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1Introduction
Recently, we can easily use powerful computers. This year high-end PCs with $16\mathrm{G}\mathrm{B}$ mem-
ory(chipset:E7500) or $64\mathrm{G}\mathrm{B}$ memory(chipset:GC-HE) are available. In next thirty years
computers will have more amillion times capability. What will be the future numerical
simulation ?Taking into consideration such development of computers, we propose apew
terminology: super numerical simulation. It means numerical simulation which highly over-
strides usual one. The similar terminology is seen in super computer. In what sense super
numarical simulation should be super ?We propose five points: ultimate precision( ul-
timate reliability ), ultimate visualization, ultimate fast-computing, ultimate applicability,
and hardware implementation(cf. http: $//\mathrm{i}\mathrm{s}$ am. $\mathrm{p}\mathrm{m}.\mathrm{t}\mathrm{o}\mathrm{k}\mathrm{u}\mathrm{s}\mathrm{h}\mathrm{i}\mathrm{m}\mathrm{a}-\mathrm{u}.\mathrm{a}\mathrm{c}.\mathrm{j}\mathrm{p}/\sim \mathrm{i}\mathrm{m}\mathrm{a}\mathrm{i}/$ ). Hard-
ware implementation means for example the flow simulator where the nural network simu-
lating flow is implemented as circuitries. Among these five points ultimate precision, ultimate
visualization and ultimate applicability are shown in the paper.

2Ultimate precision
In numerical simulation reliability of numerical solutions is checked by comparing those
obtained in different precision. If numerical solutions converge, then it is recognized reliable
numerical solutions are obtained. However sometimes numerical solutions do not converge.
This is because they are not prepared abundantly. Usual numerical methods sometimes do
not give abundant series of numerical solutions in different accuracy.

On the other hand, numerical simulation sometimes fails due to instability caused by
numerical errors. Especially, the rounding error plays afatal role. If the truncation error
is as small as the rounding error, the rounding error spoils mathematical validity of the
numerical method.
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To overcome these difficulties we proposed IPNS(Infinite-Precision Numerical Simulation)
[6]. IPNS consists of the arbitrary order approximation method and the multiple precision
arithmetic. The former is used for arbitrary reduction of the truncation error. The latter
is used for arbitrary reduction of the rounding error As the arbitrary order approxima-
tion method, spectral methods are available from the pratical view point[l]. Among spectral
methods SCM (Spectral Collocation Method) is very useful. This is because the way of its ap-
plication is similar as FDM. It is easily applicable to nonlinear problems including free bound-
ary problems[ll]. The multiple precision arithmetic is easily carried out by using free subrou-
tine libraries on the net, e.g. http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ . $\mathrm{l}\mathrm{m}\mathrm{u}.\mathrm{e}\mathrm{d}\mathrm{u}/\mathrm{a}\mathrm{c}\mathrm{a}\mathrm{d}/\mathrm{p}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{o}\mathrm{n}\mathrm{a}\mathrm{l}/\mathrm{f}\mathrm{a}\mathrm{c}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{y}/\mathrm{d}\mathrm{m}\mathrm{s}\mathrm{m}\mathrm{i}\mathrm{t}\mathrm{h}2/$

FMLIB.html [10].
In the paper, SCM using Chebyshev Polynomials and Chebyshev-Gauss-Lobatto colloca-

tion points is used. Afunction $u(x)$ in [-1, 1] is approximated by the $N$-th order Chebyshev
Polynomials as follows:

$u(x)= \sum_{k=0}^{N}\tilde{u}_{k}T_{k}(x)$ , $T_{k}(x)=\cos$ (k $\arccos x)$ . (1)

There is an inversion formula

$u_{j}= \sum_{k=0}^{N}\tilde{u}_{k}T_{k}(x_{j})$ , $\tilde{u}_{k}=\frac{2}{N\overline{c}_{k}}\sum_{j=0}^{N}\frac{1}{\overline{c}_{j}}u_{j}T_{k}(x_{j})$ (2)

where

$\overline{c}_{j}=\{$

2, $j=0$ , $N$,
$x_{j}= \cos\frac{j\pi}{N}$ , $j=0,1$ , $\cdots$ , $N$.

1otherwise,
(3)

$\{x_{j}\}$ are called Chebyshev-Gauss-Lobatto collocation points. Derivatives at the collocation
points are easily computed from $\{u_{j}\}$ . In SCM it is easy to increase the order of the approx-
imation by increasing the number of collocation points. This feature is quite remarkable and
different from other discretization methods. Of course SCM is applicable both in space and
in time.

To see IPNS is realized, the following simple one-dimensional boundary value problem is
solved.

Problem 1. Find $u(x)$ s.t.

$u_{xx}=- \frac{\pi^{2}}{16}\sin\frac{(x+1)\pi}{4}$ , $-1<x<1$ , (4)

$u(-1)=0$, $u_{x}(1)=0$ . (5)

Remark 1. The exact solution to Problem 1is $u(x)= \sin\frac{(x+1)\pi}{4}$ .
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Numerical results are shown in Table 1. Here $(N+1)$ Chebyshev-Gauss-Lobatto points are
used. Extremely high accuracy is obseved. It should be remarked that even to such asimple
problem IPNS needs huge memory spaces and too much computational time now.

Table 1. Maximum error for Problem 1.(2500 digit numbers)

3Ultimate visualization
In numerical simulation visualization is very important. However, in super numerical simu-
lation normal visualization may not be available. For example IPNS gives numerical data in
long digits. There is no visualization software which can deal with such data. Among highly
accurate results by IPNS difference is extremely small. There is no visualization software
which can show such small difference.

Here anew visualization for IPNS is presented. Multiple precision arithmetic is used in
pre-processing which is programed in FORTRAN. Then suitable data whose regulation is
given by the visualization software are created and delivered to the visualization software.
Some examples obtained by the new visualization are shown below. It is interesting that
basic facts in numerical analysis are visualized.

Fig. 1shows two graphs of $y=1+x^{2}$ and $y=1+x^{2}+10^{-100}$ in different magnifica-
tion. Graphs are generated by connecting $(x_{j}, y(x_{j}))_{j=0}^{100}$ in astraight line, $\{x_{j}\}$ are equally
distributed. Data are prepared in double precision. Two graphs are not distinguished. This
is because $10^{-100}$ is neglected compared with $1+x^{2}$ . Fig. 1(b) shows machine epsilon or
distribution of floating-point numbers
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–:y $=1+x^{2}$ –:y $=1+x^{2}$

(a) Magnification: 10 in x, 10 in y. (b) Magnification: 10 in x, 10 in y.

Fig. 1. Two graphs of y $=1+x^{2}$ and y $=1+x^{2}+10^{-100}$ (Double precision).

Fig. 2shows two graphs of $y=1+x^{2}$ and $y=1+x^{2}+10^{-100}$ in different magnifica-
tion. Graphs are generated by connecting $(x_{j},\tilde{y}(x_{j}))_{j=0}^{100}$ in astraight line, $\{x_{j}\}$ are equally
distributed. $\tilde{y}(x)$ is the interpolated function by SCM with $(x:, y(x:))_{i=0}^{10}$ , $\{x:\}$ : Chebyshev-
Gauss-Lobatto Collocation points in [-1, 1]. Data are prepared in double precision. Two
graphs are not distinguished. This is because 10 is neglected compared with $1+x^{2}$ . In
Fig. $2(\mathrm{b})$ oscillation to be induced from the rounding error is seen.

– : y $=1+x^{2}$ – : y $=1+x^{2}$

(a) Magnification: 10 in x, 10 in y. (b) Magnification: 10 in x, 10 in y.

Fig. 2. Two graphs of interpolated functions created by SCM with data from y $=1+x^{2}$

and y $=1+x^{2}+10^{-100}$ (Double precision).
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Fig. 3shows the new visualization for two graphs of $y=1+x^{2}$ and $y=1^{\backslash }+x^{2}+$

$10^{-100}$ in (jifferent magnification. Graphs are generated by connecting $(x_{j},\tilde{y}(x_{j}))_{j=0}^{100}$ in a
straight line, $\{x_{j}\}$ are equally distributed. $\tilde{y}(x)$ is the interpolated function by SCM with
$(x_{i}, y(x_{i}))_{i=0}^{10}$ , $\{x_{i}\}$ : Chebyshev-Gauss-Lobatto Collocation points in [-1, 1]. Data are
prepared in 200 digit numbers. In Fig. $3(\mathrm{b})$ two graphs are very natural and distinguished
from each other.

– : $y=1+x^{2}$ – : $y=1+x^{2}$

(a) Magnification: 10 in $x$ , 10 in $y$ . (b) Magnification: 10 in $x$ , 10 in $y$ .

Fig. 3. Two graphs of interpolated functions created by SCM with data from $y=1+x^{2}$

and $y=1+x^{2}+10^{-100}$ (200 digits).

4Ultimate applicability
Inverse problems often arise from practical problems. It is well-known they are very difficult
to be solved[3]. Their direct simulation has been ataboo due to easy corruption by the strong
oscillation phenomenon. To avoid this oscillation phenomenon some additional methods are
usually used together. To say roughly, these are regularization[12], the method of least
squares and $\mathrm{A}\mathrm{I}$ . Restriction of the dimension of the solution space is asort of regularization.
These methods are very useful but unfortunately not absolute. Especially, in numerical
simulation the rounding error fails their theoretical usefulness.

On the other hand, direct simulation by IPNS was applied to several inverse problems
governed by PDE systems[4, 5, 7, 8]. Numerical results were very satisfactory. This means
numerical errors are extremely small, so they do not induce the oscillation phenomenon. In
the paper the following integral equation of the first kind with an analytic kernel and an
analytic solution is solved by IPNS without any additional methods like regularization $[2, 5]$ .
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Problem 2. Find $u(y)$ s.t.

$\int_{-1}^{1}e^{xy}u(y)dy=f(x)$ , $f(x)= \frac{(2x-1)e^{x}+e^{-x}}{2x^{2}}$ , $f(0)=1$ . (6)

Remark 2. The exact solution to Problem 2is $u(y)= \frac{y+1}{2}$ .

SCM is applied to the integrand as follows:

$e^{xy}u(y) \cong\sum_{k=0}^{N}\tilde{g}_{k}(x)T_{k}(y)$ . (7)

From the inversion formula

$\tilde{g}_{k}(x)\cong\frac{2}{Nc_{k}}\sum_{j=0}^{N}\frac{1}{c_{j}}e^{xy_{\mathrm{j}}}u_{j}T_{k}(y_{j})$ , k $=0,$ 1, \cdots , N, (8)

where

$y_{j}= \cos\frac{j\pi}{N}$ , $u_{j}=u(y_{j})$ , j $=0,$ 1, \cdots , N. (9)

Thus

$e^{xy}u(y) \cong\sum_{k=0}^{N}\frac{2}{Nc_{k}}\sum_{j=0}^{N}\frac{1}{c_{j}}e^{xy_{\mathrm{j}}}u_{j}T_{k}(y_{j})T_{k}(y)$ . (10)

Then

$\int_{-1}^{1}e^{xy}u(y)dy\cong\int_{-1}^{1}\{\sum_{k=0}^{N}\frac{2}{Nc_{k}}\sum_{j=0}^{N}\frac{1}{c_{j}}e^{xy_{\mathrm{j}}}u_{j}T_{k}(y_{j})T_{k}(y)\}dy$

$= \frac{2}{N}\sum_{k=0}^{N}\sum_{j=0}^{N}\frac{1}{c_{k}c_{j}}e^{xy_{\mathrm{j}}}u_{j}T_{k}(y_{j})\int_{-1}^{1}T_{k}(y)dy$ (11)

$= \frac{2}{N}\sum_{k\neq 1}^{N}\sum_{jk=0=0}^{N}\frac{1}{c_{k}c_{j}}e^{xy_{\mathrm{j}}}u_{j}\cos\frac{jk\pi}{N}\cdot\frac{1+(-1)^{k}}{1-k^{2}}$.

We choose properly points $\{x_{l}\}$ , $l=0,1$ , $\cdots$ , $N$ on which the integral equation is
satisfied. Set $f_{l}=f(x_{l})$ , then we have the following linear system:

$\sum_{j=0}^{N}a_{lj}u_{j}=\frac{N}{2}f_{l}$ , $\mathit{1}=0,1$ , $\cdots$ , $N$, (12)
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$a_{lj}= \sum_{k=0,k\neq 1’}^{N}\frac{1}{c_{k}c_{j}}e^{x_{l}y_{\mathrm{j}}}\cos\frac{jk\pi}{N}\cdot\frac{1+(-1)^{k}}{1-k^{2}}$ . (13)

After solving this linear system, $u(y)$ is reconstructed as follows :

$u(y)= \sum_{k=0}^{N}\sum_{j=0}^{N}\frac{2}{Nc_{k}c_{j}}u_{j}T_{k}(y_{j})T_{k}(y)$. (14)

$\xi$
$\not\in$

(a) Double precision (b) 400 digits

$\not\in$ 1

(c) 1000 digits (d) 2000 digits

Fig. 4. Behavior of maximum errors for Problem 2.

Fig. 4shows errors for Problem 2with C-G-L collocation points : $x_{l}= \cos\frac{l\pi}{\mathrm{w}}$ , $l=$
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0, 1, \cdots , N. Here,

error $= \max_{0\leqq j\leqq N}|u_{N}(y_{j})-u(y_{j})|$ , $y_{j}= \cos\frac{j\pi}{N}$ , $\dot{\gamma}=0,$ 1, \cdots , N (15)

$u(y)$ is the exact solution, and $u_{N}(y)$ is the right-hand side of Eq. (14). If rounding error is
not small enough, error grows explosively before obtaining good results. This shows the linear
system (12) is very ill-conditioned. At the same time, if rounding error is small enough, error
reduces successively as $N$ becomes large. In Fig. $4(\mathrm{d})$ the regression line by the method of
least squares is $\log$ (error) $=-3.00*\log N$ 0.686 with the correlation coefficient $\rho=-3.00$ .
This means IPNS works well.

5Conclusion
In the paper anew terminology: super numerical simulation is proposed. Several examples of
super numerical simulation are also presented. As computers become more powerful today’s
super numerical simulation becomes normal. However, super numerical simulation exists at
any time, as super computer exists at any time.
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