Monte Carlo Method for pricing of Bermuda type derivatives

Shigeo Kusuoka

Graduate School of Mathematical Sciences, University of Tokyo

1 Introduction

Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\in[0,\infty)}, P)$ be a filtered space with the usual condition, and $\{B_t\}_{t\in[0,\infty)}$ be a d-dimensinal Brownian motion. Let T>0, and let $\sigma:[0,T]\times\mathbf{R}^D\to\mathbf{R}^D\times\mathbf{R}^d$ and $b:[0,T]\times\mathbf{R}^D\to\mathbf{R}^D$ be continuous functions. For each $s\in[0,T]$ and $x\in\mathbf{R}^D$, let $X(t;s,x), t\in[s,T]$ be a solution of the following SDE.

$$X(t;s,x) = x + \int_{s}^{t} \sigma(r,X(r;s,x))dB_{r} + \int_{s}^{t} b(r,X(r;t,x))dr, \qquad t \in [s,T].$$
 (1)

We assume that the above SDE 1 has a path-wise unique solution for every $(s, x) \in [0, T] \times \mathbb{R}^D$.

Let $\tilde{\mathcal{S}}_s^t$, $0 \leq s \leq t \leq T$, be the set of \mathcal{F}_t -stopping times τ with $s \leq \tau \leq t$. Let $g:[0,T]\times \mathbf{R}^D\to \mathbf{R}$ be a continuous function with suitable conditions. Then, concerning the pricing of American derivatives, we are interested in computing the following value function,

$$u(s,x) = \sup\{E[g(\tau,X(\tau;s,x))]; \tau \in \tilde{\mathcal{S}}_{\bullet}^T\}, (s,x) \in [0,T] \times \mathbf{R}^D.$$

There are several attempts to compute the value function u numerically. However, it seems that there are not so good method if D is not small. Let $N \geq 2$ and let T_n , $n = 0, 1, \ldots, N$, be positive numbers such that $0 = T_0 < T_1 < \ldots < T_N = T$. Let S_n , $n = 0, 1, \ldots, N$, be the set of \mathcal{F}_t -stopping times taking value in $\{T_n, T_{n+1}, \ldots, T_N\}$. Concerning the pricing of Bermuda type derivatives, we are interested in computing the following value functions.

$$v_n(x) = \sup\{E[g(\tau, X(\tau; s, x))]; \tau \in \mathcal{S}_n\}, \qquad n = 0, 1, \dots, N.$$

Let us define a probability measure $p_n(x,\cdot)$ over \mathbf{R}^D for each $n=0,1,\ldots,N-1$, and $x\in\mathbf{R}^D$ by

$$p_n(x,A) = P(X(T_{n+1};T_n,x) \in A),$$
 for a Borel set A in \mathbb{R}^D ,

and define a operator P_n , n = 0, 1, ..., N - 1, by

$$P_n f(x) = \int_{\mathbf{R}^D} f(y) p_n(x, dy) = E[f(X(T_{n+1}; T_n, x))]$$

for a measurable function f on \mathbb{R}^D . Then v_n , $n = N, N - 1, \ldots, 0$, are given inductively by the following.

$$v_N(x) = g(T_N, x),$$
 $v_{n-1}(x) = (P_{n-1}v_n)(x) \lor g(T_{n-1}, x).$

So the value function $v_0(x)$ is easily given mathematically. However, if D is not small, it is not easy to memorize a function on \mathbb{R}^D , and so it is not easy to compute $v_0(x)$.

Several people suggest a Monte-Carlo method to compute the value function. In this paper, we discuss the method given by [?]. We assume the following assumption (A). (A1) D_n , $n = 0, 1, \ldots, N-1$, are measurable sets in \mathbb{R}^N such that $(P_n v_{n+1})(x) \geq g(T_n, x)$ for any $x \in \mathbb{R}^D \setminus D_n$.

Remark 1 (1) $D_n = \mathbb{R}^D$ satisfies the assumption (A1). (2) If $g(t,x) \geq 0$, for any $(t,x) \in [0,T] \times \mathbb{R}$, then $D_n = \{x \in \mathbb{R}^D; g(T_n,x) > 0\}$ satisfies the assumption (A1).

Now let $L_n \geq 1$, $n = 0, 1, \ldots, N-1$, and $\vec{X}_{n,\ell} = \{X_{n,\ell}(m)\}_{m=0}^N$, $\ell = 1, \ldots, L_n$, $n = 0, 1, \ldots, N-1$, are identically independent random vectors whose distribution is the same as the distribution of $\{X(T_m; 0, x)\}_{m=0}^N$. Let $K_n \geq 1$, $n = 0, 1, \ldots, N-1$, and $\psi_{n,k}$, $k = 1, \ldots, K_n$, $n = 0, 1, \ldots, N-1$, are functions on \mathbf{R}^D . Then we define functions H_n , $n = N, N-1, \ldots, 1, 0$, on \mathbf{R}^D inductively by the following.

$$H_N(x)=1.$$

When $\vec{H}_{n+1} = \{H_m\}_{m=n+1}^N$, are given we let

$$\sigma_{n,\ell}=\min\{m\geq n+1; H_m(X_{n,\ell}(m))>0\}, \qquad \ell=1,\ldots L_n.$$

Then we let $\{\tilde{a}_{n,k}\}_{k=1}^{K_n}$ be the minimizing point of the function

$$F_n(\{a_k\}_{k=1}^{K_n}) = \frac{1}{L_n} \sum_{\ell=1}^{L_n} |g(T_{\sigma_{n,\ell}}, X_{n,\ell}(\sigma_{n,\ell})) - \sum_{k=1}^{K_n} a_n \psi_{n,k}(X_{n,\ell}(n))|^2 1_{D_n}(X_{n,\ell}(n)).$$

Finally we define H_n by

$$H_n(x) = \left\{ egin{array}{ll} g(T_n,x) - \sum_{k=1}^{K_n} ilde{a}_{n,k} \psi_{n,k}(x), & x \in D_n \ -1, & x \in \mathbf{R}^D \setminus D_n. \end{array}
ight.$$

Then we let

$$\tilde{v}_0 = \frac{1}{L_0} \sum_{\ell=1}^{L_0} g(\sigma_{0,\ell}, X_{0,\ell}(\sigma_{0,\ell}))$$

and

$$\tilde{\sigma}=\min\{T_n;H_n(X(T_n;0,x))>0\}.$$

We think that \tilde{v}_0 is an approximation of the value function $v_0(x)$ and the stopping time $\tilde{\sigma}$ as a candidate of the optimal stopping time.

2 Preliminary Results

Let $W_n = \mathbf{R}^{(N+1-n)D}$, n = 0, 1, ..., N, and let $P_x^{(n)}$, $x \in \mathbf{R}^D$, be the distribution of $\{X(T_m; T_n, x)\}_{m=n}^N$ on W_n . Then $P_x^{(n)}$, n = 0, 1, ..., N, $x \in \mathbf{R}^D$, is a Markov chain on \mathbf{R}^D .

For any measurable function h on \mathbf{R}^D and n, m = 0, 1, ..., N with $n \leq m$, let $\tau_m(\cdot; h)$: $W_n \to \{m, N\}$ by

$$au_m(w;h) = \left\{ egin{array}{ll} m, & h(w(m)) > 0, \\ N, & h(w(m)) \leq 0. \end{array}
ight.$$

Lemma 2 Let $h_n: \mathbb{R}^N \to \mathbb{R}$, n = 0, 1, ..., N, be given, and assume that $h_n(x) \leq 0$, $x \in \mathbb{R}^N \setminus D_n$, and that $h_N(x) = 1$. Let $\sigma_n: W_n \to \{n, n+1, ..., N\}$ be given by

$$\sigma_n(w) = \sigma_n(w; \{h_m\}_{m=n}^{N-1}) = \bigwedge_{m=n}^{N-1} \tau_m(w; h_m), \qquad w \in W_n.$$

Moreover, let $u_n: \mathbf{R}^D \to \mathbf{R}$ be given by

$$u_n(x) = u_n(x; \{h_m\}_{m=n}^N) = E^{P_x^{(n)}}[g(T_{\sigma_n}, w(\sigma_n))], \qquad x \in \mathbf{R}^D,$$

Then we have the following.

(1) $|u_n(x) - v_n(x)| \le |P_n(u_{n+1} - v_{n+1})(x)| + 1_{D_n}(x)|P_nu_{n+1}(x) - (g(T_n, x) - h_n(x))|$ for any n = 0, 1, ..., N - 1, and $x \in \mathbb{R}^D$.

 $(2) |u_n(x)-v_n(x)|$

 $\leq |P_n(u_{n+1}-v_{n+1})(x)|+1_{D_n}(x)1_{\{1\}}(sgn(P_nu_{n+1}(x)-g(T_n,x))sgn(h_n(x)))|P_nu_{n+1}(x)-g(n,x)|.$

Here

$$sgn(a) = \left\{ egin{array}{ll} 1, & a > 0, \\ 0, & a = 0, \\ -1, & a < 0. \end{array} \right.$$

Proof. Note that $u_n(x) \leq v_n(x)$, for all n = 0, 1, ..., N - 1, and $x \in \mathbb{R}^D$. Let $\tilde{u}_n(x) = g(T_n, x) - h_n(x)$, $x \in \mathbb{R}^D$.

Let n = 0, 1, ..., N - 1, and $x \in \mathbb{R}^D$, and fix them for a while.

Case 1. Suppose that $h_n(x) > 0$.

Then we see that $x \in D_n$ and $g(T_n, x) > \tilde{u}_n(x)$. So we have

$$v_n(x) = g(T_n, x) + (P_n v_{n+1}(x) - g(T_n, x)) \vee 0 \le g(T_n, x) + |P_n v_{n+1}(x) - \tilde{u}_n(x)|.$$

This implies

$$g(T_n, x) \ge v_n(x) - |P_n(v_{n+1} - u_{n+1})(x)| - |P_n u_{n+1}(x) - \tilde{u}_n(x)|.$$

Case 2. Suppose that $h_n(x) \leq 0$, and $x \in D_n$.

Then we see that $g(T_n, x) \leq \tilde{u}_n(x)$. So we see that

$$v_n(x) \leq P_n v_{n+1}(x) \vee \tilde{u}_n(x) \leq P_n u_{n+1}(x) + |P_n(v_{n+1} - u_{n+1})(x)| + |P_n u_{n+1}(x) - \tilde{u}_n(x)|.$$

Case 3. Suppose that $h_n(x) \leq 0$, and $x \in \mathbb{R}^D \setminus D_n$. Then we see that $g(T_n, x) \leq (P_n v_{n+1})(x)$. So we have

$$v_n(x) = P_n v_{n+1}(x) \le P_n u_{n+1}(x) + |P_n(u_{n+1} - v_{n+1})(x)|.$$

So we see that for any n = 0, 1, ..., N - 1,

$$\begin{split} u_n &= 1_{\{h_n > 0\}} g(T_n, \cdot) + 1_{\{h_n \leq 0\}} (P_n u_{n+1}) \\ &\geq 1_{\{h_n > 0\}} (v_n - |P_n(v_{n+1} - u_{n+1})| - |P_n u_{n+1} - \tilde{u}_n|) \\ &+ 1_{\{h_n \leq 0\}} 1_{D_n} (v_n - |P_n(v_{n+1} - u_{n+1})| - |P_n u_{n+1} - \tilde{u}_n|) \\ &+ 1_{\{h_n \leq 0\}} 1_{\mathbf{R}^D \setminus D_n} (v_n - |P_n(v_{n+1} - u_{n+1})|). \end{split}$$

Thus we see that

$$0 \leq v_n - u_n \leq |P_n(v_{n+1} - u_{n+1})| + |1_{D_n}P_nu_{n+1} - \tilde{u}_n|.$$

This implies the assertion (1).

Now let us prove the assetion (2). Let ξ is a positive measurable function on \mathbb{R}^D . Since $\tau_n(w; \xi h_n) = \tau_n(w; h_n)$, we see from the assertion (1) that

$$|u_n(x) - v_n(x)| \le |P_n(u_{n+1} - v_{n+1})(x)| + 1_{D_n}(x)|P_nu_{n+1}(x) - g(T_n, x) + \xi(x)h_n(x)|.$$

Noting that

$$\inf\{a+tb;\ t>0\} = 1_{\{1\}}(sgn(a)sgn(b))|a|, \quad a,b \in \mathbb{R},$$

we have the assertion (2).

This completes the proof.

Let ν_0 be a probability measure on \mathbf{R}^D and define probability measures ν_n , $n=1,\ldots,N$, inductively by

$$u_{n+1}(dx) = \int_{\mathbf{R}^D} p_n(y;dx) \nu_n(dy), \qquad n = 0,1,\ldots,N-1.$$

Then we have the following as an easy consequence of Lemma 2.

Corollary 3 Let h_n and u_n be the same as the previous lemma. Then we have the following.

$$(\int_{\mathbf{R}^D} |u_n(x) - v_n(x)|^2 \nu_n(dx))^{1/2}$$

$$\leq |(\int_{\mathbf{R}^D} |u_{n+1} - v_{n+1}(x)|^2 \nu_{n+1}(dx))^{1/2} + \int_{D_n} |P_n u_{n+1}(x) - (g(T_n, x) - h_n(x))|^2)^{1/2}$$
for any $n = 0, 1, \ldots, N - 1$.

3 Main Result

Let ν_0 be a probability measure over \mathbf{R}^D . Let $L_n \geq 1$, $n = 0, 1, \ldots, N-1$, and $\vec{X}_{n,\ell} = \{X_{n,\ell}(m)\}_{m=0}^N$, $\ell = 1, \ldots, L_n$, $n = 0, 1, \ldots, N-1$, are identically independent random vectors defined on the probability measure $(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{P})$ whose distribution is $P_{\nu_0}^{(0)} = \int_{\mathbf{R}^D} P_x^{(0)} \nu_0(dx)$. Let $K_n \geq 1$, $n = 0, 1, \ldots, N-1$, and $\psi_{n,k}$, $k = 1, \ldots, K_n$, $n = 0, 1, \ldots, N-1$, are functions on \mathbf{R}^D .

Then we define functions $H_n: \mathbf{R}^D \times \tilde{\Omega} \to \mathbf{R}, n = N, N-1, \ldots, 1, 0, \text{ on } \mathbf{R}^D$ inductively by the following procedure.

$$H_N(x)=1.$$

When $\vec{H}_{n+1} = \{H_m\}_{m=n+1}^N$, are given we let

$$\sigma_{n,\ell} = \min\{m \geq n+1; H_m(X_{n,\ell}(m)) > 0\}, \qquad \ell = 1, \ldots L_n.$$

Then we let $\tilde{a}_n = {\{\tilde{a}_{n,k}\}_{k=1}^{K_n}}$ be the minimizing point of the function

$$F_n(\{a_k\}_{k=1}^{K_n}) = \frac{1}{L_n} \sum_{\ell=1}^{L_n} |g(T_{\sigma_{n,\ell}}, X_{n,\ell}(\sigma_{n,\ell})) - \sum_{k=1}^{K_n} a_n \psi_{n,k}(X_{n,\ell}(n))|^2 1_{D_n}(X_{n,\ell}(n)).$$

Finally we define H_n by

$$H_n(x) = \begin{cases} g(T_n, x) - \sum_{k=1}^{K_n} \tilde{a}_{n,k} \psi_{n,k}(x), & x \in D_n \\ -1, & x \in \mathbf{R}^D \setminus D_n. \end{cases}$$

Let $U_n(x) = u_n(\cdot; \{H_m\}_{m=n}^N))(x)$. Here u_n is as in Lemma 2. Let $\bar{a}_n = \{\bar{a}_{n,k}\}_{k=1}^{K_n}$ be the minimizing point of the function

$$\bar{F}_n(\{a_k\}_{k=1}^{K_n}) = \int_{D_n} |(P_n U_{n+1})(x) - \sum_{k=1}^{K_n} a_n \psi_{n,k}(x))|^2 \nu_n(dx).$$

We assume the following.

(A2) $\psi_{n,k}$, $k = 1, ..., K_n$, is linear ly independent in $L^2(D_n; d\nu_n)$, n = 0, 1, ..., N-1, where ν_n is the probability law of w(n) under $P_{\nu_0}^{(0)}(dw)$.

(A3)
$$\int_{D_n} \psi_{n,k}(x)^4 \nu_n(dx) < \infty \ k = 1, \ldots, K_n, \ n = 0, 1, \ldots, N-1.$$
 and

$$\int_{\mathbf{R}^D} E^{P_x^{(0)}} [(\sum_{m=1}^N g(T_n, w(T_n))^4] \nu_0(dx) < \infty, \qquad n = 0, 1, \dots, N...$$

Then we have the following.

Theorem 4 (1) There is a constant C > 0 such that

$$E^{\tilde{P}}[1 \wedge (\sum_{k=1}^{K_n} |\tilde{a}_{n,k} - \bar{a}_{n,k}|^2)] \leq \frac{C}{L_n}.$$

(2)
$$(\int_{\mathbf{R}^D} |U_n(x) - v_n(x)|^2 \nu_n(dx))^{1/2}$$

$$\leq (\int_{\mathbf{R}^D} |U_{n+1}(x) - v_{n+1}(x)|^2 \nu_{n+1}(dx))^{1/2} + (\int_{\mathbf{R}^D} (\sum_{k=1}^{K_n} (\tilde{a}_{n,k} - \bar{a}_{n,k}) \psi_{n,k}(x))^2 \nu_n(dx))^{1/2}$$

$$+\inf\{(\int_{D_n}|(P_nU_{n+1})(x)-\sum_{k=1}^{K_n}a_k\psi_{n,k}(x)|^2\nu_n(dx))^{1/2};\ a_k\in\mathbf{R},\ k=1,\ldots,K_n\}$$

Proof. Let \mathcal{I}_n , $n=0,1,\ldots,N-1$, be the σ -algebra generated by $\vec{X}_{n,\ell}$, $\ell=1,\ldots,L_n$, and let \mathcal{B}_n , $n=0,1,\ldots,N-1$, be the σ -algebra generated by $\bigcup_{m=n}^{N-1} \mathcal{I}_m$. Inductively, we see that H_n is \mathcal{B}_n -measurable, $n=N-1,N-2,\ldots,0$. Also, we have

$$F_n(\{a_k\}_{k=1}^{K_n}) = \sum_{k,k'=1}^{K_n} C_{n,k,k'}^{(2)} a_k a_{k'} - 2 \sum_{k=1}^{K_n} c_{n,k}^{(1)} a_k + C_n^{(0)},$$

where

$$C_{n,k,k'}^{(2)} = \frac{1}{L_n} \sum_{\ell=1}^{L_n} (1_{D_n} \psi_{n,k} \psi_{n,k'})(X_{n,\ell})$$

$$c_{n,k}^{(1)} = \frac{1}{L_n} \sum_{\ell=1}^{L_n} (1_{D_n} \psi_{n,k})(X_{n,\ell}) g(T_{\sigma_{n,\ell}}, X_{n,\ell}(\sigma_{n,\ell})).$$

Note that $\sigma_{n,\ell} = \sigma_{n+1}(\vec{X}_{n,\ell}(\cdot); \{H_m\}_{m=n+1}^N)$. Therefore we have

$$\bar{C}_{n,k,k'}^{(2)} = E^{\bar{P}}[C_{n,k,k'}^{(2)}|\mathcal{B}_{n+1}] = \int_{D_n} \psi_{n,k}(x)\psi_{n,k'}(x)\nu_n(dx), \tag{2}$$

and

$$\bar{c}_{n,k}^{(1)} = E^{\bar{P}}[c_{n,k}^{(1)}|\mathcal{B}_{n+1}] = \int_{D_n} \psi_{n,k}(x) (P_n U_{n+1})(x) \nu_n(dx). \tag{3}$$

Let $R_{n,k,k'}^{(2)} = C_{n,k,k'}^{(2)} - \bar{C}_{n,k,k'}^{(2)}$, and $r_{n,k}^{(1)} = c_{n,k}^{(1)} - \bar{r}_{n,k}^{(1)}$. Let $C_n^{(2)} = \{C_{n,k,k'}^{(2)}\}_{k,k'=1}^D$, $\bar{C}_n^{(2)} = \{\bar{C}_{n,k,k'}^{(2)}\}_{k,k'=1}^D$, and $R_n^{(2)} = \{R_{n,k,k'}^{(2)}\}_{k,k'=1}^D$ be $D \times D$ random matrices, and let Let $c_n^{(1)} = \{c_{n,k}^{(1)}\}_{k=1}^D$, $\bar{c}_n^{(1)} = \{\bar{c}_{n,k}^{(1)}\}_{k=1}^D$, and $r_n^{(1)} = \{r_{n,k}^{(1)}\}_{k=1}^D$, be D-dimesional random vectors. Then we see that

$$\tilde{a}_n = C_n^{(2)-1} c_n^{(1)}, \qquad \bar{a}_n = \bar{C}_n^{(2)-1} \bar{c}_n^{(1)}, \qquad n = 0, \dots, N-1.$$

Also, we see that

$$egin{align} E^{ ilde{P}}[(R_{n,k,k'}^{(2)})^2] \ &= rac{1}{L_n} E[Var[1_{D_n}(X_{n,1}(n))\psi_{n,k}(X_{n,1}(n))\psi_{n,k'}(X_{n,1}(n))|\mathcal{B}_{n+1}]] \ &\leq rac{1}{L_n} \int_{D_n} \psi_{n,k}(x)^2 \psi_{n,k'}(x)^2
u_n(dx) \end{array}$$

$$E^{\tilde{P}}[(r_{n,k}^{(1)})^2] = \frac{1}{L_n} E[Var[1_{D_n}(X_{n,1}(n))\psi_{n,k}(X_{n,1}(n))g(\sigma_{n,1},X_{n,1}(\sigma_{n,1}))|\mathcal{B}_{n+1}]]$$

$$\leq \frac{1}{L_n} \int_{D_n} \psi_{n,k}(x)^2 E^{P_x^{(n)}} [g(T_{\sigma_{n+1}(w;\{H_m\}_{m=n+1}^N)}) w(\sigma_{n+1}(w;\{H_m\}_{m=n+1}^N)))^2] \nu_n(dx).$$

If $\|\bar{C}_n^{(2)-1}R_n^{(2)}\| \le 1/2$, we have

$$\|(\bar{C}_n^{(2)} + R_n^{(2)})^{-1} \bar{C}_n^{(2)-1}\| = \|((I + \bar{C}_n^{(2)-1} R_n^{(2)})^{-1} - I)\bar{C}_n^{(2)-1}\| \le 2 \|\bar{C}_n^{(2)-1}\| \|R_n^{(2)}\|.$$

Here $\|\cdot\|$ is the operator norm of a matrix. So if $\|\bar{C}_n^{(2)-1}\|\|R_n^{(2)}\| \le 1/2$ and $|\bar{c}_n^{(1)}| \le 1$, we have

$$\begin{aligned} |\tilde{a}_{n} - \bar{a}_{n}| &= |((\bar{C}_{n}^{(2)} + R_{n}^{(2)})^{-1} - \bar{C}_{n}^{(2)-1})(\bar{c}_{n}^{(1)} + r_{n}^{(1)}) + \bar{C}_{n}^{(2)-1}r_{n}^{(1)}| \\ &\leq 2 \parallel \bar{C}_{n}^{(2)-1} \parallel^{2} \parallel R_{n}^{(2)} \parallel (|\bar{c}_{n}^{(1)}| + 1) \parallel \bar{C}_{n}^{(2)-1} \parallel |r_{n}^{(1)}| \end{aligned}$$

So we have

$$\begin{split} E^{\tilde{P}}[\|\tilde{a}_{n} - \bar{a}_{n}\|^{2} \wedge 1] \\ \leq E^{\tilde{P}}[\|\tilde{a}_{n} - \bar{a}_{n}\|^{2}, \|\bar{C}_{n}^{(2)-1}\| \|R_{n}^{(2)}\| \leq 1/2, |\bar{c}_{n}^{(1)}| \leq 1] \\ + \tilde{P}(\|\bar{C}_{n}^{(2)-1}\| \|R_{n}^{(2)}\| > 1/2) + \tilde{P}(|\bar{c}_{n}^{(1)}| > 1) \end{split}$$

$$\leq (4(|\bar{c}_n^{(1)}|+1)^2 \|\bar{C}_n^{(2)-1}\|^4 + 4 \|\bar{C}_n^{(2)-1}\|^{-2})E^{\tilde{P}}[\|R_n^{(2)}\|^2] + (\|\bar{C}_n^{(2)-1}\|^2 + 1)E^{\tilde{P}}[|r_n^{(1)}|^2].$$

Also we have

$$|\bar{c}_n^{(1)}| \leq (\int_{D_n} (\sum_{k=1}^{K_n} \psi_{n,k}(x)^2) \nu_n(dx))^{1/2} (\int_{\mathbf{R}^D} E^{P_x^{(0)}} [(\sum_{m=1}^N g(T_m, w(T_m))^2] \nu_0(dx))^{1/2},$$

$$E^{\tilde{P}}[\parallel R_n^{(2)}\parallel^2] \leq \frac{1}{L_n} \int_{D_n} (\sum_{k=1}^{K_n} \psi_{n,k}(x)^2)^2 \nu_n(dx),$$

and

$$E^{\tilde{P}}[|r_n^{(1)}|^2] \leq \frac{1}{L_n} \left(\int_{D_n} (\sum_{k=1}^{K_n} \psi_{n,k}(x)^2)^2 \nu_n(dx) \right)^{1/2} \left(\int_{\mathbf{R}^D} E^{P_x^{(0)}} \left[(\sum_{m=1}^N g(T_m, w(T_m))^4 \right] \nu_0(dx) \right)^{1/2}.$$

This implies the assertion (1).

The assertion (2) is an easy consequence of Lemma 2.

Let $V_n = \sum_{k=1}^{K_n} \mathbf{R} \psi_{n,k} \subset L^2(\mathbf{R}^D; d\nu_n)$, n = 0, 1, ..., N-1. Then it is easy to see that U_n 's are determined by $\vec{X}_{n,\ell}$, $\ell = 1, ..., L_n$, n = 0, ..., N and V_n 's and are independent of a choice of bases $\{\psi_{n,k}\}_{k=1}^{K_n}$. Let

$$d_n = \inf\{(\int_{\mathbf{R}^D} (\sum \psi_k(x)^2)^2 \nu_n(dx))^{1/2}; \{\psi_k\}_{k=1}^{K_n} \text{ is a orthogonal basis of } V_n\},$$

and

$$c_0 = \left(\sum \int_{\mathbf{R}^D} E^{P_x^{(0)}} \left[\left(\sum_{m=1}^N g(T_m, w(T_m))^4 \right] \nu_0(dx) \right)^{1/4} \right].$$

Then we have the following from the proof of Theorem 4.

Corollary 5
$$E[(\int_{\mathbb{R}^D} |U_n(x) - v_n(x)|^2 \nu_n(dx)) \wedge 1]^{1/2}$$

$$\leq E[(\int_{\mathbb{R}^D} |U_{n+1}(x) - v_{n+1}(x)|^2 \nu_{n+1}(dx)) \wedge 1]^{1/2} + 4(L_n)^{-1/2} d_n(K_n^{1/2} c_0^{1/2} + 1)$$

$$+ E[\inf\{(\int_{D_n} |(P_n U_{n+1})(x) - \psi(x)|^2 \nu_n(dx)) \psi \in V_n\} \wedge 1]^{1/2}.$$

References

- [1] Kusuoka, S., A remark on Malliavin Calculus in preparation
- [2] Longstaff, F., and E. Schwartz, Valueing American Options by Simulation: A simple Least-Squares Approach, The Review of Financial Studies, 14(2001), 113-147