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Singular Solutions of the Briot-Bouquet Type
Partial Differential Equations

Caritas College, Hiroshi Yamazawa
AY G ALFEMKE, ILEKET)
1 Introduction

In this talk, we will study the following ty~e of nonlinear singular first order
partial differential equations:

t0u = F (t,z,u,0,u) - (1)

7/ a

where (t,2) = (t,21,...,2,) € C, x CZ, Q,u = (Byu, ..., dyu), 8, = 50 %= 35—

for ¢ =1,...,n, and F(t, ,u,v) with v = (vy,...,v,) is a function defined in

a polydisk A centered at the origin of C, x C: x Cy x C. Let us denote

Bo=AN{t=0,u=0,v=0}. '
The assumptions are as follows:

(A1) F(t,z,u,v) is holomorphic in A,
(A2) F(0,2,0,0) =0in A,

- (A3) g—UF(O,x;O,O) =0inDgfori=1,...,n.
i .

Definition 1.1 ([2],[3]) If the equation (1.1) satisfies (A1), (A2) and (A3) we
say that the equation (1.1) is of Briot-Bougquet type with respect to t.

Definition 1.2 ([2], [3]) Let us define
oF
p(.‘B) - %(01 z, 0) O))

then the holomorphic function p(z) is called the characteristic exponent of the
equation (1.1).

Let us denote by

1. R(C\{0}) the universal covering space of C\{0},
2. 50 = {t € R(C\{0}); |argt| < 6},

3. 5(e(s)) = {t € R(C\{0}); 0 < J¢| < e(argt)} for some positive-valued func-
tion €(s) defined and continuous on R,



4. Dp={z € C% |z;J <Rfori=1,...,n},
5. C{z} the ring of germs of holomorphic functions at the origin of C".

Definition 1.3 We define the set O, of all functions u(t,x) satisfying the fol-
lowing conditions;

1. u(t,z) is holomorphic in S (e(s)) X Dg for some €(s) and R > 0,

9. there is an a > 0 such that for any @ > 0 and any compact subset K of Dg

rglealzrclu(t,a:)|=0(|t|“) as t—0 in Sy

We know some results on the equation (1.1) of Briot-Bouquet type with re-
spect to t. We concern the following result. Gérard R. and Tahara H. studied in
[2] the structure of holomorphic and singular solutions of the equation (1.1) and
proved the following result; |

Theorem 1.4 (Gérard R. and Tahara H.) If the equation (1.1) is of Briot-
Bougquet type and p(0) ¢ N* = {1,2,3,...} then we have;

(1) (Holomorphic solutions) The equation (1.1) has a unique solution uo(t,z)
holomorphic near the origin of C x C™ satisfying uo(0, ) = 0.

(2) (Singular solutions) Denote by S, the set of all O, -solutions of (1.1).

5. = { {uo(t,2)) when Rep(0) <0,
+ = {uolt, )} U {U(9):0 # ¢(z) € Ca}} when Rep(0) >0,

where U(yp) is an O, -solution of (1.1) having an ezpansion of the following form:

Ulp) = > ui(z)t' + > @i ik ()7 (log ), po1,0(z) = o(x).
i>1 i+2j>k+2,>1

The purpose of this paper is to determine S, in the case p(0) € N*.

The main result of this paper is;

Theorem 1.5 If the equation (1.1) is of Briot-Bougquet type and ifp(0) =N €
N* and p(z) # p(0), then '

Sy ={U(p); ¢(z) € C{z}},
where U(yp) is an O, -solution of (1.1) having an ezpansion of the following form:

Ulp) = (@)t +u(@)gnta) + Y.  ud(@)tdy
i+|B8|>2,|8| <00
[B]1<i+|B]|—2

+ “’8,1,0 (z )P + > Z wf,j,k (z )tiﬂp(m) {log t}k@%a

i+i+|B|>2,|81<c0_ k<i+|Blo+Bls
P2LBISH+IHBI-2  +2(G-1)
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where uX(z) = 0, w010(z) = () is an arbitrary holomorphic function and
the other coefficients uf(z), w? k(Z) are holomorphic functions determined by
wg1,0(z) and defined in a common disk, and

l=(h,....,0) eN", l|=li+--+1,, B=(B €N; l e N"),
1Bl=23" B, 1Bls=3 B forp>0, [B]= 3 (|| - 1)8,

ltI>0 lt}=p [t|>2
o ¢~) A (=) _ 4N
& — ( A=t galta) = Lt
N II]I.;.[O T T 1 n ¢N( ) p(x) —N

The following lemma will play an important role in the proof of Theorem 1.5.

At first, we define some notations. We set for [ € N®, ¢; = (Bk; k € N™) with
Bi=1and B = 0 for k # [ and for p € {1,2,...,n}, e(p) = (i1,-..,4n) with
% =1 and 4, = 0 for q # p, and define I' < I° is defined by |I'| < |I°| and I! < I?
fori=1,...,n.

Lemma 1.6 Let p(z), ¢n and 5, be as in Theorem 1.5. Then we have;
ﬂ N
1_ aPQ% = Elllzo Bl(lp + I)QN—el+el+e(") for i = 1, ceey n,
2. topn = p(z)dn + tV, y
_ @01y _ e
3. OBy = |Blp(2) @5 + Bot™ B + Typojn1 Tircpo fro BB @50+t

2 Construction of formal solutions in the case
p(0) =1

By [2] (Gérard-Tahara), if the equation (1.1) is of Briot-Bouquet type with respect
to ¢, then it is enough to consider the following equation:

Lu = t8u — p(z)u = a(z)t + G2(z)(t, u, Ou) (2.1)

where p(z) and a(z) are holomorphic functions in a neighborhood of the origin,
and the function G(z)(t, Xy, X1, ..., X,) is a holomorphic function in a neigh-
borhood of the origin in C? x C; x Cx, x Cx, X :-- x C x, With the following
expansion:

Ga(z)(t, Xo, X1,..., Xa) = ) apa(T)P{Xo}o{X 1} - - { X, }or

p+|a|>2

and we may assume that the coefficients {ap,a(Z)}p+ja)>2 are holomorphic func-
tions on Dpg, for a sufficiently small Ry > 0. Let 0 < R < Ry. We put
Apo(R) := maxzepy |apa(z)| for p+ |@| > 2. Thenfor0<r < R

Apa(R) PXPOXN 5 ... x Xon (2.2)
0 A1 n

ptlal>2 (R —_ r)P+|0|‘2




is convergent in a neighborhood of the origin.

In this section, we assume p(0) = 1 and p(z) # 1 and we will construct formal
solutions of the equation (2.1). In generally, we set u(t,z) = L/ ' ui(z)t* +
tN-1uy(t, z), and we consider an equation for w(t, z).

Proposition 2.1 If p(0) = 1 and p(z) # 1, the equation (2.1) has a family of
formal solutions of the form:

u=up@)h+ Y Y uf(@)te]

m22 i+|B|l=m
[Bl<m—2
+ wg,l,o(x)tp(x) +> > > w?,j,k(x)tmp(z){log tyef (2.3)

m22 jtj+|Bl=m k<i+|Blo+|B1
J2L[Blsm-2  +2(i-1)

where wg,l,o(x) is an arbitrary holomorphic function and the other coefficients
u? (), wff .x(x) are holomorphic functions determined by wg 1 o(z) and defined in
a common disk.

Remark 2.2 By the relation [f] < m — 2 in summations of the above formal
solution, we have B; = 0 for any | € N™ with |[| > m.

We define the following two sets Uy, and Wy, for m > 1 to prove Proposition 2.1.

Definition 2.3 We denote by U, the set of all functions un, of the following
forms:

w1 = u3 ()t + ug ()41,
Up = D WP (z)t'®F  form > 2, : (2.4)

i+[Bl=m
[Bl<m—2

and denote by W,,, the set of all functions wy, of the following forms:

wy = wg,l’o(z)t”(“),

= Y wl @)t {logt}*a]  form > 2

i+j+|Bl=m k<i+|Blo+|8I1
>LBl<m—2 ~ +2(j-1)

(2.5)
where u? (x), wf,j,k(x) € C{z}.
We can rewrite the formal solution (2.3) as follows:

U= (Um+wm) where uy € Un, Wn € Wn.
m2>1

175



176

Let us show important relations of u,, and w,, for m > 2. By Lemma 1.6,we
have

Lum = % % {{i+G+181 - Do)l (@) {log o
i+j+|Bl=m k<i+|Blo+|Bl1
P2LBl<m—2 ~ +2(5-1)

+ kwﬁ3 ,j,k(:c)t”j”(”){logt}"_lfbﬂ +ﬂowﬂ (T )ti+jp(‘)+1{logt}k<1>f—e°

0_;1
+ Z D B a(llo plgi)v') wi; (@)t (x){logt}"@ﬂ'el""‘ezl}'

|i0]=111<(0
We show two lemmas.

Lemma 2.4 If u,, € U, and w,, € W,,, then Lu,, € U,, and Lw,, e W,,.

Lemma 2.5 If Un € Un and wy, € Wy, then the following relations hold for
i,j=1,.

1. a(:c)U C U and a(z)W,,, C Wy, for any holomorphic function a(z),

. tUm, ¢1U C Um+1 and tp( )Um, th tp( )W ¢1W C Wm+1,

- Um X Up, Oiym X Ojtn, Oty X Up € Uy,

. Wy X Wy, O;Wy, X ajw,,, OiWr X Wy, € Wiy,

. Uy X Wy, Oy X Wy, um X OjWn, Oiy X Ojwn, € Wipyn.

Ot W N

Let us show that u,, and wy, are determined inductively on m > 1. By substi-
tuting > (um + wy,) into (2.1), we have

m2>1
(1 - p(2))ui(z) + ui’(z) = a(z), (2.6)
and for m > 2
Lupm = ) apa(z)f? H Umo.n, H H Fjtim; 1 (2.7
p+le|>2 ho=1 J=1h;=1
p+ma|=m

Lum= Y apa(z)t’ H(u,,.o,,o+w,,,“0 HHB umlh + Wy, )

p+|a|>2 ho=1 J=lh;=1
pHma|=m
— Y pa@? IT tmone [T H Ojtm . (2.8)
p+|al>2 ho=1 J=1h;=1
pH|mn|=m
where |m,| = X% m;i(a;) and my(os) = miy + - +myq, fori=0,1,.

We take any holomorphlc function ¢(z) € C{a:} and put w, 0(:z:) = (p(x)
and by (2.6), we put u?(z) = 0 and u§’(z) = a(z).



For m > 2, let us show that u,, and w,, are determined by induction. By
Lemma 2.5, the right side of (2.7) belongs to U,, and the right side of (2.8)
belongs to W,,,. Further by m;,, > 1, we have mjs, < m for h; = 1,...,0;

and j = 0,...,n. Then for m > 2, we compare with the coefficients of t’@ﬁ and
ti+37@) {log t}kq)’s respectively for (2.7) and (2.8), then put

i+ (18 - D)o@}l (@)
Pt D@+ S Y (B4 1) P e g

[10|=10<i1 <10 (lo ll)'

= fP({apatocpriaicm, {5 (2)}o4ip1<m)

(2.9)

and
{i+(G+18l- 1)p(x)}wf,- k(x) + (k+ 1wl 441 (2)
B+eo alo—l (:L‘) ﬂ+e,o—e,1
+ (:BO + l)wi—l,] k '7") + Z Z (ﬂlo + 1) 10 — ,_7, ( )
|i0]=1 0<i1 <1 (1 = )! (2.10)
=giﬂ,j,k({ap,a}2$p+la|§ma {ug’(x)}i'+lﬂ’l<m7 {wi’,j',k'(x)}i'+j'+|ﬂ’|<m)'

Hence we obtain Proposition 2.1. Q.E.D.

3 Convergence of the formal solutions in the
case p(0) =1

In this section, we show that the formal solution (2.3) converges in O,.

Proposition 3.1 Let v satisfy 0 < v < 1 and let X be sufficiently large. Then
for any sufficiently small r > 0 we have the following result;
For any 0 > 0 there is an € > 0 such that the formal solution (2.3) converges
in the following region:
{(t,2) € C; x CZ; In(t, Mt] <, In(t, V)] <,
In(t,A\t"| <€, t€ Sg andz € D,},

where n(t, \) = max {|(logt)/A|, 1}.

In this section, we put wf,o,o(a:) = () and wf’o,k(z) = 0 for k > 1 in the
formal solution (2.3). Then the formal solution (2.3) is as follows:
4 = U (@)1 + wh o2 | |
+2 2 S wf, (@)t (log )+ 9f. (3.1)
m22 itj+|Bl=m k<i+|Blo+|BL .
Bl<m-2 +2(j-1)

Let us define the following set V;, for (3.1).
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Definition 3.2 We denote by V,, the set of all the functions Um Of the following
forms:

Un = U+ Wy for uyp €U, and w, € W, (3.2)
We define the following estimate for the function v,,.

Definition 3.3 For the function (3.2), we define

w5l
lrllrea = {forllre == === + [lwg ol
el A% (3.3)

i+j+|8l=m k<i+|Blo+|8)1
Blsm—-2 — +2(j-1)

forc> 0 and A > 0, where

IIw,,,,kllr = max Iw.,,k(x)l and < B >= 'E (It +1)8.
11>0

We will make use of

Lemma 3.4 For a holomorphic function f (z) on Dg,, we have

! .
192 lle < = pllfline for 0< R < Ra.

Proof. By Cauchy’s integral formula, we have the desired result. Q.ED
Lemma 3.5 If a holomorphic function f(z) on Dy satisfies

C
”f”r (R )P for 0<7‘ <R
then we have
Ce(p+1) .
1 < T N1l = - ® -
o:fllr < (R—r)H for 0<r<R, i=1,...,n

For the proof, see Hormander ([5]lemma 5.1.3)

Let us show the following estimate for the function Lu,,.

Lemma 3.6 Let 0 < R < Ry. Then there exists a positive constant o such that
form > 2, if v, € V,,, we have

o .
”Lvm”r,c,A 2 Em”vm”r,c,A fOT' O0<r S R

Jor sufficiently small ¢ > 0 and sufficiently large A > 0.
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Let us estimate the function 0;vy,.

Definition 3.7 For the function v, € Vi, we define

Dy = Y S Gul (@)t {log t}r @]
i+j+|Bl=m k<i+|Blo+|8Ix
[Bl<m—2 +2(j-1)
forp=1,...,n.
Lemma 3.8 If v, € V,, then fori=1,...,n, we have
3m — 2

|0ivm|lr,en < | Diven|lr,ex + coAm||vm|lre +

llvm|lrenr for 0<r <R
(3.4)

Therefore by the relations (2.7), (2.8) and Lemma 3.8, we have the following
lemma. ,

Lemma 3.9 Ifu= ) vum is a formal solution of the equation (2.1) constructed
m>1
in Section 2, we have the following inequality for v, (m > 2):

ao
| Lvm|lren < Z llap,allr H ||vmo,h0“r,c,z\

pt+la|>2 ho=1
p+|ma|=m

n [« F] ‘
- X H II {I lDivmi,hi “7‘,6,)\ + cOAm‘iwhi I |’Umi,h,~ ”T,C,A +
i=1h;=1

3Mih; —

Let us define a majorant equation to show that the formal solution (3.1)
converges.
We take A; so that

we" R
Mwsbolle |10 11 < 4,

6~we° R .
h'oc’o—’ou— + 16wl 1 ollr < AL

fori=1,...,n.
Then we consider the following equation:

g ()
-2-Y - —2-A1t1

1 Ap,a(R) . n . 3\ o
+ R_r p+|za|:>2 R- ,r)p+|a|—2t1 Y H (CY + coAY + EY) a8 (35)

=1

2
vai,h; “1‘,6,)\}'
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The equation (3.5) has a unique holomorphic solution Y = Y () with Y (0) = O at
(Y,t1) = (0,0) by implicit function theorem. By an easy calculation, the solution
Y =Y (t;) has the following form:

. Cm
Y = mzz:l Y.t,™ with Yy, = W
where Y; = C; = A, and C,,, > 0 for m > 1.
Then we have;
Lemma 3.10 For m > 1, we have
M||vm|lrer <Y for 0<r<R. (3.6)

Let us show that the formal solution (3.1) converges by using (3.6) in Lemma
3.10. We rewrite v,, as follows:

B k k
m= T >3 wid,kgz)’\ fi+in(z) (lo_gt) 14
<B> ’
i+j+|Bl=m k<i+|Blo+|8|1 ¢ A
[Blsm—2 +2(j-1)
where
a{¢ pl
¥ - I (cum_z ) . (37)
lt1>0 !

Firstly let us estimate (3.7). For ||¢,(|r, we have the following lemma.

Lemma 3.11 For any vy with 0 < v < 1, there is an R > 0 such that
o1l =0 (|t]") ast = 0in S,
holds for any 6 > 0.

By Lemma 3.11, there exists a positive constant ¢; such that
lg1llr < erlt|” in S, (3.8)
By Lemma 3.4 and (3.8), we have

>0 (3.9)
for0<r< R< Ryin S,. .
Let us estimate £+5¢(@) [ 1281 3
We put 7(t, \) = max{ '—°§1 , 1}, cy = max{ﬁ, 1} and c3 = ¢;(R —r). Since
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we have [ <m—2<m=1i+j+|B],<B>< 2|8 +[B] <i+j+3|B|and
k<i+|Blo+ |81 +2(j —1) <i+|B]+ 24, we obtain

k .
si+in(x) (105 t), o8 18]

< {lean(t, VelY {llean(t, 2271 {1(e2)Pesn(t, Me1}

r

in Sp. For any sufficiently small € > 0, there exists a sufficiently small § > 0 such
that for any ¢ € Sy with 0 < |¢] < § we have

|szl(t, ’\)t| <§, chﬂ(ta )\)2tp(:z:)”r <¢€, I(c2)sc3n(t’ )‘)t7.‘ <€

Then by Lemrﬁa 3.10, we have

lully < > Yme™ (3.10)

m>1

for sufficiently small |t| in S. Hence the formal solution (3.1) convérges for
x € D, and sufficiently small |¢| in S5. Q.E.D.
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