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Abstract

Stability of §-methods for delay integro-differential equations (DIDEs) is
studied on the basis of the linear equation

du t
e Au(t) + pu(t —7) + n/ u(o)do,
t—1

where A, u, k are complex numbers and 7 is a constant delay. It is shown that
every A-stable 8-method possesses a similar stability property to P-stability,
i.e., the method preserves the delay-independent stability of the exact solution
under the condition that 7/h is an integer, where h is a step-size. It is also
shown that the method does not possess the same property if 7/h is not an
integer. As a result, any §-method cannot possess a similar stability property
to G P-stability with respect to DIDEs.

1. Introduction

We study stability of (2-stage) 6-methods for delay integro-differential equatlons
(DIDESs) on the basis of the linear equation

%? = Au(t) + pu(t — 7) + & f ; u(o)do, (1.1)

where A, u, k are complex numbers and 7 is a constant delay. When « = 0, the

equation (1.1) coincides with the test equation
d
d"; = du(t) + pu(t — 1), (1.2)

which was proposed by Barwell [1] to examine stability of numerical methods for
delay differential equations (DDEs). As described in [1], if A, u satisfy

| 1 |< —ReA, (1.3)

the zero solution of (1.2) is asymptotically stable for any 7 > 0. This asymptotic
property is called delay-independent stability, and analogous stability properties of
numerical methods are considered on the basis of the condition (1.3). For example,



a numerical method for DDEs is said to be P-stable if every numerical solution to
(1.2) tends to zero whenever A, p satisfy (1.3) and 7/h is an integer, where h is the
step-size. A numerical method is said to be GP-stable if the same holds for any
constant step-size.

In the last two decades, various studies were carried out concerning stability
properties of numerical methods for DDEs (see, e.g., [12]). In particular, an earliest
study by Watanabe and Roth [10] has revealed that every A-stable #-method is
GP-stable. To the contrary, little is known about stability properties of numerical
methods for DIDEs. It is quite recent that we studied delay-independent stability of
linear DIDE: [7], and even stability of §-methods for (1.1) remains to be investigated.

By Theorem 2 of [7], the zero solution of (1.1) is asymptotically stable for any
7 > 0 if and only if A, u, x satisfy

A+ pu+kT #0 for any 7 > 0, (1.4)
22—2A—Kk=0,2€C, 20 = Rez<0, (1.5)
2_!“’_‘_'2__ <1 for any Rez =0 with z # 0. (1.6)
22—z —K

Moreover, the conditions (1.5), (1.6) are rewritten as
Rel <0 and (Re/\Re(/\R)+(Imn)2<00rn=0), (1.7)
Im[(/\ + u)E] =0 and [ | > < (ReA)? +2Rek
or (Im/\ =0, | u|*= (Re))? +2Ren) ], (1.8)

respectively (Sect. 3 in [7}). When A, g, « are all real and k # 0, these conditions
are reduced to the simple condition

A<0, k<0, p?<A\42k. (1.9)

We study stability properties of #-methods by comparing the region determined by
these conditions with a kind of stability regions of the methods.

A

Fig. 1 Delay-independent v.s. delay-dependent stability regions

190



It should be noted that a considerable number of papers [2, 3, 4, 6, 9] are devoted
to stability analysis of #-methods for DDEs, which does not seem strange from a
practical viewpoint. Some important instances of stiff DDEs are obtained from the
space-descritization of partial functional differential equations (see, e.g., [13]). The
f-methods have practicality in such a situation.

2. Stability regions of #-methods
Consider delay integro-differential equations (DIDEs) with a constant delay,

% = (t, u(t), u(t — 7), /t; g(t, o, u(a))da). (2.1)

For a given step-size h > 0, let m be the smallest integer greater than or equal to
7/h. Then, the delay 7 is represented in the form

T=(m—-8h 0<6<I, (2.2)
and the relation
t, — T =tn_m + 6h (2.3)

holds for the step points t, =tq + nh, n € Z.
By approximating the delayed argument and the integrand in (2.1) with linear
interpolation, we can adapt a #-method to (2.1) as follows:

un+1 = Un + h(l - o)f(tn, Un, Un, Gn) + haf(tn-i—l, un+11 Un+1, Gn+1)a (24)
where, 0 < 0 < 1, u,, is an approximate value of u(%,), and
Un = (1= 8)Unem + 6Up—my1, (2.5)
h(1 — 6)? h(2 — 6°
G, = “_—( 2 ) g(tmtn—m’un—m) + _(“i“'_)g(tn,tn—m+laun—m+l)
m—1 h
+h Z g(tn; tn—m+k, un—m+k‘) + 'é' g(tn7 tn, un)- (26)
k=2

As a result, the integral term of (2.1) is approximated with the trapezoidal rule.
When 8 = 1/2 and 6§ = 0, the formula (2.4)—(2.6) determines a method that belongs
to a class of Runge-Kutta methods discussed in [7]. But, when 8 # 1/2, it gives
another type of numerical method.

In the case of the test equation (1.1), the formula (2.4)—(2.6) is reduced to

Uny1 = Uy + (1 = Oau, + o,
+8 [ (1= 6)(1 = 8)tnm + (6 + 6 — 260) s + 60un_m+2]
+(z_&x1_m+41—@w

1-6)%1-6
+7l ( )2( ) Upn—m 2 un—m+1
2 — 6%6 m_l 1486 0
+ 2 Un—m+2 + Z Un—msk + 5 Un + 3 un+ll , (2.7)
k=3
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a=h\ B=hy =~k (2.8)
The characteristic equation of (2.7) is written as
2" — 2™ — (1 - 60)az™ — faz™H

“ﬂ[(l —6)(1-06)+ (5+0—260)z+6022]
_7[ (1- 6);(1 —0) , @=F)1-0+(1-6%

2

2— 6% m_l 1+6 0
+ zz+z:z'°+—+—z'"+—z"‘+l =0. (2.9)
2 k=3 2 2

Using (2.9) we define the sets S,,(J) and .5'0(6) for0<é6 <1 by

,

So(ﬁl = {(a, 8,7) € €3 : all the roots of (2.9) satisfy |z |< 1}, (2.10)
552 =N S, (2.11)
m>1

The set S is an analogue of the 5-stability region of the §-method [4].
When z = 1, the left hand side of (2.9) is equal to —[a:+ B + (m — 6)7]. Hence,
for any m > 1, 2 =1 is not a root of (2.9) if and only if

(Co) a+pB+(m—6)y+#0 for any m > 1.
Substituting 75! 2% = (2* — 2™) /(1 — 2) into (2.9) and multiplying (1 — 2), we get

z™ q(2) — p(2) =0, (2.12)
2(z) = pZ+qz+q, (2.13)
p(z) = po2®+p12>+prz+ps, (2.14)
where
4 v
g = 0a+§7—1, Q= (1—29)a+§ + 2,
1-6
g = —(1 —0)a+—-—2—'y-— 1,
6260 —36%0 + 6% + 2660 + 6
Po = —60,34'7’)’, P = (359—5—0),3-}- 5 v,
36%0 — 262 — 466 — 262 + 26 + 1
pr = (—3660+26+20—1)8+ Y
6204+ 62+ 260 —26 — 60+ 1
o= (80-5-0+1)f+ -T2 LY
Moreover, we set
r(2) = p(2)/q(2), (2.15)

and consider the following conditions.
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(a) g(z) #0forany|z|>1.
(d) q(z) #0 for any | z |> 1.
(b) |r(2)|<1forany|z|=1withz# 1.
(b) |r(2)|<1forany|z|=1.
These are regarded as conditions for a, G, v. We also write
(c) (o,B,7) € S

Under this notation, we can characterize So('s) as follows.
Theorem 2.1 The following implications hold:

(Co) and (a) and (b)) => (c) = (a) and (b).

If, in addition,
(C1) p(2), q(2) have no common zero on | z |=1,
then (c) implies (a).

Proof. Assume (Cp), (a) and (b). We first show that 7(z) = 7(z)/z satisfies
| 7(2) |< 1 for any | z |> 1 with z # 1.
The linear fractional transformation

2= ——0 (2.16)
w—1

maps Rew > 0 conformally onto | z |> 1, with w = oo corresponding to z = 1. The
function R(w) = 7[(w + 1)/(w — 1)] is represented in the form

R(w) = P(w)/Q(w), (2.17)
Pw) = [’yw2 + (=26 + 267 — y)w + 2(1 — 26)8 — 26(1 - 5)7] ‘
x[w—(1-26)], | (2.18)

Qw) = (w+1){'yw2+[2a—(1—20)7]w—2(1—20)a—4}. (2.19)

Then, it follows from (a) that R(w) is a bounded, holomorphic function in Rew > 0.
Hence, by the Phragmén-Lindelof theorem (see, e.g., [8], p. 168), it follows from (b)
that | B(w) |< 1 for any Rew > 0, which implies that | 7(z) |< 1 for any | z [> 1
with z # 1.

If | z|>1and 2z # 1, then

2mq(2) — p(z) = q(2)2[ 27 = 7(2) | # 0,
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which, together with (Cp), implies (c).
Assume (c). If g(z) = 0 for some | zy |> 1, then there exists € > 0 such that
C(zg,€) C {| z|> 1} and ¢(z) # 0 on C(2,¢), where

C(zp,e)={2€C:|z2— 2 |=¢}.

By Rouché’s theorem, the polynomial 2™¢(z) — p(z) has a root in the interior of
C(20,¢) for sufficiently large m, which contradicts (c). Therefore, (a) holds.

Moreover, if | 7(2) |> 1 for some | z |= 1, then the equation 2™ = r(z2)
has a solution with | z |> 1 for sufficiently large m. This is verified by applying
Proposition 7 of [11] to ¢(z) = 1/r(z). In fact, there exists ¢ > 0 such that | 7(z) [> 1
for any z € V_, where V, = {z € € :| z — (1 + €)2 |< €}. Hence,

p=max | ¥(z) |< 1,
zeV,

and 1 € €\B(0, p), where B(0,p) = {z € € :| z |< p}. On the other hand, we have

C\B(O,p) C U {z"¥(z) : z€ Vi}, (2.20)

m>1

by Proposition 7 of [11]. Since | z |[> 1 for any z € V,, it follows from (2.20) that
z™ = r(z) holds for some m > 1 and | z |[> 1, which contradicts (c). Therefore, (b)
holds.

It is easy to see that (a) and (b) imply (a) under the condition (C). O

3. Stability regions in the case § =0

We consider the case 6§ = 0. Since g(1) = v, z = 1 satisfies g(z) = 0 if and only
if v = 0. We assume that v # 0 for a while, and rewrite the conditions (a), (a),
(b), (b) by making use of the linear fractional transformation (2.16).

The function R(w) = r[(w + 1)/(w — 1)] is represented in the form

R(w) = P(w)/Q(w), (3.1)
Pw) = (yw-28)[w-(1-26)], (3.2)
Qw) = yw’+[20—(1-26)y]w-2(1 - 20)a —4. (3.3)

Hence, (a), (2), (b), (b) are equivalent to
(A) Q(w) # 0 for any Rew > 0,

(A) Q(w) #0 for any Rew > 0,

(B) | R(w)|<1 for any Rew = 0,

(B) |R(w)|< 1 for any Rew =0,
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respectively. .
When «, v are real, (A), (A) are reduced to

y[20— (1 -20)7] >0, v[-4-2(1-26)a] >0,

v[20— (1 -20)y] 20, A[-4-201-20)a] >0,
respectively. In addition, putting w = iy, y € IR, we have

| Q(w) [* = | P(w)

= 4Im[(a+ﬂ)7] y® +4(| al=|8 +2Re"y)y2.

+{16Ima +4(1 — 26)? Im[(a + ﬂ)ﬁ]}y
+|4+2(1—-20)a > —|2(1-20)8 .

When a, f, v are real, it is reduced to

| Qw) P~ | Pw) |” = 4(a® — 5% +27)y" + 4n,

n = [(1-20)(a+B)+2][(1-20)(a—pB)+2].

Hence, in this case, (B), (B) are equivalent to

BE<a’+2y, 7>0,

B*<a®+2y, 720,

respectively.

o

Fig. 2 ~-section of S,}O) NR* (0<6<1/2)

(3.4)

(3.5)

(3.6)

(3.7)
(3.8)

(3.9)

(3.10)
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Let a < 0 and ¥ < 0. The conditions (3.4), (3.9) are reduced to

2 2a , o 2
— —_— < 27, — 3.11
when 0 < 0 < 1/2 (Fig. 2), and
f? <o+ 2, (3.12)

when 1/2 < 6 < 1. If a(< 0), 3 satisfy 82 < a?+ 2y for v < 0, then a+ 3 < 0, and
(Co) holds. Hence, by Theorem 2.1, these determine the region

So(o) N{(e,8,7) € R?*: a <0, y<0}, (3.13)

except for ambiguity of the boundary.
We now denote by Q2 the set of all the triplicate (A, u, k) for which the zero
solution of (1.1) is asymptotically stable for any 7 > 0, i.e.,

Q= {(\ p, k) € C*: (1.4), (1.5), (1.6) are satisfied}. (3.14)
It is easy to see that
(A u,k) €Q => (kA hu,h’k) €Q for any h > 0. (3.15)

The following theorem shows that A-stable §-methods possess a similar stability
property to P-stability with respect to DIDEs.

Theorem 3.2 If1/2<0< 1, then @ C S{*.

Proof. The inclusion 2N {y =0} C S,,(o) follows from the known result as in the
case of DDEs (see, e.g., Theorem 2.6 in [6]). We consider the case v # 0.

Let (a,8,7) € Q2. The condition (C,) follows from (1.4). Moreover, it follows
from (3.6) and Im[(a + B)¥] = 0 that for w = iy, y € IR,

| Q(w) I = | P(w) > = moy® +2my+m, (3.16)
7o =4(| al? -8 +2Re7), m =8Ima,
m=|2(1-20)a+4>-|2(1-20)8*.

Since
m=16+16(1 —20)Rea+4(1 —20)*(|a|* = | B?) > 16, (3.17)
n — o < 64(Ima)’ — 64(| « [* — | B +2Re)
= —64[(Rea)? + 2Rev— | B 2], (3.18)
we have

| Q(w) |>| P(w) | for any Rew =0, (3.19)
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which implies (B).
When 6 = 1/2, it holds that

Q(w) = yw? 4 20w — 4 = —v® [(2/w)2 - a(2/w) — 'y]. (3.20)

Hence, (A) for § = 1/2 follows from (1.5).

The condition (A) for § = 1/2, together with (3.19), implies (A) for1/2 < 6 < 1.
In fact, if Q(w) = 0 has a solution with Rew > 0 for some 1/2 < 8 < 1, then it
follows from (A) for 6 = 1/2 that there exists 1/2 < 6p < 6 such that Q(w) = 0 for
8 = 6, has a solution with Rew = 0. But this is impossible by (3.19). O

4. Stability regions in the case 6 # 0

The same result as in Theorem 3.2 does not hold in the case § # 0. As a
result, any f-method cannot possess a similar stability property to G P-stability
with respect to DIDEs.

Theorem 4.3 If0 < 6 < 1, there exists (a, B,7) € 2 which does not belong to Sf(,é).

Proof. The function R(w) = r[(w + 1)/(w — 1)] can be written as

R(w) = P(w)/Q(w), (4.1)
Pw) = [yw?+(—28+ 26y —7)w+2(1 - 26)8 - 26(1 - 8)v]
x[w=—(1-20)], (4.2)

Qw) = (w- 1){7w2 + [201 -(1- 20)’7]111 -2(1-20)a—4 } (4.3)
When a, 8, v are real, we have for w =iy, y € IR,

| Q(w) P — | Bw) P = 4(s* +1)[(e® - 87 +27)" + ]
+46(1 — 6)(26 — 67)[28+ (1 — &) |[v* + (1 - 20)’], (4.4)

n = [(1—20)(a+,8)+2][(1—20)(a—ﬂ)+2]. (4.5)

When o = —/—27 and 8 = 0, (4.4) is a quadratic function of y and the
coefficient of y? is given by

4[-(1 - 20Ty +2| - 48%(1 - )" (4.6)

If0 < 6§ < 1 and —- is sufficiently large, the value (4.6) is negative. This implies that
(b) does not hold near (o, 8) = (—/—27,0), a point on the hyperbola B? = a’+27,
if —~ is sufficiently large. Therefore, by Theorem 2.1, there are points in 2 which
do not belong to S5, [
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= 0.

Fig. 3 Examples of y-sections of S,,('s) NIR3 (6 =1/2)

| Q(w) | >| P(w) | for any Rew

In some cases, the region S,,(é) N IR? is determined on the basis of Theorem 2.1.

Let 1/2 < 6 < 1, and assume that o < 0 and v < 0. Then, (a), which does not
depend on §, is satisfied, and (Co) holds if 3% < o? + 27. Moreover, (b) is rewritten

(B)

iy, y € R,

In the case § = 1/2 (the trapezoidal rule), we have for w

(4.7)

P= 4[(8" + 1)(ay® +4) + by’

?— | P(w)|
= a2—ﬂ2+27’

| Qw) |

(4.8)
(4.9)

sv)[28+ (1 - &)v].

6)(28 —

5(1 —

a
b

>0 and

~

From (4.7) it is easy to verify that (B) holds if and only if a

(4.10)
(4.11)

— .
..v.AJ <
+ |
-~ -
+ 2
2 o
~N
A 7_1
g =Y
i <t 2a
~ | —
5 8 &

————
© 3 |
\4 q oo |
+ & A <=
) (=) ~ |
S ® .

- [a\]
g e +
o 3 N 2a
° 3 + £
n (3] 0
~ o e} —
S Sy
Al 2 — _m
h 5]
A = Q
+ . \Y
N o~
- ~a ﬂ
l_l i
)
=]
)
=

iy, y € R,

In the case § =1 (the backward Euler method), we have for w

(4.12)
(4.13)

= 4y’ +1)(ay’ + o),
¢ = (2-a) - B +5(1-6)(28-67)[28+ (1~ 8)v].

P(w) |

*-|

| Q(w) |



The condition (B) holds if and only if a > 0, ¢ > 0, which is equivalent to
B<a?+2y, a< % +2, (4.14)

when 6 =1/2.
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