiv 0$ for $k \geq 1$ in the formal solution (2.3). Then the formal solution (2.3) is as follows:

$$u = w_{0,0,0}^{e_0}(x)\phi_1 + w_{0,1,0}^0(x)t^{\rho(x)} + \sum_{\substack{m \ge 2 \\ [\beta] \le m-2}} \sum_{\substack{i+j+|\beta|=m \\ +2(j-1)}} \sum_{\substack{k \le i+|\beta|_0+|\beta|_1 \\ +2(j-1)}} w_{i,j,k}^{\beta}(x)t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}.$$
(3.1)

Let us define the following set V_m for (3.1).

Definition 3.2 We denote by V_m the set of all the functions v_m of the following forms:

$$v_m = u_m + w_m \quad for \quad u_m \in U_m \quad and \quad w_m \in W_m. \tag{3.2}$$

We define the following estimate for the function v_m .

Definition 3.3 For the function (3.2), we define

$$||v_{1}||_{r,c,\lambda} = ||v_{1}||_{r,c} := \frac{||w_{0,0,0}^{e_{0}}||_{r}}{c} + ||w_{0,1,0}^{0}||_{r},$$

$$||v_{m}||_{r,c,\lambda} := \sum_{\substack{i+j+|\beta|=m \\ [\beta] \le m-2}} \sum_{\substack{k \le i+|\beta|_{0}+|\beta|_{1} \\ +2(j-1)}} \frac{||w_{i,j,k}^{\beta}||_{r}\lambda^{k}}{c^{<\beta>}} \quad for \quad m \ge 2$$

$$(3.3)$$

for c > 0 and $\lambda > 0$, where

$$||w_{i,j,k}^{\beta}||_r = \max_{x \in D_r} |w_{i,j,k}^{\beta}(x)| \text{ and } < \beta > = \sum_{|l| \ge 0} (|l| + 1)\beta_l.$$

We will make use of

Lemma 3.4 For a holomorphic function f(x) on D_{R_0} , we have

$$||\partial_x^{\alpha} f||_R \leq \frac{\alpha!}{(R_0 - R)^{|\alpha|}}||f||_{R_0} \quad \textit{for} \quad 0 < R < R_0.$$

Proof. By Cauchy's integral formula, we have the desired result. Q.E.D

Lemma 3.5 If a holomorphic function f(x) on D_R satisfies

$$||f||_r \le \frac{C}{(R-r)^p}$$
 for $0 < r < R$

then we have

$$||\partial_i f||_r \leq \frac{Ce(p+1)}{(R-r)^{p+1}}$$
 for $0 < r < R$, $i = 1, \ldots, n$.

For the proof, see Hörmander ([5]lemma 5.1.3)

Let us show the following estimate for the function Lv_m .

Lemma 3.6 Let $0 < R < R_0$. Then there exists a positive constant σ such that for $m \ge 2$, if $v_m \in V_m$ we have

$$||Lv_m||_{r,c,\lambda} \ge \frac{\sigma}{2}m||v_m||_{r,c,\lambda} \quad for \quad 0 < r \le R$$

for sufficiently small c > 0 and sufficiently large $\lambda > 0$.

Let us estimate the function $\partial_i v_m$.

Definition 3.7 For the function $v_m \in V_m$ we define

$$D_p v_m := \sum_{\substack{i+j+|\beta|=m \\ |\beta| < m-2}} \sum_{\substack{k \le i+|\beta|_0 + |\beta|_1 \\ +2(j-1)}} \partial_p w_{i,j,k}^{\beta}(x) t^{i+j\rho(x)} \{\log t\}^k \Phi_1^{\beta}$$

for $p=1,\ldots,n$.

Lemma 3.8 If $v_m \in V_m$, then for i = 1, ..., n, we have

$$||\partial_{i}v_{m}||_{r,c,\lambda} \leq ||D_{i}v_{m}||_{r,c,\lambda} + c_{0}\lambda m||v_{m}||_{r,c,\lambda} + \frac{3m-2}{c}||v_{m}||_{r,c,\lambda} \quad for \quad 0 < r \leq R. \tag{3.4}$$

Therefore by the relations (2.7), (2.8) and Lemma 3.8, we have the following lemma.

Lemma 3.9 If $u = \sum_{m \geq 1} v_m$ is a formal solution of the equation (2.1) constructed in Section 2, we have the following inequality for v_m $(m \geq 2)$:

$$\begin{split} ||Lv_{m}||_{r,c,\lambda} &\leq \sum_{\substack{p+|\alpha|\geq 2\\p+|m_{n}|=m}} ||a_{p,\alpha}||_{r} \prod_{h_{0}=1}^{\alpha_{0}} ||v_{m_{0,h_{0}}}||_{r,c,\lambda} \\ &\times \prod_{i=1}^{n} \prod_{h_{i}=1}^{\alpha_{i}} \{||D_{i}v_{m_{i,h_{i}}}||_{r,c,\lambda} + c_{0}\lambda m_{i,h_{i}}||v_{m_{i,h_{i}}}||_{r,c,\lambda} + \frac{3m_{i,h_{i}}-2}{c}||v_{m_{i,h_{i}}}||_{r,c,\lambda} \}. \end{split}$$

Let us define a majorant equation to show that the formal solution (3.1) converges.

We take A_1 so that

$$\frac{||w_{0,0,0}^{e_0}||_R}{c} + ||w_{0,1,0}^0||_R \le A_1,$$

$$\frac{||\partial_i w_{0,0,0}^{e_0}||_R}{c} + ||\partial_i w_{0,1,0}^0||_R \le A_1$$

for $i = 1, \ldots, n$.

Then we consider the following equation:

$$\frac{\sigma}{2}Y = \frac{\sigma}{2}A_{1}t_{1} + \frac{1}{R-r} \sum_{p+|\alpha|>2} \frac{A_{p,\alpha}(R)}{(R-r)^{p+|\alpha|-2}} t_{1}^{p} Y^{\alpha_{0}} \prod_{i=1}^{n} \left(eY + c_{0}\lambda Y + \frac{3}{c}Y \right)^{\alpha_{i}} . \quad (3.5)$$

The equation (3.5) has a unique holomorphic solution $Y = Y(t_1)$ with Y(0) = 0 at $(Y, t_1) = (0, 0)$ by implicit function theorem. By an easy calculation, the solution $Y = Y(t_1)$ has the following form:

$$Y = \sum_{m \ge 1} Y_m t_1^m \text{ with } Y_m = \frac{C_m}{(R-r)^{m-1}}$$

where $Y_1 = C_1 = A_1$ and $C_m \ge 0$ for $m \ge 1$. Then we have;

Lemma 3.10 For $m \ge 1$, we have

$$m||v_m||_{r,c,\lambda} \le Y_m \quad \text{for} \quad 0 < r < R. \tag{3.6}$$

Let us show that the formal solution (3.1) converges by using (3.6) in Lemma 3.10. We rewrite v_m as follows:

$$v_m = \sum_{\substack{i+j+|\beta|=m\\ [\beta] \leq m-2}} \sum_{\substack{k \leq i+|\beta|_0+|\beta|_1\\ +2(j-1)}} \frac{w_{i,j,k}^{\beta}(x)\lambda^k}{c^{<\beta>}} t^{i+j\rho(x)} \left(\frac{\log t}{\lambda}\right)^k \Psi_1^{\beta},$$

where

$$\Psi_1^{\beta} = \prod_{|l| > 0} \left(c^{|l|+1} \frac{\partial_x^l \phi_1}{l!} \right)^{\beta_l}. \tag{3.7}$$

Firstly let us estimate (3.7). For $||\phi_1||_R$, we have the following lemma.

Lemma 3.11 For any γ with $0 < \gamma < 1$, there is an R > 0 such that

$$||\phi_1||_R = O(|t|^{\gamma})$$
 as $t \to 0$ in S_{θ}

holds for any $\theta > 0$.

By Lemma 3.11, there exists a positive constant c_1 such that

$$||\phi_1||_R \le c_1 |t|^{\gamma} \quad \text{in} \quad S_{\theta}. \tag{3.8}$$

By Lemma 3.4 and (3.8), we have

$$||\Psi_1^{\beta}||_r \le \prod_{|l| \ge 0} \left(c^{|l|+1} \frac{c_1}{(R-r)^{|l|}} |t|^{\gamma} \right)^{\beta_l} = \left(\frac{c}{R-r} \right)^{<\beta>} \left(c_1 (R-r) |t|^{\gamma} \right)^{|\beta|} \tag{3.9}$$

for $0 < r < R < R_0$ in S_{θ} .

Let us estimate $t^{i+j\rho(x)} \left(\frac{\log t}{\lambda}\right)^k \Psi_1^{\beta}$.

We put $\eta(t,\lambda) = \max\left\{\left|\frac{\log t}{\lambda}\right|, 1\right\}, c_2 = \max\left\{\frac{c}{R-r}, 1\right\} \text{ and } c_3 = c_1(R-r).$ Since

we have $[\beta] \le m-2 < m = i+j+|\beta|, <\beta > \le 2|\beta|+[\beta] \le i+j+3|\beta|$ and $k \le i+|\beta|_0+|\beta|_1+2(j-1) \le i+|\beta|+2j$, we obtain

$$\left\| t^{i+j\rho(x)} \left(\frac{\log t}{\lambda} \right)^k \Psi_1^{\beta} \right\|_r \leq \left\{ |c_2\eta(t,\lambda)t| \right\}^i \left\{ ||c_2\eta(t,\lambda)^2 t^{\rho(x)}||_r \right\}^j \left\{ |(c_2)^3 c_3\eta(t,\lambda) t^{\gamma}| \right\}^{|\beta|}$$

in S_{θ} . For any sufficiently small $\epsilon > 0$, there exists a sufficiently small $\delta > 0$ such that for any $t \in S_{\theta}$ with $0 < |t| < \delta$ we have

$$|c_2\eta(t,\lambda)t|<\epsilon, \ ||c_2\eta(t,\lambda)^2t^{\rho(x)}||_r<\epsilon, \ |(c_2)^3c_3\eta(t,\lambda)t^{\gamma}|<\epsilon.$$

Then by Lemma 3.10, we have

$$||u||_r \le \sum_{m>1} Y_m \epsilon^m \tag{3.10}$$

for sufficiently small |t| in S_{θ} . Hence the formal solution (3.1) converges for $x \in D_r$ and sufficiently small |t| in S_{θ} . Q.E.D.

References

- [1] Briot, Ch. and Bouquet, J. Cl., Recherches sur les propriétés des fonctions définies par des équations différentielles, J. Ecole Polytech., 21(1856), 133-197.
- [2] Gérard, R. and Tahara, H., Holomorphic and Singular Solutions of Nonlinear Singular First Order Partial Differential Equations, Publ. RIMS, Kyoto Univ., 26(1990), 979-1000.
- [3] _____, Singular Nonlinear Partial Differential Equations, Vieweg, 1996.
- [4] Hill, E., Ordinary differential equations in the complex domain, John Wiley and Sons, 1976.
- [5] Hörmander, L., Linear partial differential operators, Springer, 1963.
- [6] Kimura T., Ordinary differential equations, Iwanami Shoten, 1977 (in Japanese).
- [7] Yamane, H., Nonlinear Singular First Order Partial Differential Equations Whose Characteristic Exponent Takes a Positive Integral Value, Publ. RIMS, Kyoto Univ., 33(1997), 801–811.