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Abstract

In this paper, we consider an interval matrix game with interval valued pay-
offs, which is the generation of the traditional matrix game. The “saddle-points” of
this interval matrix game are defined and characterized as equilibrium points of
corresponding non-zero sum parametric games. Numerical examples are given to
illustrate our idea. These results are extended to the fuzzy matrix games. Also, we
formulate two person zero-sum stochastic interval games.
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parametric game.

1 Introduction and notations

In usual matrix game theory(cf. [25, 26]), all the elements of the payoff matrix are assumed
to be exactly given. But in a real application, we often encounter the case where the infor-
mation on the required data includes imprecision or ambiguity because of the uncertain
environment. In order to deal with such a case, it is more reasonable to estimate the ele-
ments of the payoff matrix by intervals. As for interval approaches to linear programming
problem and decision processes, refer, for example, to 7, 21] and [9] respectively.

In-this note, we consider the interval matrix game which is an interval generation of
the traditional matrix game. The saddle points of the interval matrix game are defined
and characterized as equilibrium points of corresponding non-zero sum parametric games.
Also, these results are extended to the fuzzy matrix games. Recently, Kurano et al [10]
have developed the theory of MDPs in which the immediate rewards are described by use
of fuzzy sets. So that, we consider the question whether these results can be extended to
stochastic games with interval or fuzzy payoffs. We shall formulate two person zero-sum
stochastic interval games in which one-step payoffs are estimated by intervals.

In the reminder of this section, we shall give some notation on interval arithmetics (cf.
[16]) and some preliminaries related to the preference relation on intervals.

Let R be the set of all real numbers and C the set of all bounded and closed intervals
in R. Note that R C C by identifying a € R with a = [a,a] € C. We will give a partial
order <, < on C by the following definition.
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For [a, 8], [c,d] € C,[a,b] < [c,d]ifa < cand b< d, and [, b] < [c, d] if [a,b] < [c, d]
and [a, b] # [c,d]. The Hausdorff metric(cf. [13]) on C is defined by 6, ie.,

6([a,b],[c,d]) :==|a—c|V|b—d| for [a,b],[c,d] € C,

where z V y = max{z, y}. Obviously, the metric space (C, d) is complete.
The following arithmetics are used in the sequel.
For [a,b],[c,d] € C and A € R () > 0),

(1.1) [a,b] + [c,d] = [a + ¢, b+ d],
(1.2) Ala, b] = [Aa, Ab).

Then, we have the following.

Lemma 1.1 For any [a,b)], [a,¥],[c,d)],[c,d'] € C and A € R (A>0).
(1) 6(Ala,d], Ala’,¥]) = A6([a, b], [, ¥)). (scalar)
(i) 6((a,0] + (o, 8], [c,d] + [¢, @) < 6([a,B], [c,d]) + &([a', b)), [¢,d"]). (triangle)
(iii) 6([a,d] + [a’,¥], [a,d] + [, d]) = 6([a", V], [c,d). (shift)

Let C; := {a € C| a = [a, ] = [0,0]} be the set of nonnegative intervals. Let C™ and
C™*" be the set of all m-dimensional column vectors and m x n matrices, called interval
vectors and interval matrices respectively, whose elements are in C,ie.,

C":={a=(ai,as...,an)" |a; € C (1 Li<m)},

C™ "= {A=(ay) |a; €eC1LiSm1<j<n))

We shall identify m x 1 interval matrices with interval vectors and 1 x 1 interval matrices
with intervals, so that C = C'*! and C™ = C™*!. Also, we denote by C7 and CT*™ the
subsets of componentwise non-negative elements in C™ and C™*®, We equip C™*" with
componentwise relations <, <. Similarly, we can define R™ and R™*" as the set of real
m-dimensional column vectors and real m x n matrices. Note that R™*® c C™xn,

For any A = (a;;) € C™*" with a;; = [a;;, %], A will be denoted by A = [A~, A¥),
where A™ = (a;;) € R™", A* = (af}) e R™™ and [A~, At = {A € R™" | A~ < A %
At}

For A = (a,-j),B = (b,'j) € C™" and )\ € R,

(1.17) A+B={A+B|A€ A and Be B}
(1.2)) M ={AA| A€ A},

where for C = (¢;;) and D = (d;;) € R™",C + D = (cij + dij). Observing A+ B =
[A~ + B~, A* + B*] € C™xn,
For any given D C C, c is called a minimal (mazimal) point of D if

(1.3) {deD|d=<(~) ¢} =0.

The set of all minimal (maximal) point of D will be defined by min D(max D) (cf. [20, 24)).
Since the partial order < on C is equivalent to the vector ordering on R? with R? as
the corresponding order cone, the following fact follows easily (cf. [2, 20]).
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Lemma 1.2 Let D be a compact and convex subset of C. Then [a,b] € min D(max D)
if and only if there exists v € [0,1] such that ya + (1 — v)b < (2)va’ + (1 — )b’ for all
[a',b] € D.

In Section 2, an interval matrix game is specified and its saddle points are characterized
as equilibrium points of the corresponding non-zero sum parametric game. A fuzzy matrix
game is investigated in Section 3. In Section 4, a numerical example is given to illustrate
our arguments. In order to formulate the interval stochastic game we need the concept
of a expectation of interval-valued random variables.

Let (2,4, P) be a probablhty space and r : Q — C a discrete random quantlty with
its range Z(r) = {¢1,¢2,--- ,¢;} C C. Then, we define the expectation of r by

l
(1.4) Elr] =) cP(r=c).

Note that arithmetics in (1.4) is given in (1.1) and (1.2) and E[r] € C. The definition
of (1.4) is corresponding to the discrete case of the expectation of general fuzzy random
variables (cf. [18]).

In Section 5 stochastic interval games are specified and their saddle points are defined,
which are characterized as equilibrium points of corresponding nonzero-sum parametric
stochastic games in Section 6. In Section 7, stochastic interval game are extended to the
case of the multi-dimensional fuzzy payoffs.

2 Interval matrix games

The two person interval matrix game is defined by the m x n interval matrix A = (a;;) €
C™*" where player 1(maximizer) and player 2(minimizer) have m pure strategies {4 |
i=1,2,...,m} and n pure strategies {j | j = 1,2,... ,n} and if player 1 and 2 select
(154 < m) and j(1 £ j < n) respectively, the payoff for player 1 or the loss for player
2 is estimated by the interval a;; € C. ‘
Let X and Y be the set of all mixed strategies for player 1 and 2 respectively, i.e.,

m
X = {IL'= ($1)$2)"' ,xm)t € RT I in = 1},
Jj=1

Y={y= (yl;y21~-- ,yn)tER:_ | Zy,: 1}

Then, for any selected pair of strategies (z,y) € X x Y the expected payoff for player 1
is estimated by

(2.1) f(z,y) =2'Ay =) zy;a.

Y]
By arithmetics in (1.1’) and (1.2’) the following holds obviously.
Lemma 2.1. For any x € X and y € Y, it holds that
(2.2) f(z,y) = [a*A7y,2* ATy € C.
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Definition 1. (cf. [[14], [24]]) Let (z*,3¥*) € X x Y and A € C™*™. Then (z*,y") is
said to be a saddle point of the interval matriz game A if the following holds:

(2.3) f(z*,y") € max f(X,y*) Nmin f(z*,Y),

where for any (z,y) € X xY, f(X,y) = {f(z",y) | 2’ € X} and f(z,Y) = {f(z,¥) |V €
Y}

We note that f(X,y) and f(z,Y) are compact and convex subset of C.

In order to characterize the saddle point of the interval matrix game A, we introduce
a parametric matrix game A(y). For each v € [0,1] and A = [A™, At] € C™*" let
A(y) =7A*+(1-7)A".

Definition 2. For any v, € [0,1], (z*,3*) € X x Y is said to be a (v, ¥')-equilibrium
point for a non-zero sum parametric game (A(7y), A(v")) if the following (i)—(ii) holds:

(i) z*A(y)y* £ z**A(y)y* for all z € X,
(i) z*A(Y)y 2 = A(Y)y* forally €Y.

We note that the (v, v)-equilibrium point (z*, y*) for a non-zero sum game (A(7), A(v))
means that (z*,y*) is a saddle point for the zero sum matrix game A(y), i.e.,

(2.4) tA(y)y* £ 2 A(y)y* S x**A(7)y forall z€ X and yeY.

Also, every non-zero sum finite game has an equilibrium point (cf. [15, 26]), so that
for any ,v' € [0,1], a (v, ¥')-equilibrium point exists.

Applying Lemma 1.1 and 2.1, we have the following useful theorem which tells us
the relation of the interval matrix game A and the non-zero sum parametric game

(A(), A7) -

Theorem 2.1. A point (z*,y*) € X x Y is a saddle point for the interval matrix game
A if and only if there exist «v,v' € [0, 1] such that (z*,y*) is a (vy,v’)-equilibrium point for
the non-zero sum parametric game (A(y), A(Y')) .

Proof. By Lemma 1.2 and 2.1, that f(z*,y*) € min f(z*,Y) means that there exists
v € [0, 1] satisfying

(2.5) YA Y + (1 — v)z* A7y S Yzt Aty+ (1 —9)z"* Ay forall yeY.
Obviously, (2.5) is rewritten as follows.
(2.6) o A(Y)y* S 2*A(y')y forall y €Y.

which is corresponding with (ii) of Definition 2.
Similarly, f(z*,y*) € max f(X,y*) means that there exists v € [0, 1] such that

(2.7) T A(y)y* 2 2*A(y)y* forall z € X.
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Thus, the proof is complete. [J
The following results easily follow from Theorem 2.1.

Corollary 2.1. If (z*,4*) € X x Y is a saddle point for the matrix game A(v) for all
v € [0,1]), (z*,y*) is a saddle point for the interval matrix game A.

Corollary 2.2. For any A = ([aj;,0}]) € C™" with a;} — a;; = c independent of i and
jQ<i<m1 <5< n), the saddle point (z*,y*) of A is uniquely determined as a
saddle point for the matrix game A~ = (a;;). '

Proof. We note that A(7) is rewritten as A(y) = A~ +7(AT—A7). So that if A*— A~ =
cE, A(v) and A(7') is essentially equivalent for all y,+" € [0,1], where all the elements of
E € R™*" are 1. Thus, the statement of Corollary 2.2 follows obviously. [

The following is useful in finding the saddle point of the interval matrix game A by
solving the parametric matrix game (A(y), A(Y')) for all 7,v' € [0,1].

Corollary 2.3 [cf. [22]]. The point (z*,y*) € X x Y is a saddle point for the interval
matrix game A € C™" if and only if there exist 7,7 € [0, 1] such that (z*,y*) is a part
of a solution to

Ay +v =2 A(Y)yln
Tt A(y) — pt = 2t A(7)yl,
(2.8) Vz=0, py=0
l,=1 ¢, =1
r,v €RY, y,peRY,

where 1, = (1,...,1) € R? and 1, = (1,...,1) € R}.

Remark. On the interval matrix game A, if player 1(2) selects the strategy i(j) player

1(2) receives(loses) the interval valued payoff a;; = [a;;, aj] € C, where the actual value of
the payoff is not known precisely for both players like a value of a beautiful ancient urn or
of the future project. In general, [a;, a}}]+[—a, —al]] = [ag; —a}, a5 —a;] #0(3 0) then
the interval matrix game A is not a zero sum game in the stnct sense of the word. The
player 1 and 2 may consider the interval game A as a non-zero sum game (A(7), A(Y'))
for some parameters v and 4/, where the parametric game A(vy) and A(y’) for player 1
and 2 may be their subjective values for the interval game A. Consider the extreme case

(v,7) = (0,1), a (0, 1)-equilibrium point (z*,3*) € X X Y means that
(i) *A~y* < z*Ay*forall A€ Aand z € X,
(ii) z*'Aty 2 z**Aty* foral A€ AandyeY.

This shows that (z*,y*) guarantees the best in the worst case for both players. Thus,
(0, 1)-equilibrium point (z*,y*) will be called a pessimistic-pessimistic pair. By the same
discussion as the above, the (1, 0)-equilibrium point (z*,y*) will be called an optimistic-
optimistic pair. Then the parameter v (0 <y < 1) is a grade of optimism for player 1 or
a grade of pessimism for player 2.



108

3 Extensions to fuzzy games

In this section, the results in the preceding section will be extended to the multi-dimensiona.
fuzzy payoff games.

We write a fuzzy set on R? by its membership function 5: R? — [0, 1] (see Novak [17]
and Zadeh [27]). The a-cut (o € [0,1]) of the fuzzy set § on RP is defined as

S5a : ={r €R’|3(z) > a} (@ >0) and 3:=cl{z € R?|35(z) > 0},
where cl denotes the closure of the set. A fuzzy set 3 is called convex if
5(Az+(1-A)y) 25(z) A3(y) z,yeRP, A€o, 1],

where @ A b = min{a, b}. Note that 3 is°convex if and only if the a-cut 3, is a convex
set for all o € [0,1]. Let F(RP) be the set of all convex fuzzy sets whose membership
functions 5 : R? — [0,1] are upper-semicontinuous and normal (supere $(z) = 1) and
have a compact support. In the one-dimensional case n = 1, F(R) denotes the set of all
fuzzy numbers. Let C(RP?) be the set of all compact convex subsets of R?.

The definitions of addition and scalar multiplication on F(RP) are as follows: For
5,7 € F(R?) and A > 0,

(3.1) 6+7)@) = sp {5(z1) A T(2)},
(3.2) (A8)(z) = { fﬁ:}/();)) 1320 zew,

where 13(-) is an indicator.
By using set operations A+ B:={z+y |z € A,y € B} and M := {)z | z € A} for
any non-empty sets A, B C RP?, the following holds immediately.

(3.3) (F+P)a=5a+7a and (A)a=A5a (a€[0,1]).

Let K be a non-empty cone of R?. Using this K, we can define a pseudo order relation
<k on R? by z <k y if and only if y —z € K. We introduce a pseudo order <z on F (R?)
(cf. [8]). Let 3,7 € F(RP). The relation § <x 7 means the following (i) and (ii):

(i) For any z € R?, there exists y € R? such that = <y y and s(z) < F(y).
(ii) For any y € R?, there exists € R? such that z <y y and s(z) > 7(y).
For any a € R? and d € C(RP?), the product of a and d is defined as
(3.4) ad = {a'd | d € d}.
We note that ad € C.

Lemma 3.1 [8]. For any 5,7 € F(RP), § <k 7 if and only if a3, < a7, for alla € K+
and a € [0,1].
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_ Here, we consider the two person fuzzy matrix game defined by the m x n fuzzy matrix
A = (@;;) € F(RP)™™. For any & = (1, %3,... ,%m)' € X and y = (Y1, 92, - - )t €Y,
the expected payoff for player 1 is estimated (cf. [18]) by

(3.5) f(z,y) = wt:iy = inyjaz’j-

We note that f(z,y) € F(RP) and its a-cut is given by

(3'6) f('Ta y)a = Zziyjaij,a € C(Rp)’

where @;;, is the a-cut of a;;.

The saddle point of the fuzzy matrix game A is defined similarly as that of the interval
matrix game (see Definition 1 in Section 2).

For any a € RP, noting adi. € C, we denote a@ija by [a;;,(a),a,(a)] and set
A (a) := (a5 4(a)) € R™" and A} (a) := (@} ,(a)) € R™". Here, fora € [0,1],7 € [0,1]
and a € R?, we put

(3.7) Aca(7) =745(a) + (1 = 1) A5 (a)-

Then, the saddle points of the fuzzy matrix game A will be characterized in the following
theorem, whose proof is done by applying Lemma 3.1 and the ideas used in Section 2.

Theorem 3.1. A point (z*,y*) € X x Y is a saddle point of the fuzzy matrix game A
if and only if there exist two functions ,v' : [0,1] x K* — [0,1] such that

(3.8) ' Aea(7(e, 0))y* £ 2% Ana(v(a, )y

2% A0 (Y (a,0))y 2 7% Aae (7 (0, 0))y"
foralla € [0,1] and a € K™.

4 Numerical Example

Here, we give numerical examples.

Example 1. Let A = ([2’4]’ -2, O]> € C?*2, Noting that A~ = (2’ _12) and

[0,2], [1,3] 0,
At = (;1’ g) and At — A™ = (;’ g) . Thus, by Corollary 2.2, a saddle point (z*,y*)

of A is unique and given by a saddle point for A~. After a simple calculation, we find

1 4 3 2 2 12
th A *= -, — * ¥ — |- —|.
at z (5,5) . (5,5) and f(*,y") [5, 5]

31
s -3 5 3
Example 2. Let A = 13 with A= = |4 2| and At =
>3] W 7 !
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1 3
4) o Y + 31 27 A
3 2 1. Noting A7) = 1 2|, for each v € [0,1], we solve the para-
2 2 v+ 2’ v+1
metric equation (2.8) and find that the (v, 7')-equilibrium point (z*,y*) is given by

1 9-2 5-2¢ 5 .
*= *z h
T ==y 10-2,"" (1—27"1—27')“'lt

. ey 29y =159y — 15y + 75 6y — 35y — 35y + 75
&9 = gy m -2 —o=2mao-279)

By Theorem 2.1, the set of all saddle points is specified by the set of all (7, v)-
equilibrium points. Some saddle points and their values are given in Table 1.

z* y* fz*y")
S IH RS
7=§’7'=1 %’g) (g’g [g?’%]
7=%7’=‘§' (535%) (%’%g [2’1737137]
'y=§’)"=§ (%’g—z) (%’%) [%’%]

Table 1. Saddle points and their values.

5 Interval stochastic game

In this section, we formulate two person zero-sum stochastic games with interval pay-
offs, called interval stochastic games, and define the saddle points under a criterion of
discounted interval gains.

A two person interval stochastic game is determined by five objects:

{S, A, B,r,q}.

Where S = {1,2,..., N} denotes the state space, A = {1,2,... ,m}and B={1,2,...,n}
denote the set of actions available to player 1 (maximizer) and player 2 (minimizer) re-
spectively. An interval-valued map r : S x A x B — C denotes interval estimate of
one-step payoff function and ¢ = {g,y(i,5) | 5,5’ € S,i € A,j € B} is a transition law,
ie., gow(i,7) 20and ), (3, 5) =1 for 5,5’ € S,i € A,j € B.
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A game is played as follows: At each time of epoch, two players observe the current
state s € S of the system and players 1 and 2 independently choose actions 1 € A and
j € B respectively. Then two events happen; (i) player 1 receives an immediate payoff
estlmated by the interval r(s,4,j) € C and (ii) the system moves to a new state s’ € S
selected according to the distribution g;.(i,j). This process is then repeated from the new
state s' € S.

The sample space is the product space §2 = (S x A x B)* such that the projection
X;, A# and AZ on the t-th factor S, A and B describe the state and the actions chooses
respectlvely by players 1 and 2 at the ¢-th time of the process (t = 1,2,...). Let P(A)
and P(B) be the sets of all probability distributions on A and B respectlvely, ie.,

P(A) ={IL‘= ($1,$2,--- ,xm) |$12052m:=1}

and z
PB) ={y=W1,40--- %) | % 20,3 =1}
j=1

A (stationary) strategy 7 and o for player 1 and 2 are sets of probability distributions
{x(:|s) | s € S} c P(A) and {o(-|s) | s € S} C P(B) respectively. The sets of all
stationary strategies for player 1 and 2 will be denoted by IT and X. We assume that for
each pair (7,0) € [l x ¥ with s,s' € S,i € A,j € Band t > 1,

Prob{X;41 = ¢’ | Xl,Af,Af, e, Xy = s,A;‘1 = i,Af =7} = gss (3, 7),

Prob{A# =i | X;, A, AR, .-+, X, = s} = 7(i]s)
and
Prob{AZ = j | X1, A, AR,--- , X, = s} = a(jls).

Then, the initial state s € S and the pair of strategies (r,0) € II x 2 determine the
probability measure P; , on {2 by the usual way.

Here, we consider the total expected payoff for player 1 in which the future payoff is
discounted with a factor 8 (0 < 8 < 1). For any pair (7,0) € Il X ¥ and any starting
state s € S, let

(5.1) T(s,m,0) Zﬂt 'E ’,a[r(Xt,Af,Af)],

where E? , is the expectation with respect to P, - Obviously, #r(s,, a) e C.

Lemma 5.1 For any pair (7,0) € Il x ¥ and any starting state s € S, {JT(s, m,0) }5,
is a Cauchy sequence with respect to the Hausdorff metric § € C.



112

Proof. For any T > H, it holds from Lemma 1.1 (iii) that

5(/7'(8, T, 0‘), JH(S, , 0’))

T
=60, 3 BB, [r(X, AL, AP))
t=H+1
T

= IBH‘S(()’ Z ﬂt‘H—lE:r,a[r(Xh A?’ A?)])
t=H+1
H : -
<A  max 6(0,r(s,5,5))/(1 - B).
This completes the proof. [

From Lemma 5.1, the infinite horizon total expected payoff for player 1 can be defined
by

(5.2) F(s,m,0) = 7!11’130 Fr(s,m,0).
Since £ (s, 7, 0) € C, it will be written as
(5.3) F(s,m,0) = [F(s,m,0), F*(s,T,0)).
For any pair (m,0) €e[Ix L and s € S, let
F(s,l1,0) ={F(s,m,0) |[m€l} and SF(s,7,%)={F(s,m0)]|0€ZX)

The following is easily shown by applying the idea of Borkar’s discounted occupation
measure (cf. Theorem 1.2 [3]).

Lemma 5.2 For any pair (1,0) € I x ¥ and s € S, #(s,I1,0) and #(s,m, L) are
compact and convex subsets of C.

Definition 1’ (cf. [20, 24]) Let (7*,0*) € I x £ and s € S. Then, the pair (7*,0*) is
said to be a saddle point at s € S for the interval stochastic game if the following holds.

F(s,7*,0") € max £ (s,I1,0*) N min £ (s, 7*, L).

6 Characterization of saddle points

In order to characterize the saddle point we introduce a parametric stochastic game.
For any « € [0, 1], we put

(6.1) (s,4,5) = yr*(s,4,5) + 1 =777 (s,4,5) ER (s€ S,i€ A j€ B),

where r~ and r* are extreme points of the interval r and r = [r~(s, 1, j), r* (s, 1, 7)].
For any pair (r,0) € Il x ¥ and s € S, let

(6.2) I'(s,7,0) = 1!1_1’130 Il(s,m, o),
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a

CI(s,m0) = S BIES M (X, AL AP (T2 1),
t=1
Definition 2’ Let 7,7 € [0,1] and s € S. Then, the pair (n*,0*) € I x L is said to be
a (7, 7')-equilibrium point at state s € S if the following (i) and (ii) hold:
() I}(s,m 0*) < I}(s,7*,0*) forall mell '

(i) I7 (s, 7*,0) > I} (s,n*,0*) forallo €.

Every finite noncooperative stochastic game has an equilibrium point (cf. [1]), so
that for any 7,7 € [0,1], a (v, 7')-equilibrium point exists. The following lemma follows
obviously from (2.2), (2.3) and (6.1).

Lemma 6.1 For any pair (r,0) € Ix X and s € S,

D(s,m0)=~vF"(s,m,0)+ (1 - v)F (s, m,0).

Theorem 6.1 A pair (n*,0*) € Il x ¥ is a saddle point at s € S if and only if there
exist 7,7 € [0,1] such that (7*,0*) is a (v,7')-equilibrium point at state s € S.

Proof. By Lemmas 1.2 and 6.1, that #(s,7*,0%) € min (s, 7*,X) means that there
exists 7' € [0, 1] satisfying :

(6.3) NIt (s, m*,0*)+ (1 —v)F (s,7",0%)
<y Ft(s,m*,0)+(1—7)F (s,7%,0) foralloek.

By Lemma 6.1, (6.3) is rewritten to (i) of Definition 2’. Similarly, 7 (s,m*,0*) €
max # (s, 11, 0*) means that there exists v € [0,1] for which (i) of Definition 2’ holds.
Thus, the proof is complete. ]

The following results easily follow from Theorem 6.1.

Corollary 6.1 Ifa pair (m*,0*) € IIXZ is a saddle point for a zero-sum game {I"(s,m,0) |
r €10 € £},7 € [0,1], the pair (7*,0*) is a saddle point at state s € S for the interval
stochastic game.

Proof. The saddle point (n*,c*) satisfies that I"(s,7*,0) > I"(s,7*,0%) 2 I(s,m,0%),
which implies that (7*,0*) is a (7, y)-equilibrium point. Thus, the statement of Corollary
6.1 follows from Theorem 6.1. O

Corollary 6.2 If r*(s,i,7) — r~(s,1,5) (= const.) is independent ofseS,i€ A,jEB
the saddle point (m*,0*) for the interval stochastic game is uniquely determined as a
saddle point for a zero-sum game {I°(s,7,0) |7 €Il,0 € I}

Proof. We note from (6.1) that r7(s,i,j) = r7(s,4,7) + v(r+(s,i,5) — r~(s,1,5)). So
that if r+(s,i,7) — r(s,1,5) (= const.) is independent of s € S,i€ A,j€ B, I(s,m,0)
and I7' (s,m,0) are essentially equivalent for any v, ' € [0,1]. The proof is completed by
observing Theorem 6.1. [
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The following is useful in finding the saddle points for interval stochastic games.

Corollary 6.3 (cf. [22]) The pair (7*,0*) € Il x ¥ is a saddle point at s € S if
and only if there exist v,y € [0,1] such that 7*(-|s) = (zs1,%s2,--- ,Zsm) € P(A) and
0*(-|8) = (Ys1,Ys2y- - - ,Ysn) € P(B) (s € S) is a part of a solution to

(V=0 + Y ("(5,5,5) + B Guw (6, 5)v0)Tsi (5 € )
i€A s'eS

V= thsi + D_(r7(8,5,9) + B qaw (4, 1)V} )yss

J jEB s'eS

(6.4) DD vamsi =0, D> pheis; =0

3€ES i€A 3€S jeB
Zxai =1, Zyaj =1, (3 € S)
€A JEB

L Tg > 0, y,jZO (SES,iEA,jGB).

7 Extensions to fuzzy payoff cases

In this section, we consider the stochastic game similar to that specified in Section 5 except
that for each s € S,7 € A and j € B the multi-dimensional fuzzy payoff 7(s, i, j) € F(RP)
is assigned.
Then, for a pair (m,0) € II x ¥ and s € S, we let
— 00
(7.1) F(s,m,0) =Y BIE:[F(Xe, A}, AP)),
t=1
where the expectation of a fuzzy random variable is defined similarly as (1.3) by use of
(3.1) and (3.2), and the convergence in (7.1) is taken with respect to the usual Hausdorff
metric on F(R?) (cf. [4]). N
We note that ﬂs, 7,0) € F(RP) and its a-cut S (s,w,0), is given by

(7.2) F(s,m,0)a =Y B ES,[F(Xe, AR, AP)d],
t=1

where 7(s, 1, j), is an a-cut of 7(s, ,j) € F(RP).
The saddle point of the stochastic game with fuzzy payoff is defined similarly as that
of the interval stochastic game (see Definition 1’ in Section 5).
For any a € RP?, since the product a7(s, 1, j)s € C, it will be written as
ar(s, 1, j)a = [(a7(s, 1, 5)a) 7, (a7(s, 4, 5)a) *].
For a € [0,1],d € [0,1] and a € R?, we put

(7.3) r(s,%,jle, v, 0) = v(a7(s,4, 5)a) " + (1 - 7)(aF (5,4, 5)a) -
For each pair (7,0) € Il x ¥ and s € S, we define

[ o]

(4.8) I(s,m,0la,y,a) = Z ﬂt"lE,’,,a[r(Xt, Af, ABla,, a)).

t=1
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Then, the saddle point for the stochastic game with fuzzy payoff can be characterized in
the following, whose proof is done by applying Lemma 3.1 and the idea used in Section 5.

Theorem 7.1 A pair (1*,0*) € I1 x T is a saddle point for the stochastic game with
fuzzy payoffs if and only if there exist two function v, 4" :[0,1] x K — [0, 1] such that

(49) I(S, T, 0*|01, 7(a7 G,), a’) < I(S, 7!'*, O'*IO!, ’Y(a) a’)7 a’),

I(S7 7r*70|a7 ’yl(a7 a)’“) 2 I(s’ Tr*’o‘*la’ 7I(a’ a)’a)
forallmel,c e £, a€(0,1] anda € K™.

References

[1] Altman, E. and Schwartz, A, Constrained Markov Games: Nash Equilibria,
J.A Filar, V.Gartsgory and K.Mizukami(eds): Advances in Dynamic Games and
Applications (Annals of the International Society of Dynamic Games, Volume 5),
257-266 (1999).

[2] Benson, H.P., An improved definition of proper efficiency for vector maximization
with respect to cones, J. Math. Anal. Appl. 71, 232-241 (1979).

[3] Borkar, V.S., Topics in Controlled Markov-Chains, Pitman Research Notes in Math-
ematics 240, Longman Scientific-Wiley, New York, (1991).

[4] Diamond, P. and Kloeden, P., Metric Spaces of Fuzzy Sets, Theory and Applications,
World Scientic, (1994). '

[5] Hartfiel, D.J., Markov Set-chains, Springer-Verlag, Berlin, (1998).

[6] Howard, R., Dynamic Programming and Markov Processes, MIT Press, Cambridge
MA, (1960). o

[7] Ishibuchi, H. and Tanaka, H., Multiobjective‘programming in optimization of the in-
terval objective formulation, European J. of Operational Research 48, 219-225 (1990).

[8] Kurano, M., Yasuda, M., Nakagami, J. and Yoshida, Y., Ordering of fuzzy sets — A
brief survey and new results, J. Operations Research Society of Japan 43, 138-148
(2000). ‘ ; ~

[9] Kurano, M., Yasuda, M. and Nakagami, J., Interval methods for uncertain Markov
decision processes, In: Markov Processes and Contracted Markov Chains, edited by H.
Zhenting, J. A. Filer and A. Chen, Kluwer, Dordrecht, The Netherlands, (2001 to

appear).
(10] Kurano, M., Yasuda, M., Nakagami, J. and Yoshida, Y., Markov decision processes

with fuzzy rewards, The second international conference on NACA, Hirosaki, Japan,
July 30-August 2, (2001).

[11] Kurano, M., Yasuda, M., Nakagami, J. and Yoshida, Y., A note on interval games

and their saddle points, FUER A FIBMITHI AT - FRES BEERE( @23:: " Py
A=Y X h) July 17-19, (2001).



116

[12] Kurano, M., Yasuda, M., Nakagami, J. and Yoshida, Y., Stochastic games with
interval payoffs, HEFEERMAES [FREEMD T CORRMEBREDHZE] Oct.
18-19, (2001).

[13] Kuratowski, K., Topology. Academics Press, New York, (1966).
[14] Luc, D. T., Theory of vector optimization, Springer-Verlag, (1989).
[15] Nash, J., Noncooperative Games, Ann. of Math. 54, 286-295 (1951).

[16] Nenmaier, A., New techniques for the analysis of linear interval equations, Linear
Algebra and Applications, 58, 273-325 (1984).

[17) Novék, V., Fuzzy Sets and Their Applications, Adam Hilder, Bristol-Boston, (1989).

[18] Puri, M.L. and Ralescu, D.A., Fuzzy random variables, J. of Math. Anal. and Appli.,
114, 409-422 (1986).

[19] Puterman, M.L., Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming, John Wiley & Sons, INC, (1994).

[20] Sawaragi, Y., Nakayama, H. and Tanino, T., Theory of multiobjective optimization,
. Academics Press, Inc. (1985).

[21] Shaochang, T., Interval number and fuzzy number linear programmings, Fuzzy Sets
and Systems, 66, 301-306 (1994).

[22] Sobel, M., Noncooperative stochastic games, Ann. Math. Statist. 42, 1930-1935
(1971).

[23] Stowinski, R. (ed.), Fuzzy Sets in Decision Analysis, Operations Research and Statis-
tics, Kluwer Academic Publishers, (1998).

[24] Tanaka, T., Generalized quasiconvexities, cone saddle points and minimax theorem
for vector-valued functions. J. Optim. Theory Appl. 81, 355-377 (1994).

[25] von Neumann, J. and Morgenstein, Theory of Games and Economics Behavior,
Princeton:Princeton University Press, (1944).

[26] Wang, J., The Theory of Games, Oxford Science Publications, (1988).
[27] Zadeh, L.A., Fuzzy sets, Inform. and Control, 8, 338-353, (1965).



