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Modified Elastic Wave Equations
on Riemannian Manifolds and Kahler Manifolds

KRR RFERFEBCEREMER BE %%F (Yoshiyasu YASUTOMI)
Graduate School of Mathematical Sciences,

The University of Tokyo

3-8-1 Komaba, Meguro, Tokyo, 153-8914 JAPAN.

The physical generalization of the elastic wave equation on a Riemannian
manifold does not necessarily admit any decomposition of solutions into lon-
gitudinal wave solutions and transverse wave solutions. However we will show
that some modified systems of equations on Riemannian manifolds have good
properties as to such decompositions. That is, we introduce some geometrically
invariant systems of differential equations on any Riemannian manifolds and
also on any Kéhler manifolds, which have the same characteristic varieties with
the physical generalizations of the elastic wave equations. Further we prove the
local decomposition theorems of distribution solutions for those systems. In
particular, the solutions of our systems on Kahler manifolds are decomposed
into 4 solutions with different propagation speeds.

Definition 1. Let /\(” ) T*M be a vector bundle of p-differential forms. Let

5}5’ be a sheaf of p-forms with C™ coefficients, and Dbg) a sheaf of p-forms
with distribution coefficients. In this article, distributions do not mean the
dual space of C§°(M). Our distributions behave as “functions” for coordinate
transformations.

Definition 2. We denote by 51(‘,’!’) , 1335{}) the sheaves of sections of 6%) ) Dbg})
which do not include the covariant vector dt . It comes to this that for o € ﬁ);‘;)

, B € 51(‘}’) , we get (dt,a)* =0, (dt, 5)* = 0.

Definition 3. The inner products (-,-)* : A® T*M x \P ;M - R, () :
AD T:M x NV T, M — R are defined as follows. We choose a positive or-
thonormal system (w!,---,w™) of T} M; that is, there is a positive number o
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such that w! A--- Aw™ = af); > 0. Then for

¢ = > GigoigWt A AW,

1<i1 < <ip<n

Y= Z YigooipW - Aw'P

1<iy<--<ip<n

we define
*  — . . .
<¢7 ¢> = E , ¢il-~-zp¢11-~-zp1
1<iy < <ip<n
and for
o= E o;dz’, T= E T'0; ,
1<i<n 1<i<n
we define
(o, 7') E ;T
1<i<n

Definition 4. We denote by d : ’Dbg’l) — Dbg’}“) the exterior differential oper-

ator which acts on Dbg\p,,) as a sheaf morphism. Then the following formulas are
well-known:

(1. d(¢p) = dpEdy (6,9 € DbY),

2. d(¢ AY) = dp A9+ (~1)PP A dp (¢ € s"’) e DbyY),
§3.d(d¢) =0 (¢ € Db®),

4 For fe Db, df =3 2L as? € DB,
L 0z;

Here 0 < p < n. If p=n, d¢ = 0 holds.

Definition 5. The vector bundle isomorphism * : AT*M — AT*M is defined
below: .

1. *: /\(p) T*M — A" P T:M is a linear map, ,
2. ¥ (WA A---Awr) = (- 1)(11 Dt lp=P) s A ..o A win-r,
for any permutation (i1, - ,ip, J1,* - * »Jn—p) Of 1,--+,n).

Here (i1 - - -ip) and (j1 - - - jn—p) are indices satisfying

1. (41 - - -%pj1 - - - jn—p) is a permitation of (1---n),
2.1<i1 < <ip<n, 1<j1 < <jnp<m
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Remark 6. The definition above does not depend on the choice of the positive

orthonormal system {w!,--.,w"}.

Proposition 7. We set ¢, € /\(” ) TyM. Then we obtain

Lonsp= () A =(49)" W' A---Awr,
2. xl=w'A-- AW = /g dz! A--- Ada™,
3. x¢p= (_1)(i1—1)+~-+(ip—p)\/§ gt gieirg i dzI Ao A dpin-v

e A* P 1.
Here g = det(gxx)-

Let U C M be an open subset. We set a(P) € Dbﬁ’;)(U), BP e SI(JI’)(U). We
suppose that 3(P) has a compact support in U. Then the following integral is

well-defined.

(a®, g :=/ (@@, BPN WA AP,
M

Definition 8. We set a(") € Dbl(a), ﬂ(p—l) € 81(‘;’_1)_ We suppose ﬁ(P'l) has a
compact support. Then the sheaf morphism 4 : Dbg’l’) — Dbg’}— D) is defined as

(6aP), gP-1)) = (aP, dpP-V),

Hence we have

§=(-1)"P D+, g,

Definition 9. Let X7 be the sheaf of @ T: M ®®* T M-valued C* functions,
and Db7 the sheaf of @” T: M ® @° Ty M-valued distributions. Then, the sheaf
morphisms V : X7 — X7,,, Db] — Db}, are defined as follows:

(1. For a(z) € X3, we have
2. For 0 € X3 we have
{~ ori ~ "
3. For dz7 € %9, we have
4. For e € X7, f € X7,, we have

Here,

. : o1
{F3k=97‘1'§lk=97"§ (

are the Riemann-Christoffel symbols.

9.1

Va(z) = %dxj .

8 , 0 %
¥ (5) = Bigm ot
V (dz’) = -I',} do* ® dz*.

Ve f)=(Ve)® f+e® V.

ok
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Proposition 10. We set

e=el , di" @ ®@dr' € XI.

0
oz oxir
Then we have
_ r q r T . ; q
Ve = (akeil---i, + eil---'iqu et eir-~ip_1qip+1---isrip k)

x dzf ® dz" ® - - - @ dz™* ®

0 R ®
Ozh Oxir’

Then we call the following the covariant differentiation :

_ r q T T q. \
Vie = <8keil...i + €1 s Fq k + eir--ip-lqip-;—]-"is[‘ip k)

o ,
[ @s
Xdr' ®---Qdzx ®——a h@ ®8xjr'

For )
w= S ugeads A-o-Adz'? € Dby,

1<i1 < <ip<n

we define an operator Py for Dbgu) on M (1 <p < n-1), where the coefficients

{ui,...;, } are supposed to be alternating with respect to (1 -+ -ip)-

Definition 11. We define sheaf-morphisms P : Db;’,;) — 'Dbg;) by

2

a—u + (A + 2p)ddu + pédu, -

PRu:=pat2

where the density constant p and the Lame constants A, u are positive.
For p = 1, this equation is the covariant form of Ppu

When p = 0orn, Pru =20 reduces to a wave equation. Therefore we
suppose 1 <p<n-—1.
and

For u € ’Dbgw), we define equations IR, MY, M5, IME below:

mr . Pru=0,

SmR:‘PRu=o, . [@+adu=0,
! du=0 du = 0,
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—_ 2 —
m;:{PRu—O, @{gitjﬂzl)u—o

ou =0,
Ppu=0, &2u =0,
MG : ¢ du =0, < {du=0
ou=0, ou=0
=~ (p) ~ @) .
Here, a = (A +2u)/p, B = p/p and A = d§ + 6d : Dby, — Db,, is the

Laplacian.
Further we deﬁne subsheaves Sol(9M*%; p), Sol(IMF; p), Sol(MF; p),

Sol(ImG; p) of DbM as follows:

Sol(9M*; p) —-{u € Dbg;) u satisfies 9)1“},

Sol(IME; p) —{u e Db | u satisfies sm*;},

Sol(ME; p) _{u € Db | u satisfies zmg}

Sol(IM3; p) —{u € Dbg;) u satisfies zm:;}

Then, we have the theorem below.

Theorem 12. For any germ u € Sol(IM*; , there exist some germs

T

u; € Sol(M%; p) @2 (4 = 1,2) such that u = u; + u,.

Further, the equatzon u = u1 + uz = 0 implies uy, uz € Sol(IME; p)

Equivalently, we have the following exact sequence:
0 — Sol(Mg; p) — Sol(MT; p) ® Sol(IM3; p) — Sol(WM*; p) —> 0.

However, a distribution solution u of Poyg u = 0 does not necessarily admit any
decomposition of solutions above.

Remark 13. The meaning of the decomposition above is stated for the decom-
position u* = u} + u} € Db} satisfying the conditions below:

Vi 'U.li = 0, Vi‘u.zj - VjU2i =0.

Let X be an n-dimensional complex manifold with a Hermitian metric, and
A7 T*X a vector bundle of (g, 7)-type differential forms on X. Let £
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be a sheaf of (g,r)-forms on X with C*° coefficients, and Db(q’ a sheaf of

(g,7)-currents on X. We define £ (gr) ’Db(q’r) Ex £97) and Dbx 81m11arly

Definition 14. We denote by 0 : Db(q (R ’Db(q+1 ™) the exterior differential

operator which acts on 'Db(q’ ™) as a sheaf morphism and 9 : Db(q " Db(q m+1)

the conjugate exterior dlﬁerentlal operator. For a section

¢ = ¢ 3 dz"'l A - /\dziq A dEJl Ao /\dEJ,- of .Db()t{],r)’

1.1 1,31 ]

the following formulas are well-known:

(dp =(0+0),

! 94 =—a£dzkAdzilA---Adzi“AdEjl/\---/\d‘z‘jfe'Dbgg“”"),
. azk, 4 ‘

3¢ =§f% dz* Adzt Ao AdZ AdER A - AdET € DBETTY.
4

\

Definition 15. The linear operator * induces vector bundle isomorphisms
AT x — AT mn=4) 7= X Hence we have sheaf-morphisms

+: DHP" — DP """ on X as follows: For

w=1u = = dZ'A---Adz AdZA---AdEr € DHPT,

i1-tgdy - dr

we get

wu = (_1)qn+(i1—1)+...+(iq—‘1)+(j1-—1)+._.+(jr—7‘)\/'§ gi1E1 . _giqiqgjlll . .gi,l, |
XUy 3,5, A Adein AdZ®U A - A dZFn-e

e Db .

Let U C X be an open subset. We set a(?7) € ’Dbg‘é’r)(U), B e Sgg’r)(U).
‘We suppose that 3(¢™) has a compact support in U. Then the following integral
is well-defined.

(alam), gan) :2/ (@87, B@Ny LA AW AT A AT,
X
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Definition 16. We set a(¢7) ¢ Dbgg"), pBla-1r) ¢ g)(g—lyr), and y(@m-1) ¢
E ,‘;’"“ D We suppose 3(9~17) and y(&7—1) have compact supports. Then shea;
morphisms 9 : Dbgg’r) — Dbgg_l’r) and 9 : 'Dbf,g’r) - Dbgg’r_ 1) are defined as

(Yalen) By = (aler) apla-1m),
(ga(q,r)”,y(q,r—l) )= (a(q,r),g.y(q,r—l) ).

Then they satisfy the following equations:

§ =9+9,
] = — % Ox,
9 =—%x0x%.

o~ (qu o~ (q,r)

Definition 17. We define sheaf-morphisms P, P : Dby ) — Dby " on X
which are similar to Pjg:

Pc + 0165 + 0253,

82
= o

o2 — —
P; = 52 + 309 + a0,

where a3, az, a3 and a4 are positive constants.
Then, we get the theorems below.

Theorem 18. The system of the partial differential equations P- u = 0 for

u€ ﬁ»ﬁ?”") on X is of weakly hyperbolic type, and any distribution solution u is

locally decomposed into a sum u = u; + u of 2 solutions u; and ua satisfying

the following conditions: _
6u1 = 0, 19u2 =0.

In particular, each u; satisfies the following wave equation with propagation
speed /o , respectively:

d?
Wuj + a,-Duj = 0, (] = 1, 2)

Here, =09+ 00 is a complex Laplace-Beltrami operator.

Theorem 19. The system of the partial differential equations P: u = 0 for

u € ﬁ)ﬁ?'r) on X is of weakly hyperbolic type, and any distribution solution v is



locally decomposed into a sum u = uy + uz of 2 solutions us and ug satisfying

the following conditions: _
6u3 = 0, ’Q9U4 = 0.
In particular, each u; satisfies the following wave equation with propagation
speed /o , respectively:
82
Eroke +a;0u; =0, (j=3,4).

Here, O = 89 + 90 is also a complex Laplace-Beltrami operator.

Now we assume that X is a Kahler manifold. Then the following equations

for operators on 1362?’” are well-known:

O=0=14,
89 +90=0, 09+90=0,
80 = —00, U9 = —0I9.

Definition 20. We define sheaf-morphisms Py Dbgg’ ) Dbgg ) n X by

2
Py = %2- + 01819 + 02193 + 03819 + a4198

Here, a1, az, a3 and a4 are positive coefficients.

When ¢,r = 0 or n, Px u = 0 reduces to a wave equation. When ¢ = 0,n
or r = 0,n, P stands for P2 or P. , respectively. Therefore, we suppose
1<qg,r<n-1.

—~ (a:7) ‘ . :
For u € Dby ~, we define equations 901%, 90U, 95, IF, M, My, My,
93‘(12, 93734, mO belOW:

ZDTK . PKUZO,

Peu=0, (a§+————
my - §u=0, <= {ou=0,

Ou =0, Bu = 0,

189



K .|
13 -

K .
ME, -

K

12°¢

K

34

X
.

S
I
L

Il

N,

STYI0 PRI PN TN FYY;
I

I
oo

([
Il
A

Il
c oo

-

-

le

TN

S
I
L

-

N~
S
b s
L

I
o oo

-

Y
e
<
L

-~

I
cooo

r
-

0
0,
0,
0.

Further we define subsheaves Sol(9M*; q, 1), Sol(9¥; q,7), Sol(IM¥; q, 1),
Sol(IM3; g, 7), Sol(MF; g, 1), Sol(My; g, 1), Sol(IMfy; g, 1), Sol(IM5y; q,7),

Sol(IMy; g, 7), Sol(9S; q,7) of Db

as the sheaves of ﬁf,g'r)-solutions, re-
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spectively.
Then, we have the theorem below.

Theorem 21. For any germ u € Sol(9M¥;q,r), there erist some germs u; €

Sol(IM; q,7) (j = 1,2,3,4) such that u = uy + uz + u3 + Us.

Further, we get

up = Uiz — U13,

U2 = U4 — U12

u=uj+uz+uz+us=0<< ’
u3z = u13 — U34,

Ug = U34 — U24-

Here, ui; € Sol(ME;q,7) ((4,5) = (1,2),(1;3), (2,4),(3,4)). Equivalently, we
have the following ezact sequence:

0 —> Sol(IME; q,7) — EPSol(MG;q,7)
(4.9)
— @Sol(imf; g,7) — Sol(9M¥;q,7) — 0.
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