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Summary

Many large membrane structures have been constructed in these days and large membrane structures are
often tensed by cables for reinforcement of the strength. In the analysis of cable-reinforced membrane
structure, there are several complicated problems, such as the fold of membrane by cable, sliding of cable
on membrane surface and so on. As the finite element method can hardly to analyze these problems,
authors have applied meshless method based on the element free Galerkin method to the analyses of
membrane structures with cable reinforcement. In the conventional element free Galerkin method, the
problem that contains discontinuous slope of displacement cannot be analyzed because of the Cl
continuity condition by the moving least squares approximation. Additionally, sliding between cable and
membrane surface must be considered. In this paper, the arbitrary Lagrangian-Eulerian formulation and
the technique of patch are adopted in EFGM, and the proposed method is applied to the numerical
example of cable-reinforced membrane structures and its validity is demonstrated.

Introduction

Recently, in order to reduce constructing cost and time, attention is paid on membrane structures and they
have been used in a part of large and permanent buildings because materials for membrane have been
improved. For design of membrane structure, there are three kinds of analysis to be conducted, such as
form finding analysis, stress analysis and cutting analysis. In the finite element method (FEM), a different
mesh is required according to the purpose of analysis, while in meshless method, a set of analyses can be
conducted by using only one model, because it has no elements.

Large membrane structures are often tensed by cables for reinforcement of their strength. In order to
analyze cable-reinforced membrane structures, the folded membrane by cable, which yields discontinuity
of slope, has to be taken into account. Furthermore, these cables are often attached in a way that permits
themselves to slide over the surface on the membrane so that the cables could find equilibrium form under
the applied gravity load, wind load and so on. In the conventional finite element method, discontinuity of
slope can be treated only at the boundary of elements, so re-meshing or special development of the
element which allows fold is necessary to model this moving discontinuity. With these in background,
authors have been developing meshless system for analyses of membrane structures.

In the meshless method, it is not necessary to subdivide analysis model into elements, therefore, the fold
can be modeled at arbitrary points on membrane surface and it can move freely on the surface by
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redefining the nodal arrangement. In the proposed model, a patch is defined to model the part surrounded
by cables and the moving least squares approximation (MLSA) is only defined in each patch and CO
continuity condition is imposed at patch boundary by the penalty method. In order to analyze sliding cable
on membrane, the interface of patch must be moved with cable. Therefore, the arbitrary Lagrangian-
Eulerian (ALE) method is adopted to model the sliding cable. In ALE formulation, displacement of
membrane and sliding between cable and membrane are represented as different displacement
components.

Authors have applied ALE formulation to the principle of virtual work on the element free Galerkin
method[1] (EFGM) in ref.[2]. In this paper, MLSA is briefly introduced and then ALE formulation
including the effect of friction for the analysis of membrane structures with sliding cable is derived in
detail. Finally numerical analyses are demonstrated to validate the proposed method.

Moving Least Squares Approximation

In the element free Galerkin method, MLSA is used for making approximation functions of fields. In this
section the formulation of MLSA method is presented according to Belytschko et al[1]. Two-dimensional
field is enough for modeling membrane structures. A component of displacement vector u(x) is
approximated by a polynomial function as follows, where n is a number of terms in polynomial function.
In eq.(1), a linear basis vector p and its coefficients vector a are exemplified for brevity (n=3).

ut(x) =3 p,(x)a,(x) =pT (®)a(x) 1)
=

pT(x)=(1’ X, Y)9 aT(x)z(al’aZ’a3) (2)

In this study, only linear basis function is used in the analyses of membrane structures. The coefficients in
a(x) are determined by minimizing the following weighted functional.

ut(x) =3 p,@)a,(x) =p’ (Xa(x) 3)

Jj=1
where u; is an unknown nodal value of u at a node x; and m is the number of nodes in the domain of

influence. The following fourth order polynomial is adopted for a weight function, w(r), which satisfies
w(p) =0, dw/dr(p) =0 and dzw/drz(p) =0 ( p is a radius of the domain of influence).

2 3 4
_¢l Ll 5L
-2 (2] (2] o512 .

0 (p<r1)

Finally, the approximation displacement u"(x) can be represented by the nodal value uy, as

wt(x) =3 p,(x)a,(x) =pT(X)a(x) ®)

=1

where ¢i(x) corresponds to a shape function in FEM.
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Consideration of discontinuous slope of displacement

In this chapter, the treatment of discontinuous slope of displacement in the EFGM is briefly described. In
the analysis by EFGM, continuous strain field is obtained by using MLSA for the approximation of the
field function. In the analysis of structure with discontinuous gradient of displacement due to such as
material discontinuity or membrane with cable, however, strain field also becomes discontinuous at the
interface. Therefore the conventional EFGM cannot be applied[3].

In order to analyze the structure with discontinuous gradient of displacement, analysis model is divided
into patches. Figure 1 illustrates the domains of influence near the interface of patches for analysis model
of membrane with cable reinforcement. The domain of influence for the nodes close to the interface in
either patch is truncated. Therefore, nodes in the same patch can only influence points included in each
patch. The stiffness matrix is constructed in each patch, respectively. The constraint condition to impose
continuous displacement at the interface is given as follows:

(91(x,) =47 (x,))u; =0 - ®
where ¢11 and ¢12 are approximation functions obtained by MLSA from patch 1 and 2 and x4 is a position

vector at the interface. The whole stiffness matrix K is obtained by the assemblage of each stiffness with
the penalty term, as

K}, =K}, +K +af (48} (x,)-8} ()} (x,)) dT, M

where a is a penalty number, K', K? are the stiffness matrices obtained from each patch and T is the
interface of patch.

domain of influence

Fig.1: Domain of influence close to the interface of patch

Arbitrary Lagrangian Eulerian Formulation in EFGM

For analyzing moving discontinuity caused by a sliding cable, the boundary of patch must be coincided
with the discontinuous line of slope. In the proposed ALE formulation, the displacement of membrane
structure and the sliding of cable on membrane surface are treated as different variable.

In the formulation based on ALE method, both the initial configuration ‘X and the current configuration 'x

are treated as unknown variables. Each coordinate is described by using an arbitrary spatial reference
configuration x" as follows:

X =X(x, t) (8)
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'X=X(x", t) 9
and its displacement ‘'u is
‘u=u(x’, )="x-"'X. (10)

The total displacement is separated into the Eulerian displacement ‘W and the Lagrangian displacement
l ~
u.

‘a="T+ (11)
lx=0x__tii (12)
=%+ (13)

In the analysis, the Eulerian displacement shows the flow of material point in the initial configuration and
the Lagrangian displacement shows the displacements of nodes. The deformation gradient tensor of total
displacement 'F can be written in the index form as,

>

,F:a‘x,:a‘x, o _«
Y 9'X, ox 3'X,

' Fy (14)

and is also separated into the Eulerian and the Lagrangian parts, too.

(' ax; = (= _0'X

== - | (15)
J

'E _9'x (16)

'

The Eularian ‘F describes the mapping from ! the initial to the reference configuration and the Lagrangian

'F describes the mapping from the reference to the current configuration. The concept of ALE formulation
is illustrated in Fig.2[5].

The components of the Green-Lagrange strain tensor is written as
t 1 t 1fia (2 Tt
E; ='2_['Fki ij_sij]=5[tFklchntFlitij-sij] a7

where §; is the Kronecker delta.
Then, the total potential energy in the reference configuration is shown.

1 s, 5 =1 . 1 -
'n=5[, 'S: "B - [ (‘i+"w)-'b'dv +5ajn(’u—’g)’dn+5aj,.‘(’u-‘§)’dl“s(18)

where V' is the volume in reference configuration, I't and I'g are boundaries for Lagrangian and Eulerian
displacement, ‘iiand '@ are prescribed displacements at each boundary and 'J is volume ratio from

reference configuration to initial configuration calculated from the determinant of the inverse Eulerian
deformation gradient.



85

[ d'v=] a"‘afv’:j T (19
v v axr vV
r‘7=8ijk ’ﬁzltﬁjz 'st (20)

where, 'V is the initial volume.

From the variation of eq.(18) with respect to Lagrangian and Eulerian displacement, eq.(21) is obtained
which is equivalent to the virtual work principle.

L{‘S:&‘E’J+% 'S: 'E6’.7}dv’—_[,(61‘1+66)-‘b’j+(‘ﬁ+'ﬁ).'b5.7dv’
, (21)
+af 86-('d-'D)dT, +af SU-(‘T-'Ddly=0

This stiffness equation is nonlinear in general, so we introduce the linearized incremental expression for
eq.(21). ’

_[,{(‘S+ S):(SE, +6EM)(’.7+.7)+—;-(‘S+ S):('E+E)8J, +8J,)} v
~[ (Ba+8W)- BT+ - [ ("&+" W) "BST, +8T )V | (22)

+a_[rL6ﬁ-("ﬁ— *@)dT, +ajrs 5u-("u-"Wdl; =0

In eq.(22), the variables without superscript show increment from time t to time t+At, and eqs.(23) and
(24) are utilized to derive eq.(22).

§"ME=6E=6E, +5E, (23)
§"N]=8J=8J,+8J, (24)

where ; and yz are linear and quadratic terms, respectively. And then, J is given by

I+NF=___ 25
ox" ox" ‘ 25)
Fe—e [ 2% 9'X, 3'X, 3'X, 043X, 23X, d'X, o,
u ax’1 axrz axrs ax’1 axrz axrs ax'1 axrz axr3
om, o, 9'X, ouw 9'X, 9w dI'X, 9, om,
+ + 26
8’”‘(axn s Oxs  Oxs s 9Xs | Oxh 2 X' (26)

ou, ou, o,
% x" ox"2 dx"s

Eq.(22) is rewritten as Eq.(27).
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L{('s :6E,J + 's:anm‘hs:sngj)%('s: ‘E8J,, + 'S:E8J, +S:'ESJ )}’
- L{(Sﬁ +8%)- BT + (" +"W)- DTy, + (i +7)-"bSJ, } b
+afl_ du-udl’, +ozjr éu-udl’,

= L{(&ﬁ-wi)-"b'.7+(’ﬁ+'ﬁ)-"b5.7L}dv’—L{'S:&EL’j+-;— ‘S: 'E6.7L}dv’

27
~a Jr; Sa- (‘- "), -« jr‘ Su-(‘i- "W,
Each displacement fields are discretized using shape function calculated by MLSA.
u(x) = ¢, (x)u, (28)
u(x) = ¢, (x)u, (29)

By solving eq.(27) using iterative solution like Newton-Raphson method, the analysis considering sliding
can be conducted.

In case of the analysis considering friction, the next term is added to the left side of eq.(22).

-| &u-'tdr, (30)

where, 'f means friction force and I'r is the area where friction works. Friction works on only the Euler
displacement.

0 o
Fig.2: Concept of ALE method

Numerical Example

A simple problem is analyzed to verify the proposed formulation. Figure 3 shows an analysis model of
membrane on frictionless pulley. Membrane is fixed at the both ends, passes over a frictionless roller that
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can move horizontally. The Young’s modulus is 1.0x10%, and Poisson’s ratio is zero. The number of
nodes is 25 in each patch. This structure is subjected to a horizontal load at the roller and the load is
equally distributed on the nodes at the roller.

The deformed shape is shown in Fig.4. The x-direction displacement for the roller was —0.20889, and the
Eulerian displacement was 0.1298. Eulerian displacements show the slip displacements.
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Fig.3: Analysis model Fig.4: Analysis result

Figure 5 shows an analysis model of a membrane structure represented by bi-quadratic function. The
arrangement of nodes is shown in Fig.6. This model is separated two patches at x=0, and the number of
nodes at one patch is 6x11. The radius of the domain of influence is 1.1c. The section stiffness Eh is equal
to 6.0x10° N/m, where h denotes the thickness, and the Poisson’s ratio is 0.267. The Lagrangian
displacement is fixed along line x=0, because of the tensed cable for reinforcement. ‘Eulerian nodes’ in
Fig.6 show the location of fixed cable, so they have only the Eulerian displacement. The Eulerian
displacement shows the slide between the cable and the membrane surface. In this analysis, the effect of
friction is not taken into account for brevity.

The pressure load 5.0x10° Pa is applied to z-direction only for patch2. Then, the analysis result under the
condition that the cable is fixed on the membrane (@ =0) is compared with the case that the cable is free
from the membrane (u :free).

The configuration along line y=0 after deformation on each condition is shown in Fig. 7. In the case of
that the cable slides on the membrane, the right side of membrane is more swelled and the left side
becomes straight. The locations of nodes on the cable are coincided in each condition, therefore, the
movement of only material point can be represented.
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Fig.7: Configuration after deformation along line y=0

Conclusion

In this paper, ALE based EFGM formulation considering slide and friction is proposed and applied to the
analysis of membrane structure with sliding cable. Additionally, by using patch technique, discontinuous
slope of membrane surface can be represented. In future research, the analysis fully taking account of the
effect of friction should be conducted.
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