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‘Semigroup Approach to a Pair Formation Model in

Human Demography

WRAZ FE3E #F (Hisashi INABA, University of Tokyo)

1 Introduction

Since the well known work by Sharpe and Lotka [20], modern mathematical demography has been
mainly developed based on the one-sex theory of stable populations. However from the beginning the
one-sex theory has been confronted with fundamental difficulties. For example, to calculate the net
reproduction rate (the basic reproduction number) Ry in the one-sex theory, the development of the
other sex is assumed to be consistent with the assumption of constant fertility and constant mortality
for the sex under consideration. As was pointed out by Kuczynski, the male and female net reproduction
rates do not necessarily coincide each other, and so they would provide contradictory predictions for the
future trend of the population considered [16]. That is, we have not yet fully answered to the fundamental
question what is the true measure for the reproductivity of human population. This is the origin of what
we call two-sezx problem in demography.

It would be clear that the two-sex problem is caused by neglecting pair formation phenomena in human
reproduction, which is essentially nonlinear interaction between sexes. It would be Kendall [10] that first
formulated the two-sex population model by using ODE system. Though the Kendall’s model is simple
and it neglected age structure, about 40 years have passed until its mathematical implications are fully
cleared by Hadeler et al. (3] and Waldstétter [22]. Castillo-Chavez and Huang [1] extended the Kendall’s
pair formation model to take into account the logistic effect.

On the other hand, an age-structured pair formation model (monogamous marriage model) was ﬁrst
formulated by Fredrickson [2]. Next Staroverov [21] introduced more general age-duration dependent
pair formation, which was first introduced by Hadeler [4] among Western researchers. In contrast with
the ODE model without age structure, up to now, very little is known about the age-structured non-
linear two-sex models. However through 1980’s, HIV/AIDS epidemic has stimulated many studies for
sexually transmitted diseases, and revived people’s concern about pair formation phenomena in human
populations (8.

In the early studies, Keyfitz [11] tried to determine the mathematical form of marriage function empir-
ically. Waldstétter [22] first proved global existence for solutions of the Staroverov’s model. Martcheva
and Milner {12] discussed well posedness for the Fredrickson model. Inaba (7] formulated an age-duration
dependent model for two-sex population reproduced by first marriage, and proved its well-posedness and
conditions for existence of persistent solutions. Priiss and Schappacher [17] have shown conditions
on the vital rates which imply the existence or nonexistence of exponentially growing persistent age-
distributions for the Staroverov’s age-duration dependent two-sex model with the marriage function of
harmonic mean type. Recently Inaba [9] proved the existence of persistent solution for the age-duration
dependent pair formation model with general homogeneous marriage function. Zacher [27] have also
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provided the existence result for persistent solutions in the Staroverov model.

Since the pioneering work by Webb [23] and Metz and Diekmann [15], the semigroup approach to
structured population models has been widely studied, and it has been proved that the semigroup
setting could be very powerful to examine mathematical implications of population models. In this short
note, we are mainly concerned with the Fredrickson’s age-dependent pair formation model. Our main
purpose is to develop a semigroup approach to the Fredrickson model, which would be more simple than
the method by Iannelli and Martcheva [6], and to show an existence result for persistent solutions.

2 The Fredrickson’s monogamous marriage model

In the following we consider a bisexual closed human population with monogamous marriage system.
Let pm(t,a) (ps(t,b)) be the density of single male (female) population aged a (b) at time ¢ and let
Pc(t,a,b) be the density of couples of which husband is aged a and wife is aged b at time ¢t. Let u,(a)
and ps(b) be the male and female natural death rate, 8(a,b) and o(a,b) are the fertility rate and the
divorce rate respectively for the the couple of which husband is aged a and wife is aged b. Let v is
the ratio of male newborns to the total newborns. Then the basic model, which is first formulated by
Fredrickson (2], is formulated as follows:

(& + 7) Pm(t,0) = —pm(a)pm(t, @) + [5° Pelt, a,b)[0(a, b) + s (b))db — [ p(t, a, b)db
%+ Es)pf(t b) = —ps(b)ps(t,b) + [3° pe(t, a,b)[0(a, b) + pm(a))da — Iy pt,e,b)da
E+E&+ z;;)pc(t a,b) = —(o(a,) + pm(a) + ps(b))Pc(t, a,0) + p(t, a,b)

Pm(t,0) =7 [5° [5° Bla, b)pc(t, a, b)dad,

ps(t,0) = (1= J7" J5~ B(a,b)pc(t, 0, b)dadb,

\ pc(t) 0, b) = pc(tv a, 0) =0

The source term p(t, a,b) denotes the number of new born couples of male aged a and female aged b per
unit time, which is given by a nonlinear operator ¥, which is called marriage function in demographic

(2.1)

terminology.
p(t, a,b) = ¥(pm(t, ), ps(t,))(a,b).
From its biological meaning, we suppose that the marriage function satisfies the following basic axioms:
1. ¥(u,v) 2 0if (u,v) >0
2. ¥(u,0) = ¥(0,v) =0,
3. ¥(u,v) < ¥(u/,v') if (u,v) < (v',v'),
4. V(ku,kv) = k¥(u,v) for k>0

Though axiom (1)-(3) are self-evident, axiom (4), called homogeneity condition, reflects the saturation
effect in a large population, that is, individuals have only a limited number of social contacts with
other individuals. Hence the homogeneity condition is not necessarily essential to the marriage function,
sometime it could be replaced by other condition (see[1]).

Furthermore in order to apply semigroup approach, we adopt the following technical assumption:

Assumption 2.1 (1) pm,pus € L*®(0,00), B,0 € L*®(R), and there is a number w > 0 such that
B(a,b) =0 fora >w orbd > w. That is, w is an upper bound of reproductive age.
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(2) The marriage function ¥ is a bounded operator from Y, := L% x L} to EL(Q), and it is locally
Lipschitz continuous in Y4 with L! norm; there exists an increasing function L(r) such that ||¥(f) —

U(gllr < LISf —glly for all f,ge{f €Yy |Iflly <t}
(8) There ezists a number n > 0 such that for (u,v) € Y}

/ ” O (s, v)(a, b)db < 7u(a), / " B (u,v)(a, b)da < u(b).
0 0

A simple example of marriage function which satisfies Assumption 3.5 is a proportional mixing function
(see [22], Chap. 3) given by

0(a,b)u(a)v(b)
I u(a)da+ [~ v(b)db’

where 8(a,b) € L°°(a,b) reflects the average number of social contacts and the age preference between

¥(u,v)(a,b) =

sexes. If we assume that the random mating occurs in the total population, the proportionate mixing
function could be replaced by the following marriage functions:

6(a, b)u(a)v(b)
I3 u(a)da+ f°v(b)db+ [y~ [5° w(a,b)dadb’

where w(a, b) denotes the density of couples. Moreover if we neglect the axiom of competition between

¥(u,v)(a,b) =

age classes, a simple harmonic mean function could be used as a marriage function:

f(a, b)u(a)v(b)
u(a) +v(d)

In the following, we adopt the notations as /i := ess.sup(um(a), ps(b)), g := ess.inf(um(a), us (b)),

¥(u,v)(a,b) =

B := ess.sup B(a, b), & := ess.supo(a,b) and g := ess.inf o(a, d).

3 Population semigroup

Let us consider a real Banach lattice X = L!(0,00) x L(0,00) x L!(£2) with norm || - || x where Q :=
(0,00) x (0,00) and

1fllx = fo |fu(a)lda+ / |fa(b)ldb + 2 /0 /0 \fo(a, b)|dadb.

Then the state space of the population is given by the positive cone X and the norm ||f|ix, f € X4
denotes the total size of the population.
First define the population operator A : D(A) C X — X as follows:

e [ dfi(a) dfa(b) i
Af = <—Ta—T7_Df3(a’b)> )

where T denotes the transpose of the vector and the operator D denotes the directional derivative along

the vector (1,1) defined by

fla+ h,b+ k) — f(a,b)
h 1

and the domain D(A) is given by

Df(a,b) = lim

D(A) := {f € X : f1, fo are absolutely continuous, f1, f € L(0, o),

f3 is absolutely continuous along the direction (1,1) for almost every (a, b),
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Dfs € L'Q), £(0) =~ /o ” /o ~ B(a,5)fola, b)dadb,

00 (oo}
£0 == [ [" sle0)fale,tidads, fu(a,0) = £s(0,8) =0}
Next we define the perturbation terms B: X — X and C: X — X by

[ —1m(a) fi(a) + [5° fa(a,b)[o(a, ) + ps(b)]db
Bf = | —us(0)f2(0) + [5° f3(a,b)[o(a,b) + ptm(a)]da (3.1)
—(um(a) + pys(d) + o(a, b)) f3(a, d)

(‘fom ¥(f1, f2)(a,b)dd
Cf=| -7 ¥(f, f2)(a,b)da |. 2
\  ¥(1, f2)(a,b)

Then the pair formation model (2.1) can be formulated as a Cauchy problem in X as

S50 = (A+BIf ) +CF®), 10)= o, (33)

where fy € X is the initial data.

For analytical treatments of the above Cauchy problem, instead of X we will also use its complexifi-
cation X := {z +iy;z,y € X } with norm ||z + iy|l 3 = SUPge(o,2+] [T cOs @ + ysinb]|x. On the complex
Banach lattice X, a linear operator L : X — X has a natural extension L as L(z + iy) = Lz + iLy (see
(19]).

In order to show that the linear operator A + B generates a strongly continuous positive semigroup,
let us confirm that A + B satisfies Hille-Yosida condition on X.

Lemma 3.1 Let A:={A € C:R\A> —u}. Then A C p(A+ B). Moreover let a be a number such
that a = max(—u, —B/2). Then the following estimate holds:

IO~ (A+B) g < 5=, forA>a (3.4
Proof: Let us consider the resolvent equation
(A -(A+B)f=¢, feDA+B), peX,

That is, we can write

(@) + £1(a) + (@) f1(a) - /0 "~ fa(aB)[o(a,5) + uy(b)ldb = é1(a),

Ma(8) + F3(8) + s (8) Fa(8) — ]0 "~ £2(0,6)[0(a,8) + pim(a)lda = $2(5),

Af3(a'1 b) + Df3(a) b) + (“M(a) + “f(b) + a(a, b))f3(a1b) = ¢3(a’b)'
By formal integration, we obtain the following expression:

® e~Ma-s fm(@)

file) = fieotn(e) + [ e = [g, ) 4 [ ptebioten + usona] as, @9)

b 00 ’
f2(8) = f2(0)e>*2;(b) + /o e'm-’)%%[fﬁz(s)*' /0 fa(a,s)[a(a,s>+um(a)lda] ds,  (3.6)
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f; #3(a —b+s,8)e b= 7(a —b+s,s;a,b)ds (a > b),

) 3.7
fo ¢3(s,b—a+ s)e==9x(s,b—a+s;a,b)ds (a<b), (3.7

f3((1, b) = {

where 7 is the survival function for pairs defined by
h
w(a,b;a + h,b+ h) := exp (—/ [um(a+s)+pp(b+s)+o(a+sb+ s)]ds) .
0

Since it is easy to see that for A € A the right hand side of the above expressions (3.5)-(3.7) defines a
bounded linear operator from X to D(A + B) and it is no other than the resolvent operator (A — (A +
B))~1. Moreover we know that for A € RN A the resolvent operator (A — (A + B))~1 is a positive
operator, so first we estimate ||(A — (A + B))™!||z by using the positivity on the cone X,

First note that for real function ¢ € X C X, it follows that ||¢||z = ||§llx. Let us assume that ¢ €
X, and f = (A\— (A+ B))~1¢ € X,. Then by integrating system (3.5)-(3.7) and using the positivity of
¢ and f, it follows that

Alfallx + fo ” fi(a)da + /0 " (@) f1(a)da /O " da /0 " fa(a, b)(o(a,b) + s (B))db = [|1lx,(3.8)
Alfallx + [0 ~ fi(b)db+ /0 " 15 (5) fa(b)db /0 b ]o " fa(a,8)[0(a,b) + m(@)lda = l2lx, (3.9)

Alfsllx + fo ~ /o " Dfa(a,b)dadb + /0 ” /0 ™ (@) + 115 (b) + 0(a, b)) fa(a, b)dadb = [|Bs|x-(3.10)

From (3.5)-(3.7), we know that for A € RN A, fi(c0) = f2(c0) = f3(c0,b) = f3(a, oo0) = 0. By adding
term to term in (3.8)-(3.10), we obtain |

Mifrllx + 1 f2llx + 2l fsllx) = llg1llx + lld2llx + 2ll¢slix
- [ m(@n@da- [ " w00+ [ ” i ™ (B(a,b) — (@) — 117(8)) fa(a» b)dadb.
0 0 0 0

Let us define a number a such that a := max{—p, —B/2}. Then it follows immediately that*

Al frllx + 1 f2llx + 20 f3llx) < llgallx + llg2llx + 2li¢sllx + alllfrllx + [l f2llx + 2l f3llx)-

Therefore we conclude that if A > a and ¢ is positive, then the estimate (3.4) holds.

Next consider the case that ¢ is real but not necessarily positive. ¢ can be decomposed as ¢ = ¢; —
¢2 where ¢; = max(¢,0) and ¢, = max(—¢,0), and we can write |[¢[lx = |l¢1llx + l|$2|lx. Moreover we
obtain

f=OA=A9=fi—fo, fir=(A-A) "¢ e X,
From the above argument, we know that for A > «

fillx < delix

D

On the other hand, it is easily seen that

max(f,0) < f1, max(-f£,0) < f2

Thus we conclude that

1£llx = llmax(/,O)lx + lmax(~1, Ol < fullx + I fallx < 5=l + Igallx) = JEX.
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Then we again reach to the estimate (3.4).
Finally consider the case of ¢ is a general element in X. Observe that

Iflz = sup [||(Rf)cosd+ (f)sinblx
0<0<27
< sup [[[(A - (A+ B))~'(Re)]cos 8 + [(A - (A + B))~}(¢)]sin ]| x
0<6<2r
< sup [I(A - (A+ B))"Y[(R¢) cos 8 + (I¢)sinb]||x
0<0<2n

||¢||x )

<

= aosup [|(Re) cos 6 + (I¢) sin 8| x

Then we again arrive at the estimate (3.4). O
Lemma 3.2 The perturbed population operator A+ B is a densely defined closed linear operator in X.

Proof: First it is easy to see that A+ B is a closed linear operator, though we omit the proof. Next we
show that D(A + B) is dense. For A > a and any ¢ € X, we define fy = A(A — (A + B))~1¢. Then if
we can show that limx—o fa = ¢, our proof completes since fy € D(A + B). To this end, we write the
resolvent as follows:

(A= (A+B)7'¢=(A—(A+B)o) "¢+ Mg, A\>a, p€ X,

where (A + B)o is the operator corresponding to the special case of the operator A + B with zero
boundary condition (that is, 8 = 0: no birth), and M(}) is the linear operator defined by the difference
between (A — (A+ B))~! and (A — (A + B)o)~'. Since it is easily seen that (A + B), is a generator of
Co semigroup, it follows that

Jim AA = (4+ B)o) g = g.

Hence it is sufficient to show that limy_. M()\)¢ = 0 in order to complete our proof. Note that 1f we
write (91(2), 92()), 93(A))” = M(A\)4, then we have g3()) = 0 and

a1(N) = et (a)y / /n B(a,5)Ux(#3)(a, b)dadb,

B (\) = e~ e,(6)(1 - ) / /n B(a, b)Us(¢s)(a, b)dadb,

where U, (¢3) is given by

f: ¢3(a—b+s,s)eMb=n(a —b+5,5;a,b)ds  (a>b)

. 3.11)
Jo #3(s,b—a+s)e">=9x(s,b—a+s;a,b)ds (a <b) (311)

Ux(¢3)(a, b) := {
Let ,
= [ [ 10x@a)abldaas, =1, 2)

where Q; = {(a,b) : b >a, 0<a, 0<b}, % ={(a,b):b<a, 0< a, 0 < b}. By change of variables,
we can obtain

5= / /A |Ux(63) (=, 7 + )\dzdy
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where A := {(z,y) : 0 < z,0 < y}. From (3.11), we have

J1 < // dxdy/ |p3(s, s + y)le"\("’)ﬂ'(s, s+y;z,z +y)ds
A 0
T o o] {o o] xz
. // dwdy/ |63(s, s + y)|e” AT+ (E=2)gs = / dy/ da:/ |pa(s, s + y)le” A2+ =2y
N 0 0 0 0

o0 o o] o0
=/ dy/ ds|¢3(s,s+y)|/ e~ At2uta)(z=9) gy
0 0 s

From the above inequality, it is not difficult to see that

1 eS)
L —_— ‘
N s A+2u+g /0 /0 ds|p3(s, s + y)|dsdy

Applying the same kind of argument to J;, we can arrive at the following estimate:

1
NUA(@3) L1y = J1+ J2 < m“d’sllu(n)- (3.12)

Next from the concrete expression of M()\), we can observe that

IMON8llz < 1AO)] /O " e2da + |£,(0)] /0 * e2edq

- 1 — el
< By @i + C5 L0l < g sl

Then it follows immediately that
Jm MMz =0
Thus we can conclude that the operator (A + B) is densely defined. O

Proposition 3.3 The operator A + B is an infinitesimal generator of a strongly continuous positive
semigroup T'(t) which satisfies

IT@)| < e ’ (3.13)

Proof: From Lemma 3.2 and 3.3, we know that A+ B satisfies the Hille-Yosida condition, so it

generates a strongly continuous semigroup T'(t) = et(A+B) on X and from Lemma 3.2 we can obtain the
estimate (3.13). From Hille’s formula we obtain that

n\ /n -1
= lim (—) (— —(A+ B)) :
n—oo \ t
where lim denotes strong convergence. Since the resolvent operator is a positive operator, we can conclude
that T'(t) is also positive. O

—-n

T(t) = lim (1 - %(A + B))

Under the Assumption 3.1, if we choose a number € such that € <1 /n, then for u € X we have

u1(a) — € fy ¥(u1,u2)(a,b)db uy(a) — %f:" U (uy,uz)(a,b)db
(I+eClu= | uz(b) — ef0°° W(ug,uz)(a,b)da | > | ua(b) — },fom U(uy,uz)(a,b)da | > 0.
u3(a" b) + e\Il(u1,u2) u3(a7 b) + %\I’(UI:UQ)

Then we obtain the following:
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Lemma 3.4 Under the Assumption 3.1, there ezists a constant € > 0 such that

(I+€C)(X4) C X, (3.14)

Using the above observation, we can construct a positive solution (semiflow) of the Cauchy problem
(3.3):

Proposition 3.5 Let fo € X;. Then the Cauchy problem (3.8) has a unique mild solution in X,
which defines a semiflow S(t) fo such that S(t)(X,) C X,.

Proof: Instead of the original equation (3.3), let us consider the following equivalent equation as

4 1y = (A +B- %) J+iuseoy, (3.15)

where ¢ is a positive number. It is well known that the mild solution of (3.15) is given as a solution of
the following integral equation:

t
f(t) = e ttelA+Btp % / e ¢ (=) g(A+B)(t=9)[£(5) 4 eC f(s)]ds, (3.16)
0 i

where the constant ¢ is chosen so small that (3.14) holds. Since the nonlinear perturbation is assumed
to be locally Lipschitz continuous, the local solution of (3.15) is constructed by the standard iterative

procedure: _
o) = fo, . (3.17)

fn+1 (t) = e-%te(A+B)t fo+ % / ‘ e—‘}(t-s)e(A+B)(t—a)[ fn+1 (s) + €C fn+1 (s)] ds,
(]

Thanks to the positivity of e(4+8) and I + aC, we can prove u™*! ¢ X iteratively. In fact, if fo, f* €
X4, the integral part of the variation of constants formula (3.17) is a convex linear combination of those
positive terms. Since the operator C is locally Lipschitz continuous, the sequence u™(t) converges to a
positive, mild local solution f(t) € X,. From Proposition 3.3, we have the following estimate

K t
£ < =D ol + = [ oD 15,
0
where K := ||I + €C||. Then it is easily seen that the following estimate holds:

IF @I < Nl follel=—2=e,

Since the norm of local solution grows at most exponentially as time evolves, so it can be extended to a
global solution. Hence we can define a flow S(t) by S(t)fo = f (¢). O

4 Malthusian population growth

In this section, we examine existence of exponentially growing persistent solutions (Malthusisan pop-
ulation growth) under the assumption that the marriage function is homogeneous of degree one.
Let us consider the nonlinear eigenvalue problem associated with (3.3) as

M =(A+B)f+Cf, feD(A+B). | (4.1)
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Then it is clear that if there exists a real eigenvalue A associated with positive'eigenvector f, et f(a)
becomes a persistent solution. Conversely if there exists a persistent solution e* f(a) to (3.3), A and f
must satisfy the nonlinear eigenvalue problem (4.1).

In the following, to avoid technical difficulties, we assume that pair formation and dissolution occurs
between reproductive sexes, that is, males and females under age w. Though this assumption looks as
restrictive, it would be not necessarily unrealistic assumption, since non-reproductive pair formation is
rare case, and even though it exists, it gives no effect to the population growth.

Furthermore, in order to look for the solution of (4.1), let us introduce the following normalization:

_ fi(t,a) f(t,b)
96 = TR + 1400 1A@0 + 100

_ f3(t7 a, b)
93(t:.0) = T + @l

Under the above assumptions, the system (2.1) can be rewritten as follows:

(& + £) a1(t,0) = —(um(a) + AM()1(t, a)
+ [y g3(t,0,b)[0(a,b) + us(b)ldb — [y ¥ (g1(t), 92(t))(a, b)db,
(BQ{ + DQE) g2(tab) = —(”f(b) + )‘(t))QZ(t’ b)
+ [ 93(t,a,b)[0(a,b) + pm(a)lda — f;" ©(g1(2), 92(t))(a, b)da,
3+ &+ B mtad) an
= —(A(t) + o(a,b) + pm(a) + ps(b))ga(t, a, ) + ¥(g1(2), 92(t)) (a, b), '
()1 (tv 0)=1~ f: f: B(a, b)gs(t, a, b)dadb,
92(t,0) = (1 =) Jy [y Bla,b)gs(t,a,b)dadb,
93(ta 0, b) = 93(t7 a, 0) =0,
L) = A91(2), 92(2), 93(2)),

where A is a functional given by

) gz(t, b) =

A\

A1, 92, 95) = /0 i ]0 " (8(a,8) + (@) + 117(8) + 20(a,5))gs(a, b)dadb

(o o) W (7]
- [ bm@ar(e) + welmede -2 [ [ (010,020 e, e
Note that A(t) is the growth rate of single population size, that is,

d
ZA®NL +120z:) = MO UAG 2 + 1 £2E)]z)-
Moreover let us consider the corresponding time-independent problem of system (4.2) as follows:

(4 (a) = —(um(a) + Nu(a) + f;’ w(a,b)[o(a,b) + pus(b)}db — f(‘)" U (u,v)(a,b)db,

v'(b) = —(ug(b) + Av(b) + f: w(a, b)[o(a,b) + pm(a)]da — f: ¥ (u,v)(a,b)da,

wq(a, b) + wp(a, b) = —(A + o(a,d) + pm(a) + ps(b))w(a,b) + ¥(u,v)(a,b),

S u(0) =7 [, Jy Bla,b)w(a,b)dadb, (4.3)
v(0) = (1-17) [y [y Bla,b)w(a,b)dadb,

w(0,0) = w(a,0) =0,

L A = Ay, v, w).
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We can observe that if the time-independent problem (4.3) has a solution (u,v,w) with |jul|z: +
lll: = 1,4 > 0,v > 0,w > 0, then (u,v,w)e*, A = A(u,v,w) becomes a persistent solution of the
original system (2.1).

If we use the expression w(a,b) = Ux(¥(u,v))(a,d), the system (4.3) can be reduced to the following
(u,v, A) system:

(4'(a) = —(pm(a) + Nu(a) - [’ ¥(u,v)(e,b)dd + [3’ Ur(¥(u,v))(a,b)[o(a, b) + us(b)ldb,

v'(b) = —(ps(b) + Au(d) — f’ ¥(u,v)(a,b)da + [ Ur(¥(u,v))(a,b)[o(a,b) + pm(a)]da,

3 u(0) =7 f; [y Bla,b)Ux(¥(u,v))(a, b)dad, (4.9)
v(0) = (1-7) Jy’ Jo B(a,b)Ux(¥(u,v))(a, b)dadb,

[ A = A(u, v, Ur(¥(u,v))).

Therefore the nonlinear eigenvalue problem (4.i) can be reduced to the problem to seek a solution
(u,v,)) of (4.4) in Z; x R, where Z; := {(u,v) € Yy} : Jlullz: + vl = 1}
Let f := (u,v) € Z4. Then the eigenvalue problem (4.4) can be formally written as follows:

{Al.f"'F(Aaf) = Af:
A = Ay, v, Ux(¥(u,v))),

where A; and F are defined as follows:

(A1f)(a) := (-v'(a),—v'(a))",

(4.5)

D(A)) = {f = (w,v) €Y : u(0) =7 /: /o" B(a, BYUA(¥ (u, v)) (e, b)dadb,

v(0) = (1 - 7) /: /: B(a, bUA(¥(u, v))(a, b)dadb},

—tm(a)u(a) — f§’ (u,v)(a,z)dz + [’ Ur(¥(u,v))(a,z)[o(a,z) + uf(Z)]dz)
—ps(ayv(a) — f3 ¥(u,v)(z,0)dz + [; Ur(¥(u,v))(z,a)[o(z,a) + pm(z)ldz )

Further, for a small number € > 0, the eigenvalue problem (4.5) can be transformed into a fixed point

FO\ f)(a) = (

equation as

{f= % % —Al)_l((l_GA)f'*'eF(A)f))) - (4 6)
A= A(u)v’ UA(\I’(‘U,‘U)))- .

This fixed point equation can be expressed as

o=(¢), ¢=(u,v,)\) € Z, xR, (4.7)
where the operator ¥ is defined by

() := (®L(u,v,N), ®%(u, v, \), A(u, v, Ur(¥(u,v))),
for ¢ = (u,v,) € Z; x R, and mappings ®! and 2 are defined on Z, x R as follows:

&1 (u,v,A\)(a) := vB(u,v,\e" 1% + 15 e~ 1@=)Lu(s) — e(um(s) + Nu(s)
—€ fooo ‘I’(u: v)(s, .'B)d.‘l: +e fooo[ﬂf(x) + U(Sa z)]Uk(‘Il(uv v))(svx)dz}ds:

®2(u, v, \)(a) := (1 — 9)B(u,v,\e~ e + 11 e~ a=9) {y(s) — e(us(s) + A)v(s)
—€ [° U(u,v)(z,8)dz + € [5° [4m(z) + o(z, $)|Ux (T (4, v))(z, s)dz}ds,

where the functional B is defined by
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B(u,v, ) == /0 ” /0 " B(a, 5)Ux(¥(u, v))(a, b)dadb.
Tt is clear that a fixed point of (4.7) in Z, X R is no other than a solution to the problem (4.4).
Lemma 4.1 There ezist numbers A < X such that for any (u,v,)) € Z4 X (A, X], it follows that

A < Ay, v, Ur(¥(y,v))) < A (4.8)
Proof. For (u,v) € Z;, it follows from Assumption 2.1 that

/w /w U (u,v)(a,b)dadb < 7.

o Jo

Then we have for (u,v) € Z4 and any A € R,

A(u,v,Ux(¥(u,v))) 2 —B — 1.
On the hand, it is easily seen that for (u,v) € Z; and any A € R,

Au, v, Un(¥(u,v))) < (B+ 28 + 20) /0 i fo * Us (% (s, v))(a, b)dadb.

If we restrict the domain of A as A > —[i — 7, we obtain that

/ / Ux(¥(u,v))(a,b)dadb < n sup / e~ W t2pta)(E-e)gy < 1 (e(PHmw 1),
o Jo 0<s<w Js p+n

Therefore if we choose A and )\ as
7](,5 +2p+ 2&) (e(ﬁ-{—n)w _ 1),
B+n
then we conclude that (4.8) holds for any (u,v,)) € Z4 x [A,A]. O

A=~ﬂ'—n1 x=

Lemma 4.2 Let (u,v,)) € Yy x R. Then the following relation holds:
182, v, Mlzr + 182z, v, Ml = (1 — eX)([lullzs + lIvllz2) + eA(u, v, Un(¥(u, v))).- (4.9)

Proof: Since ®1(a) = ®1(u,v,\)(a) and ®2(b) = ®Z(u, v, A)(b) are differentiable, we obtain

(d/da)®)(a) + %@i (a) = % [u(a) — €(pm(@) + Nu(a) — € / * ¥(u,v)(a, b)db +
0

+e [l + ol D@, )]

(d/db)®%(b) + ltI)E(b) = % [v(b) — e(ps(d) + A)v(b) — e/‘oo ¥(u,v)(a,b)da +
€ 0

o o]
+e/ (um(a) + o(a, b)]Ux (¥ (u,v))(a, b)da] .
0
Integrating from zero to infinity in both sides and thanks to positivity, we have

10 + 2ot = (- 2) s = [ imaut@yta— [ [ 9,00 00dadt

+ /ooo /0°°[I—‘f(b)+U(a,b)]U,\(lIl(u,v))(a,b)dadb,
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1 1 00 00 o0
=020+ 182 = (5= ) ol = [ st [~ [ wtu0)(e, s

+/0°°/0°°[””'(a)+”(a’b)]UA(‘I’(u,v))(a,b)dadb,

By adding therm to term and changing variables in integration, it follows that

_/ i / ) B(a, 5)Ux(¥(u,v))(a,b)dadb + l(II<I>§IILl +[182)Iz1) =
o Jo €

= (3-2) ol + o) - [ mteratarda= [ uyomieran
—QAmAéWWWmeM@

(oo} 00
+ [ [ (@) + 1r(8) + 2002, )0 () e, b,
o Jo
It follows from definition of A that the relation (4.9) holds. O
Proposition 4.3 For system (2.1)-(2.6), there eists at least one persistent solution.

Proof: To prove the existence of persistent solution, it is sufficient to show that the map P has a positive
fixed point in Z; x [A, . First, let us consider a new operator F defined by

F(¢) — ( Q} (u’ v, ’\) (I)f (u’ v, A)
. "Q} (u’ v, A) "Ll + "Q?(u) v, A)”Ll ’ "Q} (ur v, A)"L1 + "Q% (u, v, ’\)"Ll

where ¢ = (u,v, ) € Z; x R. It follows from Lemma 4.2, we obtain that for ¢ € Z, xR

) A(u) v, UA(‘I’('UW 'U))),

¢ (u, v, Mllzr + 182 (u, v, Aflr 21— (X - A).
Therefore if we choose ¢ in advance such that
0 <e<min{l/(A-)),1/(B+X+n)},

then F' is well defined as a completely continuous operator from Z4 x [\, )] into itself. By Schauder’s
principle, we know that F" has a fixed point in Z, x [, A], denoted by (u*,v*,A*). Again from Lemma
4.2, we have

19 (u®, 0", A)les + 192(u", v, A°)ller = (1 — eA*) + ex* = 1.

That is, (u*,v*,\*) is a fixed point of & itself. This completes our proof. O

5 Discussion

In the real world, we are able to observe that a human population has been growing exponentially
during some periods and its age-structure exhibits a stable distribution as given by the classical linear
theory of Sharpe and Lotka. Therefore if the non-linear two-sex model has a homogeneous marriage
function, it is reasonable to require that there exists exponentially growing persistent solution with
stability in some sense. An idea of stability for persistent solutions of nonlinear models with homogeneous
nonlinearity is introduced by Webb (1993).

Let us consider the following semilinear Cauchy problem on a Banach lattice X:
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%z(t) = Az(t) + F(2(2)), t 2 0, 2(0) = z, (5.1)

where A is the infinitesimal generator of a strongly continuous semigroup of positive linear operators
in X and F is a nonlinear operator in X satisfying F((kz) = kF(z),z € X,k > 0. If 2(t) = z* is
an equilibrium solution of (5.1), then so is z(t) = kz* for any k > 0, because the nonlinear term F is
homogeneous. Thus there is no nontrivial attracting steady state. However the solution of (5.1) have
asynchronous exponential growth (A.E.G.) on U C X, provides that there is a constant 7o € R (called
the intrinsic growth constant) such that Qz := lim;—_,, e~ ™%2(t) exists, Qz is nonzero for all z € U, and
the range of @ is a one-dimensional subspace of X.
In order to state Webb’s theorem, we assume the following additional hypotheses:

Assumption 5.1 (H.1) A is the infinitesimal generator of a strongly continuous semigroups of positive
bounded linear operators T'(t), t > 0 in X;

(H.2) The mild solution to the problem (5.1) unigquely ezists for each z € X, on some mazimal interval
of exzistence [0,tz);

(H.8) There ezists Tp € X4 with ||zo|]| = 1 and 1o € R such that Az + F(xo) = roZo, F is Fréchet
differentiable at zo, Ag := A + F'[z0] is the infinitesimal generator of a strongly continuous semigroup
of bounded linear operators Typ(t),t > 0 in X, and there ezists a nonzero rank one projection P in X
such that lim;_,o €¢I (t) = P.

Though we cannot show the proof, Webb’s theorem can be stated as follows:

Proposition 5.2 Let (H.1)-(H.8) hold. Then there exists § > 0 such that if z € U := {z € X;\{0} :
(I = P)z||/||Pz|| < 6}, then t, = oo, @z := lims_,o0 €7 70%2(t), 2(0) = z ezists, Qz € R(P) and Qz # 0.

Note that the above theorem implies that o, the solution to the nonlinear eigenvalue problem (A +
F)zo = 1o fo, is also a solution to the linear eigenvalue problem (A + F'[z])zo = roZo.

If we apply the necessary and sufficient conditions for A.E.G. of a Cp semigroup [?], it follows that
To(t) = exp((A + F’[zo))t) has A.E.G. with intrinsic growth constant 7 if and only if w; (A + F'[zo]) <
o and rg is a strictly dominant simple eigenvalue of A+ F’[z¢] where w;(A) denotes the essential growth
bound of the semigroup generated by A. In other words, we have to solve the stability problem for the
two-sex model with linear marriage function (Fréchet derivative of homogeneous marriage function) in
order to give an answer to stability problem for persistent solutions of nonlinear two-sex model with
homogeneous marriage function. However, we have not yet known any answer to this question.
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