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Gevrey Hypoellipticity for Extended
Grushin Class and
FBI-Transformation

Tadato MATSUZAWA

§1. Introduction

In this monograph we shall mention only the main results obtained re-
cently on Gevrey hypoellipticity for extended class of Grushin operators.
Precise proof of them will be given in a forthcoming paper. We shall deter-
mine the non-isotropic Gevrey exponents for for Grushin operators by using
also the method of FBI-transformation given in [1] somewhat modifying it
as well as by using the method of pseudodifferential operators. Thus,we get
an amelioration of the results obtained in the previous papers [3 | and [4 ].

§2. Gevrey functions and FBI-transformation

We denote = = (z;,...,2,) € R" and D, = —10:;,j =1,...,n, as usual.
We remember the definition of Gevrey functions.

Definition 2.1. Let Q be an open set in R® and ¢ € C(f2). Then we
say that ¢ € GI*}(Q),s = (81,---,80),8; > 0, if for any compact subset K of
§) there are positive constants Cy and C; such that

(2.1) sup [ D*¢(z)| < CoClllal), a €z,
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where (s,a) = sja; + - + 8,0

Proposition 2.1. Let ¢ € C(Q). If for any compact subset K of )
there are positive constants Cy and C, such that

sgw:"%(m)[ < CoCkRVi, j=1,2,...,n, k€ Z,.

Then we have ¢ € G122 }(Q).

The proof can be obtained by using FBI-transformation whose definition
will be given in (2.2).

Proposition 2.2. Let a be a positive paramete'r. For any €,0 < € < 1,
there ezxists a positive constant C, such that '

2 ko1 , ‘
|0ke2"| < Cf“afk!fe"“"z, —o<z<oo, k=12,....

Let u(z) € C5°(R™). Then we have the Fourier inversion formula

u(z) = (2m)™ // u(y)e' =¥ dyd¢.
,nxRn"
Now shift the contour of integration from R™ x R* C R" x C™ to the contour

T(y,€) = (3,6 +i(€)(z —v)), (v,€) eR"xR".
Then we have the formula

u(z) = (27)7" / f ,,XR”'u(y)ei(“"”"”)'(’9("’_")2at(:c —y, €)dyd,

where 1 .
(O =1+ =1+&++&)
and .
a(z —y,€) = [[(1 +i(z; — y;)&(1 +€°)72)-
i=1
From this formula we define the FBI-transformation of u(z) by

(2.2) Fu(z,€) = / _ufy)ee s~ a(z —y, £)dy.
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The result of M. Christ, [1 | is modified slightly in the following theorem
relating to the characterization of the class G{*}.

Theorem 2.3. (cf. [1 ], Theorem 2.3.) Let s = (81,825 ..980),8; >
1,7 =1,2,...,n, and u(z) € CP(R™). Then the following four assertios are
mutually equivalent:

(a) uw(z) € G{*} in a neighborhood of zo € R™.

(b) There exist C,8 € R, and a neighborhood V of z¢ such that

N
| Fu(z,£)| < Ce L= 6% | (2,6) e V x R™.

(c) There exist an open neighborhood U = U(zg) C C™ of o and C,6 €
R such that, for each A € R%, || > 1, there ezists a decomposition

u=gr+hy in UNR"
such that gy is holomorphic in U,
9a(2)] < PG 2 e U
and

4.
lha(z)| < Ce?Zin®’ | z e UNR™.

(d) There ezist an open neighborhood U = U(zg) C C™ of o and C,5 € R,
such that for each A € R%},|\| > 1, there ezists a decomposition

u=gr+hy in UNR"
such that gy is holomorphic in {z € U; |Im(z;)| < (A),|A|7'} = Uh,
lgrx(2)| < C, zeU,,

and

lha(z)| < Ce?Xim%’ | 2 e UNR™.

Remark 2.1. By using appropriate cut-off functions for u , the standard
method of calculation goes well to prove (a) <= (b) with the aid of Propo-
sition 2.2. Proof that (b) = (c) = (d) = (b) can be obtained by the
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same method as in [1 |. However, it might be needed to add a sketch of the
proof of (a) = (b). it will be sufficient to consider one dimensional case.
(i) The case ehere s = 1. Let u € Cg°(R) and let u be real analytic in a
neighborhood of g, say in w; = {z; |z — zo| < &} for some § > 0. Then for

Fu(z,€) = [uly)ee IO a(z —y,£)dy
we make a deformation of the integral contour in ws and we have
| Fu(z, €)| < Ce™®), (2,6) € V xR,

where V is a small neighborhood of zy and C and c are positive constants
independent of £.

(ii) The case where s > 1. We mayksuppose that u € C(ws) N G, so that
we have u(y)a(z—y,§) € O (ws)NG*}. By Proposition 2.2, taking C1, C, c’
sufficiently large and ¢ sufficiently small we have

67 [ DY (u(y)ae 1" dy|

< leNor Y (1;’ ) e — gy

i=0

< jel-rome e {2

jrs

Now take N such that |N — (|¢|)¥| < 1 with ¢ sufficiently small. Then the
above quantity is estimated by

1yj¢| 7T

g _
C(Ce)Nel*- < ekl :cEw_;_,fGR. 0

Remark 2.2. In Theorem 2.3, we can replace Fu(z,§) by F,u(z,§) as
follows: -

(23)  Faule,§) = [u(@)etOO0CV a, (o~ y,)dy
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- ]

(2= v,8) = [T+ —(2; - y;)&(1 + £)™57).
=1 J o
The transform Fu(z,¢) extends, for each §, to an entire holomorphic
function of 2 € C™. We can see that the same reasoning as in (c) and (d)
gives

e
(2.4) |Fu(z, €)| < Ced Li=s %7 Clelitmz)

for z in a sufficiently small neighborhood V C C™ of zg.

$3. Main results

We shall give the definition of the extended class of Grushin operators.
We write (z,y) = (z1,...,2,v1,... yYn) € R¥"_ Let m be an even positive
integer and let o = (0y1,03,...,0%),q = (g1,92,---,q:) whose elements are
rational numbers such that

Oly30p > 0,0p41=--- =0 =0,(0< p < k)

QN2¢022¢gp>0,¢41>--->0, ¢ >0.

Furthermore, we assume

mq; € 2,5 =1,...,k; #E Z,;=1,2,...,p.

o

We pose the following major hypothesis:

Hypothesis (G) We suppose 1 + ¢, > o = maz(oy,...,0,).

Remark 3.1. Grushin’s original major hypothesis given in [2] was 1 +
qx > 0o = maz(oy,...,0,). We shall see that we can weaken this condition
as above. (See §5 and §6.) The assumption on gy, ... »qr given in [4 ] is also
slightly weakened as above. When p = 0, we consider go = 0,09 = 0.
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We divide z into two parts such as z = (z',z") when 1 < p < k, where
e’ = (z1,...,2,) and 2" = (Zp41,...,%k). We consider z = 2’ when p = k
and z = =" when o = (0,...,0). Now we shall consider a differential operator
with polynomial coefficients under the hypothesis (M):

(3.1) P(<',y,D.,D,) = > Gapr @y DEDY,  Gapuy € C,

(ow)+ I7l=(q’°)+|°+pl"m

la+B|<m

a,v € zﬁ-? ﬂ77 € Z:-’

where a,p,, can be non zero only when |y| = (g,a) + |a + 8| —m — (o,v) is
a non negative integer and we write such as |a + 8| = |a| + |B|. We may also
consider v = (v1,...,Vp,0,...,0).
We can see the symbol P(:c ,y,€,n) satisfies the following condition.
Condition 1. (quasi-homogeneity) We have

P(A~"2', X"y, A€, n) = A™P(2',y,€,1), A>0,z,§ € R*y,n € R,
where A\=%z' = (A™"zy,...,A7%%z,) and A9 = (A1Tagy,. .. ,/\”‘"'Ek).v

We add the two more conditions on P.
Condition 2. (ellipticity) The operator P is elliptic for |'| + |y| = 1.
Condition 3. (non-zero eigenvalue) For all w, |w| = 1, the equation

P(z',y,w,Dy)v(y) =0 in RY
has no non-trivial solution in S(R}).

We set the Gevrey indices as follows.

1+Qk,1+qP_a'0

6; = max( ) for j=1,...,p,

6; + q;
= d= 2
T o for j=p+1,...,k, 1’2?25,{1+q,

We also denote

}

0; + q;
d = max {1+ 2
J

1<5<k

}-I, = (d,...,d).



Theorem 3.2. (cf. [4 ]) Let Q be an open neighborhood of (0,
and consider the equation

(3:2) P(z’ayDz’Dy)u(z’y) = f(z,y) in Q,
where u(z,y) € D'(Q) and f(z,y) € G%H(Q). Then we have
GLA Q).

Remark 3.3. In the above theorem we can see that
(?) p=0,0, =1 (B,d) = (1,...,1),

.. » 0+ aq
1 =0,0>1=1<d=
() y 4 V1 1+q1

< 6.
Examples (a) For the operator P, = D2 +y*D? (k=1,2,...
p=0,s=k,01=0and 6, =1,d=1.
(b) For the operator P, = Df, + (=% + y?*)D2, (k,1 = 1,2,.. ),

l(1+k) d_91+k
(1+k)—k" 14k’

(751 =k,0'1 =k/l and 01 =l

(c) For the operator P; = D? + (2 + y**)(D2 + D?), (k,l =1,
have
I(1+k)
(1+k)—k’

q1=qz=k,0'1=k/l,a’2=0,z'=z,z”=z;01= 0, -

(d) For the operator Py = D2 + (z* + y**)D? + D?, (k,l = 1,
have
6+k
1+k

G =k,Q2 =0,0’1 = k/l,d’g =0;01 = 1+k,02 = 1,d=

We remark that this operator P, does not satisfy the original hypo
of Grushin.

84
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(¢) An example with 1 < d; < dj is given by Py = D2 + (=* + y D2 +
(z% + y?) D2, where we have
3 3

4
ql=2,q2=1,0’1=0'2=1;91=92=2,d1=§<d2=§,d='2-.

Remark 3.4. We omit the proof of C*®—hypoellipticity of the operator

P given in Theorem 3.2 since it is much simpler than that of Gevrey hy-

poellipticity. Then by using a cut-off function for u, we may suppose that

u,f € CP(Q) and f € G%? in a neighborhood of (0,0) € REt". By The-

orem 2.3,(b), our main purpose becomes to prove that there e)nst a small
neighborhood V of (0,0) and positive constants C and 4 such that

| e o
(3.3) Ihmmmmf@M”W%@@mmqu"

é€n

where

F(2,9,6,1) = f u(z, y)e(E-=0+ G-y~ (E-2P+G-0 o3 — 2, ¢)

a(g - y,n)dwdya H= (57 '7),

a(e — 2,6) = [1(1+9)(& = 2,)6(1 +€)7%,
(g —y,m) = TL0+3)(@; - w1+ )

We can prove the inequality (3.3) in three steps. We prove first the inequality
(3.3) in the elliptic region:

Rg = {(&n); (6;m) € REL™ 1€] < Inl}-
Next, we prove the inequality (3.3) in the subelliptic region:

ko
Rs = {(&m); (€,m) € REE™( Z €1%) < In| < €]}, e>0.
j=1

Finally, we obtain the inequality of the kind (3.3) in the L?-sense in the
degenerate region:

k 1
Rp = {(&m)i () € RETchl* < L J6l™ ), e >0



These steps will be completed by a precision of the method given in [1 | and

[4]. |
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