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Monte Carlo Method for pricing of Bermuda type
derivatives |

| Shigeo Kusuoka
Graduate School of Mathematical Sciences, University of Tokyo

1 Introduction

Let (Q, F, {F:}tepo,00), P) be a filtered space with the usual condition, and {B;}:e[0,.0) be
a d-dimensinal Brownian motion. Let 7' > 0, and let o : [0,7] x R® — RP x R? and
b:[0,T] x RP — RP be continuous functions. For each s € [0,T] and z € R?, let
X(t;s,z), t € [s,T] be a solution of the following SDE.

X s,z)=z+ /t o(r,X(r;s,z))dB, + /t b(r, X (r; t, z))dr, tels,T)]. (1)

8

We assume that the above SDE 1 has a path-wise unique solution for every (s,z) €
[0, 7] x RP.

Let S, 0 < s < t < T, be the set of F;-stopping times 7 with s < 7 < ¢. Let
g:[0,T] x R? — R be a continuous function with suitable conditions. Then, concerning
the pricing of American derivatives, we are interested in computing the following value
function,

u(s, z) = sup{E[g(r, X (7;s,2)));7 € 8T}, (s,z) € [0,T] x RP.

There are several attempts to compute the value function u numerically. However, it
seems that there are not so good method if D is not small. Let N > 2 and let T,
n = 0,1,...,N, be positive numbers such that 0 = Ty, < T} < ... < Ty = T. Let
Sa, n=0,1,...,N, be the set of F,-stopping times taking value in {Ty, Trt1,--. ,ITn}-
Concerning the pricing of Bermuda type derivatives, we are interested in computing the
following value functions.

vn(z) = sup{E[g(r, X (7; 5,2))]; T € Sn}, n=0,1,...,N.

Let us define a probability measure p,(z,-) over R? for each n = 0,1,... ,N — 1, and
z € R? by

Pn(z, A) = P(X(Tny1; Tn, z) € A), for a Borel set A in R?,

and define a operator P,,n=0,1,... ,N —1, by

Pf(@) = [ | £0)pa(e, ) = EUf (X (T To, )
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for a measurable function f on RP. Then v,, n = N,N —1,... ,0, are given inductively
by the following.

un(z) = 9(Tn, ),
Un-1(2) = (Pa—1%)(z) V 9(Th-1, 7).

So the value function vo(z) is easily given mathematically. However, if D is not small, it
is not easy to memorize a function on RP, and so it is not easy to compute vy(z).

Several people suggest a Monte-Carlo method to compute the value function. In this
paper, we discuss the method given by [?]. We assume the following assumption (A).
(A1) Dp,n=0,1,... ,N—1, are measurable sets in RN such that (P,vp41)(z) > 9(T, 7)
for any z € RP \ D,.

Remark 1 (1) D, = RP satisfies the assumption (Al).
(2) If g(t,z) > 0, for any (t,z) € [0,T] x R, then D, = {z € RP; g(T,,z) > 0} satisfies
the assumption (Al).

Now let L, > 1,n = 0,1,... ,N—1, and X, = {Xpe(m)}'y, £ = 1,...,L,,
n=0,1,...,N —1, are identically independent random vectors whose distribution is the
same as the distribution of {X(T}n;0,2)}Y_o. Let K, >1,n=0,1,... ,N — 1, and ¥,
k=1,...,K,,n=0,1,... ,N — 1, are functions on R?. Then we define functions H,,
n=N,N —1,...,1,0, on R? inductively by the following.

HN(.'L') = 1.
When Huyy = {Hn}Y_,..,, are given we let
One=min{m > n+ 1; Hy(X,(m)) >0}, £€=1,...L,.

Then we let {@,x}r", be the minimizing point of the function

Fa{arH) = 7 - 10(To0 o Xnt0ne)) = 3t (Kot Lo, (Koelm).

" =1 k=1
Finally we define H,, by

K, -~
n) - " n ’ Dﬂ
Hy(z) = { Si(il' Z) = 2oks Gn k¥ i(2) z g RD\ D,

Then we let
1 Lo
=1 ) " 9004, Xo,4(00,))
0 =1
and
¢ = min{Ty; Ha(X(Tn; 0,z)) > 0}.

We think that # is an approximation of the value function vp(z) and the stopping time
o as a candidate of the optimal stopping time.
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2 Preliminary Results

Let W, = RON*1-mD 5 — 01 ... N, and let P, z € RP, be the distribution of
{X(Tn; Tn, z)}Y_,, on W,. Then P™, n = 0,1,...,N, z € RP, is a Markov chain on
RP.
For any measurable function b on RP and n,m = 0,1,... ,N withn < m, let 7(-; h) :
W, — {m,N} by
[ m h(wm) >0,
Tm(w; h) = { N,  h(w(m)) <0.

Lemma 2 Let h, : RN - R, n =0,1,...,N, be given, and assume that h,(z) < 0,
z € RN\ D, and that hy(z) = 1. Let 0, : W, = {n,n+1,... ,N} be given by

N-1

Un(w) = on(w; {M}g‘;}‘) = /\ Tm (w5 hm), w € W,.

m=n

Moreover, let u, : RP = R be given by

(%) = Un(®; {Am}l) = P [9(To,w(0w)),  z €RP,

Then we have the following.

(1) [un(z) = va(z)| < |Pa(tings — Vn41)()] + 1, (2)| Pattnsa(z) — (9(Tn, 7) — ha(2))]
foranyn=0,1,... ,N—1, and z € RP.

(2) [un(z) = va(2)]

< |Pa(tns1~Vn+1) (%) +10. (2) 112} (392 Patin41(2) =9 (T, 7)) sgn e (2)))| Prtin 41 () =g (m, 2.

Here
1, a>0,
sgn(a) =< O, a=0,

-1, a<0.

Proof. Note that u,(z) < va(z), for all n = 0,1,... ,N — 1, and z € RP. Let i,(z)
= g(Tn,z) — ha(z), z € RP.
Let n=0,1,...,N —1, and £ € RP, and fix them for a while.
Case 1. Suppose that h,(z) > 0. |
Then we see that z € D,, and g(T,,z) > iin(z). So we have

Va(z) = g(Tn,z) + (Pavnsa(2) — 9(Tn, 7)) V 0 < (T, 2) + | Pavinsa () — n(2)]-
This implies
9(Tn, 2) 2 va(2) = |Pa(Uns1 — Un41)(2)| — | Prtinga (€) — Gn(2)].

Case 2. Suppose that h,(z) <0, and z € D,.
Then we see that g(T,,z) < 4n,(z). So we see that

Un(2) < Patn41(2) V @n(2) < Pattnsa (%) + [Pa(tnsr — tnt1)(2)] + | Patinsa (2) — @n(2)]-
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Case 3. Suppose that h,(z) <0, and z € R? \ D,.
Then we see that g(T,,z) < (Pavn41)(z)- So we have

Un(Z) = Patn41(2) < Pattn11(2) + | Pa(tnsr — vns1)(2)|-

So we see thatfor any n=0,1,... ,N —1,

Up = l{hn>0}g(T1n ') + l{hnSO}(Pnun+1)
2 l{hn>0}(vn - IPn(vn+1 - un+1)| - IPnun+1 - '&nl)
+1{"n$°}1Dn(vﬂ - |Pn(vn+1 - un-l-l)l - IPnU-n+1 - '&nl)
+1{r.<0} 1RP\D, (Vn — |Pa(Vns1 — Un41)|)-
Thus we see that
0 < vn — un < |Pa(Va+1 — tnt1)| + |1p, Pattns1 — -

This implies the assertion (1).
Now let us prove the assetion (2). Let £ is a positive measurable function on RP.
Since 7, (w; €hn) = Tn(w; h,), we see from the assertion (1) that

|un(2) = va(2)| < |Pa(tnsr = vn41)(2)| + 10, (z)| Patins1(2) — 9(Ta, 7) + £(2)hn(2)].

Noting that
inf{a + tb; t > 0} = 1(1)(sgn(a)sgn(d))|al, a,b€eR,

we have the assertion (2).
This completes the proof. (]
Let vy be a probability measure on R? and define probability measures v,, n =
1,..., N, inductively by

@) = [ muideldy),  n=01,.. ,N-1
R
Then we have the following as an easy consequence of Lemma 2.

Corollary 3 Let h, and 'u.,, be the same as the previous lemma. Then we have the fol-
lowing.

([, lin(@) ~ va(@) Prn(a)

<A ot = o @Prrs @) + [ 1Prtia(@) = (6(Tn,) = ha@))?

foranyn=0,1,... ,N —1.
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3 Main Result

Let vy be a probability measure over R?. Let L, > 1, n = 0,1,... ,N — 1, and X,,,
= {Xae(m)}N o, £=1,...,L,,n=0,1,...,N — 1, are identically independent ran-
dom vectors defined on the probability measure (fl, F, 13) whose distribution is P.Sg)
= Jouo PPv(dz). Let K, > 1, n = 0,1,...,N — 1, and Ypp, k = 1,... , K, n =
0,1,...,N —1, are functions on R?.

Then we define functions H, : R°xQ — R, n = N,N—1,...,1,0, on R? inductively
by the following procedure. '

HN(IE) =1.

When H,,; = {Hn,}Y_...., are given we let
One =min{m > n+ 1; H,(X,,(m)) >0}, £€=1,...L,.

Then we let @, = {@,4}1-", be the minimizing point of the function

Ln Kn
Fa({ar}in) = Li D 19(Ton s Xnt(0n0)) = D antnp (X t(n))P1p, (X e(n)).
" t=1 k=1

Finally we define H, by

_ g(Tm ZE) - Efznl &n,k'lpn,k(x), z€D,
(=) = { -1, z € RP\ D,.

Let Un(z) = un(; {Hm}Y_.))(z). Here u, is as in Lemma 2. Let G, = {dn4}, be
the minimizing point of the function :

Fa({a}e) = /D (Pulas)(@) = 3 tabs(2)) Pon(da).

We assume the following. ,
(A2) Yng, £k =1,...,K,, is linear ly independent in L?(D,;dv,), n =0,1,... ,N —1,
where 1, is the probability law of w(n) under P (dw).

(A3) / Yni(z)*vp(dz) <0 k=1,... ,K,,n=0,1,... ,N —1. and
Dn
(0) N
/ E™"[(3 9(Tn, w(T0))|wo(dz) <00, n=0,1,...,N.
RD m=1

Then we have the following.

Theorem 4 (1) There is a constant C > 0 such that

. Kon C
EPILA (D |ank — @nil?)] < I

k=1
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(2) (/RD IU,.(:L') — vn(z)lzll,.(d:l:))l/z
. i
([ 10n1@) = v @) (@) + (/R,,(Z_:l(an,k = Gna)ns(2) ()

Kn
+inf{(/D |(PaUns1)(z) — Zak¢n,k($)|21’n(dz))1/2; ac€R, k=1,... K.}

k=1

Proof. Let Z,, n = 0,1,... ,N — 1, be the o-algebra generated by X,,, £=1,..., L,
and let By, n=0,1,... ,N — 1, be the o-algebra generated by UN-17,.. Inductively, we
see that H, is B,-measurable, n=N —1,N —2,...,0. Also, we have

Kn Kn
Fal{adio) = Y €2 varar -2 Ban +CO,
k,k'=1 k=1

where

Ly
O e = 7 S (1p,Ynthns) Xt

n =1

Ln
= T > (10 Her) X )9(Tr i X))

n =1

Note that o = py1(Xno(-); {Hna}_, +1)- Therefore we have

C®,, = EPICA, |Busa] = /D o (2) b (2)0(d), @
and
& = BP)|B,] = /D Bup (2) (Pallns) (2 (). 3)

2 2 ~(2 1 1) -a 2 2 ~(2
Let th}c,k' = Cv(x,l)s,k’ - Cv(a,l)c.k" and "fu): = C,(.l - rv(ll): Let C = {Ci(s.l)c.k’}kp,k'=l1 CP =
{C,(:,),',,,}Ek,ﬂ, and RY = {Rfﬁl,k, Py—1 be D x D random matrices, and let Let ¢

;h{cf.l,l}i’:l, i(nl) = {E,(,ll f=1, and r,(.l) = rf},’c ,,D=1, be D-dimesional random vectors.
en we see that

@n=CO 1M, g, =CA-1 Y np=0,... N—1.

Also, we see that

E*((RZ. Y
= 7= ElVar{L, (o () asXns (b (X () B

n

1 2 2
<t /D a2 e (20 )
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EP[(r{))? = ” E[Var[lpn(Xn,l('n))lpn,k(Xn,l(n))g(o'n,l’Xn,l(Un,l))lBﬂ+1”

(n)
- L / ¢nk $)2EP [g( Ont1(w; {Hm}m—n+1))w(an+1(w’ {Hm}m=n+1)))2]yn(d$)
If || CPRY ||I< 1/2, we have
| 2+ RO)ICH =] (1 + O ROY™ ~ OP 1< 2| GO Il B |

Here || - || is the operator norm of a matrix. So if | -2 ll R? I<1/2 and IES,I)I <1,
we have

|an — @] = [(CP + RP)™ = CO)(ED + r()) + CO1r)
<2 CO PN RD || (1B + 1) | CO || &M
So we have ' i
EP[|lan — a.]* A1)
< BPllan — @l | CO Il R? 1< 1/2, 80| < 1]
+P(|| CO Il RD 1> 1/2) + (| > 1)
< (4P + 17 [| O | +4 || CO BRI RD P+ (| CO7 |12 +1)EP[IrP ).

Also we have

2] < ( / (5 e @) ()2 / BP|( Zg(Tm,w(Tm»ﬂu (dz)),

nk_

BN RO P < [ (3 Yna(@))n(d),

" "k—"

and

B0 < 1 (O balePon(a) | B T, () a2

Dn k=1 m=1

This implies the assertion (1).
The assertion (2) is an easy consequence of Lemma 2. '
Let V,, = E L Ry, K C L?*(RP;dv,),n=0,1,...,N — 1. Then it is easy to see that

U,’s are determmed by Xn,t, £=1,...,L,,n= 0, ...,V and V,’s and are independent
of a choice of bases {¥,, k}f_" . Let

= inf{( / O wi(z)?)?va(dz))™?; {4} 5o, is a orhogonal basis of V,},
and

/ EP() Zg(Tm7w(Tm))4]Vo(dz))1/4

Then we have the following from the proof of Theorem 4.
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Corollary 5 E[(/RD [Un(z) — va(z)|*va(dz)) A 1)/2
<E(([ | 10012(2) = tnaa(0)Prmsa(da)) A2+ A(La) 20 (KN + 1)
+E[mf{(/D I(PnUn-H)(fB) - ¢(z)|2l/ﬂ(dz)) P € V;.} A 1]1/2.
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