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Abstract The Segal-Bargmann transform is applied to characterization for symbols
of white noise operators. A general formulation of an initial value problem for white
noise operators is given and unique existence of a solution is proved by means of
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1 Introduction

An interesting framework for nonlinear stochastic analysis is offered by white noise oper-
ator theory or quantum white noise calculus, where singular noises such as higher powers of
quantum white noises are discussed systematically. In particular, as an extension of quan-
tum stochastic differential equations (quantum It6 theory) white noise differential equations
(WNDEs) has become a central topic for substantial development of white noise theory {4},
(5], [27), [28]. Among others, investigation of regularity properties of solutions is important
but has not yet achieved satisfactorily. In this paper we show that the Segal-Bargmann
transform, which has been extensively studied, see e.g., [9], [10], [22], [30], is naturally ex-
tended for white noise operators and can be a new clue to answer this question.

Consider the Boson Fock space I'(L?(R)). In quantum physics, I'(L?(R)) describes a
quantum field theory on the 1-dimensional space R; while, in quantum stochastic calculus
[23], [29] this R is understood as a time axis. Then, field operators at each time point
t € R are considered as noise generators. In particular, the pair of annihilation and creation
operators {as,a}} is called a quantum white noise and plays a fundamental role in quantum
white noise calculus. One traditional way of giving a meaning of a;,af is to smear the
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time, i.e., such field operators are formulated as (unbounded) operator-valued distributions
in t € R. Then, the time parameter ¢ disappears and observation of the time evolution is
always indirect. Another is to introduce a Gelfand triple:

W c I'(L*(R)) c W",

where such field operators at a point are formulated as continuous operators from W into
W*. From the Fock space viewpoint, these are not proper operators but something like
distribution (or generalized operators). The white noise theory is based on the latter idea,
see e.g., [12], [14], [21]. In this paper we adopt the recent framework proposed by Cochran,
Kuo and Sengupta [6]. In general, a continuous operators from W into W* is called a white
noise operator and we denote by L(W, W*) the space of such operators. A systematic study
of white noise operators has been launched out in [24] and developed extensively along with
the symbol calculus, see e.g., [3], [26].

It is our long-range project to develop a theory of differential equations for white noise
operators. During the last years our main attention has been paid to a normal-ordered white
noise differential equation:
= _ LioE,  Eli=o = Ey, (1.1)

dt
where ¢ = L, € L(W,W"*) is a continuous map (also called a quantum stochastic pro-
cess). Such a linear equation arises from a variety of mathematical models in theoretical
physics. For example, a quantum stochastic differential equation introduced by Hudson and
Parthasarathy [15] is equivalent to a normal-ordered white noise differential equation with
{L:} involving only lower powers (i.e., linear terms) of quantum white noises. In the series
of papers [4], [5], [27], [28], we proved unique existence of a solution in the space of white
noise operators and established a method of examining its regularity properties in terms of
weighted Fock spaces. Moreover, in the recent paper [18] we started an approach on the
basis of infinite dimensional holomorphic functions.
The next step is to discuss a nonlinear equation beyond the normal-ordered white noise
equations (1.1). In this paper we focus on an initial value problem for white noise operators:
Z-F(t3), Seo=%, 0<t<T, (1.2)
where F : [0,T] x L(W,W*) = L(W,W?*) is a continuous function. The usual characteri-
zation theorem for operator symbols is powerful to solve (1.2), however, is not sufficient to
claim regularity properties of the solution. To overcome this situation, in the recent paper
Ji-Obata [17], a new aspect of operator symbols is introduced from the viewpoint of the
Segal-Bargmann transform. In this paper, we show that the new idea helps to investigate a
proper Fock space in which the solution acts as a usual (unbounded) operator rather than
a generalized operator. We hope that the main result stated in Theorem 7.2, which needs
more mature consideration, is a small step toward our goal.

2 Preliminaries
2.1 Boson Fock space and weighted Fock space

Let H be a real or complex Hilbert space with norm |-|. For n > 0 let H®" denote
the n-fold symmetric tensor power of a Hilbert space H. Their norms are denoted by the



61

common symbol |- | for simplicity. Given a positive sequence a = {a(n)}32, we put
T'o(H) = {¢ = (fa)20i fo € HE |81 = D _nla(n) | ful® < 00} -
n=0

Then I, (H) becomes a Hilbert space and is called a weighted Fock space with weight sequence
a. The Boson Fock space I'(H) is a special case of a(n) = 1.

Lemma 2.1 Assume that a Hilbert space H, is densely imbedded in another Hilbert space
H, and the inclusion map Hy — H, is a contraction. Let @ = {a(n)} be a positive sequence
such that inf a(n) > 0. Then we have continuous inclusions with dense images:

To(H,) — T'(H,) — T(H,).

Moreover, the second inclusion is a contraction.

2.2 Rigged Hilbert space constructed from a selfadjoint operator

This is a standard construction, see e.g., [2], [8]. Let H be a complex Hilbert space and
T a selfadjoint operator with dense domain Dom (T') C H such that inf Spec (T') > 0. We
note that 7! becomes a bounded operator on H and put

pr = || T |lop = (inf Spec (T")) .

Then, for each p > 0, the dense subspace D, = Dom (T?) C H becomes a Hilbert space
equipped with the norm

1€ |T,p = |TP¢|,, § € Dom (T7),

where |- |, is the norm of H. Furthermore, we define D_, to be the completion of H with
respect to the norm |£ |, _, = |T7P|y, £ € H. In view of a straightforward inequality:

|§|T,pspg‘_p|£|T,q, fEDq’ "‘00<PS‘1<+00,
we come to a Hilbert riggings:
o CDyC--CDpC+-CDy=HC---CD_,C---CD_4,C:-, (2.1)

where each inclusion is continuous and has a dense image. Moreover, for any p,q € R the
operator T?~9 is naturally considered as an isometry from D, onto D,. From (2.1) we obtain

Doo = projlim Dy, D, =indlimD_,.

p—00 p—oo

Obviously, D is a countable Hilbert space. It is nuclear if and only if there exists p > 0
such that T? is of Hilbert-Schmidt type.
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2.3 Riggings of Fock spaces

Let @ = {a(n)} be a positive sequence such that inf a(n) > 0. Based on a rigged Hilbert
space (2.1), we obtain a chain of weighted Fock spaces:

+++ CTa(Dy) C - CTa(Dp) C--- CTa(Do) =Ta(H) C I'(H), 0<p<y,

where Lemma 2.1 is taken into account. By definition the norm of I'4(D,), p > 0, is given
by

oo

eI, =D nla®@) | fal2, - ¢=(fa) € Ta(Dy).

n=0
Identifying I'(H) with its dual, we have
La(Dp)* = Ta-1(D-y),

where the norm of I',-1(D_,) is defined by

0o

n!
Iel?,- =) —= IR, &=(F).

The canonical complex bilinear form on I'y(Dp)* X I'a(D,) is denoted by (-, -)). Then for
& = (F,) € To(D,)* and ¢ = (fa) € La(D,) it holds that

(@, 8) =Y _n!(Fn, fu).
n=0

With these notations we come to a rigging of the Fock space I'(H):
++Cla(Dg) C-+-CTa(Dp) C -+ CT(H)C++- CTa-1(D-p) C--- CTe1(D_y) C -+,
where 0 < p < q. Furthermore, we obtain
Ta(D) = projlim [o(D,) C I (H) € To(D)" = indlim Tars (D)

where I'4(D) is a countable Hilbert space. The canonical bilinear form is denoted by the
same symbol {(-, -)).

3 Two Riggings of Fock Space

From now on we denote by H and Hgr the space of complex valued L2-functions and that
of real valued ones, respectively. We shall construct two riggings of I'(#):

W, = projlim I, (&) Cc T'(H) C inpcilgom To-1(E-p) = W2,

p—oo

G = projlimI'(D,) C I'(H) C indim(D_,) = G,..
p—oo p—oo

The former will be referred as a CKS-space and the latter as a Fock chain.
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3.1 CKS-space

Consider the famous selfadjoint operator:

d2
- 2 _ O
A=1+t el
As is well known, there exists an orthonormal basis {ex};2y C Hr of H such that Ae; =
(2k + 2)ex, k > 0. In particular, inf Spec (A) = 2 and

1 > 1 1
= -1 = — -q ||2 — e —.
p= " A HOP 2s ” A “HS k§=0: (2k + 2)2q <00, ¢q> 2

By the standard method mentioned in §2.2 we obtain a Gelfand triple:

E=projlimE, CHCE = ix;c-i_)limﬁ'_p.

p—oo

For simplicity, we write

I€|p=|Ap€|0) £ €&

The real part g of £ is also defined by a similar method for A is a real operator. We
note the topological isomorphisms:

En2SR), EA=S(R),

where S(R) is the space of rapidly decreasing functions and S'(R) the space of tempered
distributions.

For our purpose we choose a weight sequence o = {a(n)} satisfying the following four
conditions:

(A1) a(0) =1 and there exists some o > 1 such that ix;i(') a(n)o™ > 0;

w2 i {22} =0

(A3) a is equivalent to a positive sequence y = {7(n)} such that {y(n)/n!} is log-concave;

(A4) there exists a constant Cy, > 0 such that a(m)a(n) < Ct*a(m + n) for all m,n.
Given such a weight sequence o, we obtain

W, = projlim,(&,) C T'(H) C iI}’cLloiom La-1(E-p) = Wa, (3.1)

p—co

which is referred to as a CKS-space. Recall that W, is a nuclear space.
The generating function of {a(n)} is defined by

= a(n)

Ga(t) = Z "_n'!_tn)

n=0
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which is entire holomorphic by condition (A2). Moreover, we have

Ga(o) =1,
Ge(s) < Galt), 0<s<t,
Y[Gal(t) — 1) < Ga(rt) - 1, ¥y>1, t>0. (3.2)

It is known [1] that condition (A3) is necessary and sufficient for the power series

5a(t)=§: n {infG—“(s—)}th

= nla(n) |0 sm

to have a positive radius of convergence R, > 0.
Concrete examples of {a(n)} satisfying conditions (A1)—(A4) are (i) a(n) = 1; (ii) a(n) =
(n!)? with 0 < B < 1; (iii) a(n) = Bellx(n), called the Bell numbers of order k, defined by
k times

exp(exp...(expt)...) i a(n) o,

exp(exp...(exp0)...)

n=0
The corresponding CKS-spaces in the case of (i) and (ii) are called the Hida—Kubo-Takenaka
space [20] and Kondratiev-Streit space [19], respectively. CKS-spaces are also constructed
by means of infinite dimensional holomorphic functions, see Gannoun—Hachaichi-Ouerdiane—
Rezgui [7].
3.2 Fock chain
Let K be a selfadjoint operator in H satisfying the following conditions:
(i) infSpec(K) > 1;
(ii) &g is invariant under K;
(iii) £ is densely and continuously imbedded in D, for all p > 0.

Here D, stands for the Hilbert space obtained from Dom (K®) equipped with the norm
|1k, = | KP€ ], We set

G, =T'(Dy), pER.

By definition, the norm of G, is given by

lolk, =D nllfalk, &=(fa), foe€DE" (3.3)
n=0
Then we come to
Goo =projlimG, CI'(H) C n}g limG_, =G5, (3.4)
p—roo 0o

where G, becomes a countable Hilbert space equipped with the Hilbertian norms defined
by (3.3). In general, G, is not a nuclear space.
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Lemma 3.1 For any weight sequence a satisfying conditions (A1)-(A8) and p > 0 we have
continuous inclusions with dense images:

WoCG, CI'(H)CG_, CW,.
PROOF. Since £ — D, is continuous, there exist C > 0 and p’ > 0 such that

I€IK,pSCI£|p’SCpq_p,I€|q1 feg’ qul-

Hence for a sufficiently large ¢ > 0 we have |§ |, 2 < 1€ o & € &; in other words, Eq — Dy
is a contraction. It then follows from Lemma 2.1 that I, (€,) < I'(D,) is continuous. |

It is reasonable by Lemma 3.1 to denote the canonical complex bilinear form on G5 x Goo
by (-, -). Then, obviously,

(@, oM <N @llkpllPllkp> PEGer @€ Goo

4 Gaussian Space and Bargmann—Segal Space

4.1 Gaussian space

Recall the Gelfand triple:
Er =S(R) C Hr = L*(R,dt)r C & = S'(R). (4.1)

By the Bochner—Minlos theorem, for each o > 0 there exists a probability measure u,2 on
Er such that '

2
o {-Z(60} = [ ceOunitn),  tetn
R
We put g = p; for simplicity. Then the probability space (€, 1) is called the (standard)
Gaussian space. Define a probability measure v on £* = £ + iR in such a way that
v(dz) = p1j2(dz) X pija(dy), z=z+1iy, =,y€ &R,

Following Hida [13] the probability space (£*,v) is called the (standard) complez Gaussian
space associated with (4.1).

4.2 Wiener-It6—Segal isomorphism

Theorem 4.1 (Wiener-It6—Segal) There ezists a unitary isomorphism between L*(Eg, p)
and ['(H), which is uniquely determined by the correspondence:

0 {@2 E@n
e(zaf)—(faf)/ > ¢EE (1’5, —2—!—,,,,,F,...) , (4-2)

where £ runs over £.

The above ¢ is called an vezponentz'al vector or a coherent vector. We often use the same
symbol for the left hand side of (4.2).
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4.3 Bargmann—Segal space

The Bargmann-Segal space, denoted by E?(v), is by definition the space of entire func-
tions g : H — C such that

9l = sup [ lo(P2)v(dz) < o,
PeP Jg-

where P is the set of all finite rank projections on Hr with range contained in £g. Note
that P € P is naturally extended to a continuous operator from £* into H (in fact into £),
which is denoted by the same symbol. The Bargmann-Segal space E?(v) is a Hilbert space
with norm || - || g2, For ¢ = (fa)7o € '(#) define

Jp&) = (€ fa), E€H. (4.3)

n=0

Since the right hand side converges uniformly on each bounded subset of H, J¢ becomes
an entire function on . Moreover, it is known (e.g., [9], [10]) that J becomes a unitary
isomorphism from I'(#) onto E%(v). In fact, for ¢ € I'(}) we have

176 g2, = sup / | (¢, 6p:) [P v(d2) = sup | T(P)gllg = l| 6 ;-
PeP Jer PeP

The map J defined in (4.3) is called the duality transform and is related with the S-transform
(see (4.5) below) in an obvious manner:

J¢|D@ =S¢, ¢ € F(H)’
which follows from (4.5) and (4.3).

4.4 White noise functions

The riggings obtained from (3.1) and (3.4) through the Wiener-It6—Segal isomorphism
are denoted respectively by

Wa CW, C L*(Ex, 1) C W_p, C W2,
Goo C Gp C L*(ER, 1) C Gp C Goos

where p > 0. In this context, elements of W, and of W, are called a white noise test function
and a white noise distribution, respectively. We note also

WaCGooCGp CLAER B CGpCG0uCWs  p>0, (4.4)

which is proved in Lemma 3.1. When there is no danger of confusion, we write W = W, for
simplicity.
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4.5 S-transforms

For ® € W*, the S-transform is defined by

SP(E) = (P, de))» €L | (4.5)

Since the exponential vectors {¢§; ¢ € £} span a dense subspace of W, each @ is uniquely
specified by the S-transform. Obviously, the S-transform F = S® possesses the following
properties:

(F1) for each &,n € &, the function z — F(2€ + 1) is entire holomorphic on C;
(F2) there exist C > 0 and p > 0 such that '

IF)? < CGa(l7), &€E.

It is emphasized in white noise theory that the converse assertion is also true. This famous
characterization theorem for S-transform was first proved for the Hida-Kubo-Takenaka space
by Potthoff and Streit.

Theorem 4.2 (Cochran—-Kuo-Sengupta [6]) Let F be a complez valued function on E.
Then F is the S-transform of some ® € W* if and only if F satisfies conditions (F1) and
(F2). In that case, for any ¢ > 1/2 with || A~ ||}s < R, we have

1212 pig) < CGalllA™IEs)-

In the proof of Theorem 4.2, the nuclearity of the space W plays an essential role. While,
in general the countable Hilbert space G, is not nuclear and hence the method of those used
in the proof of Theorem 4.2 is not applicable to characterize S-transforms of elements of G
However, we have the following characterization theorem for S-transforms of elements of G5,
by using Bargmann-Segal space, see [10], [17].

Theorem 4.3 Let p € R. Then a cothle:c valued function g on Dy, is the S-transform
of some ® € G, if and only if g can be extended to a continuous function on D_, and
go K? € E*(v). In this case,

| @ “K,p =|lgo K? ”E?(u) :

5 White Noise Operators

A continuous linear operator £ € L(W, W*) is called a white noise operator.} Note that
LW, W), L(T(H),['(H)) and L(W,G,) are subspaces of L(W,W"), see (4.4). Moreover,
L(W*, W*) is isomorphic to L(W, W) by duality. A general theory for white noise operators
has been extensively developed in [3], [24], [26]. In this section we shall focus on regularity
properties of a white noise operator in terms of Fock riggings.

*In general, for two locally convex spaces X,%), the space of all continuous linear operators from X into )
is denoted by £(%,9). We always assume that £(X,9)) is equipped with the topology of uniform convergence
on every bounded subset.
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5.1 Integral kernel operators

Let a; and a; be the annihilation and creation operators at a point t € R. For ¢ € W
we have '

lim 80z + 06) — 6(z)
-0 0

a¢(z) = , tER, z€&,
where the limit always exists. It is known that a, € L(W, W) and a; € L(W*, W*). More-
over, the maps ¢ — a; and ¢t > a; are both infinitely many times differentiable. The pair
{as,a}} is referred to as the quantum white noise process.

Let I,m > 0 be integers. Given x € (£®(+™))* we define an integral kernel operator by

El,m(""') = /l+ ’9(311 SRRIPE. /7% ST tm)a':l cee a;,atl ceeaq, dsy - dsidty - - - dty,
Ri+m

where the integral is understood in a formal sense. To be more precise, for ¢ = (f,) € W
we define = ,,(x)d = (gn) by

n + m)!
(—n'—)n ®m fa4m, n 20,

=0, 0<n<l Gi4n =
where ®p, is the right m-contraction, see [5]. An integral kernel operator is always a white
noise operator, that is, Z;,,(k) € L(W, W*) for an arbitrary kernel k € (£®(+™)*. Moreover,
if the weight sequence {a(n)} fulfills conditions (A1)-(A4), then =, (k) € L(W, W) if and
only if k € £® ® (£°™)*.
It is an interesting question to characterize the integral kernel operators belonging to
L(W, G,) for some p € R. We here only mention the following

Theorem 5.1 (Chung—Ji—Obata [4]) Let a = {a(n)} be a weight sequence satisfying
conditions (A1)-(A4) and p € R. Then for k € (EBH+™)*, 5, (k) € L(Wa, Gp) if and only
if K € D ® (E°™)* if and only if K®m € L(E®™, DP).

5.2 Operator symbols from the viewpoint of Segal-Bargmann transform

The symbol, which is an operator version of the famous Segal-Bargmann transform, of a
white noise operator = € £L(W, W*) is a complex valued function on £ x £ defined by

2 n) = (Ede, b)), EnEE.

Every white noise operator is uniquely determined by its symbol. By definition the symbol
and the S-transforms are related as

2(&,m) = S(Ee) () = SE ) (€),  EmeEE.

It is straightforward to see that the symbol © = Z of a white noise operator = € L(W, W*)
possesses the following properties:

(O1) for any &,&,n,m € € the function (z,w) — O(2€ + &, wn + 1) is entire holomorphic
on C x C;
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(02) there exist constant numbers C' > 0 and p > 0 such that
0, n)I° < CGa(1€))Gallnly),  &neE.

As in the case of S-transform, the characterization theorem for symbols, which was first
proved by Obata for the Hida-Kubo—Takenaka space, is a significant consequence of white
noise theory. The characterization in the case of CKS—space was proved by Chung-Ji-Obata

[3].
We now prove the characterization theorem for symbols of operators on Fock spaces,
in this connection see also [17]. Let p € R. Then it is easily shown that the symbol of

E € L(W, Gp) is extended to an entire function on £ x D_,,.

Theorem 5.2 Let p € R and let © a complez valued function defined on E X E. Then there
ezists = € L(W,, Gp) such that © = E if and only if

(i) © can be extended to an entire function on & X D_p;
(i) there exist ¢ > 0 and C > 0 such that
”9({, Kp-)llez(,,) < CGa(léli)a §€ £.

PROOF. Suppose that there exists = € L(W,,Gp) such that © = Z. Then condition (i)
is obvious and there exists ¢ > 0 such that = € £L(W,,G,). Hence there exists C > 0 such
that

IZ8llxp < Cli¢llg,+, ¢ EW,.
Therefore, we have
18, K )32y = IIESellkp < Clidells 1 = C*Galléle)- |

Conversely, suppose that conditions (i) and (ii) are satisfied. Let £ € £ be fixed and
define a function F; : D_, — C by F¢(n) = ©(£,n), n € D_p. Then by (ii), F¢(K?-) € E*(v).
Hence by Theorem 4.3, there exists ®¢ € G, such that S®; = F¢ and

19el%p = [1Fe © K?||3a) = 106, KP) [y < CGall€lR).

Now, fix ¢ € G_, and define a function G4 : £ = C by

Gy() = (8, Be)),  EEE.
Then we can easily show that G satisfies conditions (F1) and (F2). In fact,
G4 (€)1 < lIgllk -5l el < CllglI% - GalI€15)-
Therefore, by Theorem 4.2, there exists ¥4 € W}, such that
S(¥e)(§) = Go(§) = (8, Be)),  E€E.

Moreover, we have
IR ||2_ o) - S CG.(|l AT )l 6 ||2x,_,, (5.1)
(g+4')

for some ¢’ > 1/2 with || A=Y |45 < R,. Define a linear operator Z* : G_, = W;, by E*¢ =
Wy, ¢ € G_p. Then Z* € L(G-p, W2) by (5.1) and hence © is the symbol of E € L(W,, Gy)
(Z is the adjoint of =*). |

During the above theorem we are convinced that the symbol is an operator-version of
the Segal-Bargmann transform.
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5.3 Wick products
We first recall the following

Lemma 5.3 (Chung-Ji-Obata [5]) If the weight sequence @ = {a(n)} satisfies condi-
tions (A1)-(A4), then for two white noise operators Z,,5; € L(W,, W) there ezists a
unique operator = € L(W,, W;) such that

2(&,n) =S, )56 e @,  gne€. (5.2)

The operator = defined in (5.2) is called the Wick product of Z; and =, and is denoted by
E = Z; 0Z,. Note that £L(W, W*) equipped with the Wick product becomes a commutative
*-algebra. As for the annihilation and creation operators we have

as ¢ a; = asQy, a’: oas = a’;ah as ¢ a: = a:a,, a: ° a’: = a:a't" (53)

More generally, it holds that

Gy @y Eay -y, = (05 00y 0y - ca,) 0E,  EE€LWV,WV).

In fact, the Wick product is a unique bilinear map from L(W,W*) x L(W, W*) into
L(W, W*) which is (i) separately continuous; (ii) associative; and (iii) satisfying (5.3).

Proposition 5.4 Letp € R and Z,,Z; € L(Wa,Gp). Then E;0Z; € L(W,,G,) if and only
if there exist ¢ > 0 and C > 0 such that

~ ~ 2
“ El (&a Kp')£2(£v Kp')e_«, K7)

< 2 )
g1y S CGq([¢lg), E€&

PROOF. An immediate consequence from Theorem 5.2. |

6 Quantum Stochastic Processes

A continuous map t — Z; € L(W,W?*) defined on an interval is called a quantum
stochastic process (in the sense of white noise theory), see [25]. The quantum white noise
process {a;,a;} is a pair of quantum stochastic processes in this sense, see §5.1. In this
section we discuss some detailed properties of quantum stochastic processes in L(W, G,).

6.1 Continuity criterion

We first mention a criterion for the continuity of t — Z; € £(W,, G,) in terms of operator
symbols.

Theorem 6.1 Let T be a locally compact space and p € R. Then for a map t — =, €
LW, G,), t € T, the following conditions are equivalent:

(i) t— Z, € LW, G,) is continuous;
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(ii) for any ty € T there exist ¢ > 0 and an open neighborhood U of ty such that
{Est e U} c L(W,,Gp) and  lim IZ: — Etollcowags) = 05

(iii) for any to € T there ezist an open neighborhood U of to, a set of positive numbers
{es;t € U} converging to 0 ast — to, constant number ¢ > 0 such that

1Be(6, KP) — B (6, KP)iTngy < 6Gall€),  E€E, teU;

(iv) for any to € T there ezist M > 0, ¢ > 0 and an open neighborhood U of ty such that
IZ:(6, KP)3agy < MGa(I€]D),  €€&, tel,
and for each £ € €, §t(§, K?.) converges to éto(f,K”-) in E2(v).
The proof is a simple modification of that of [28, Theorem 1.8] and is omitted.

Proposition 6.2 (1) The map t — a, € L(W, G,) is continuous for all p > 0.
(2) If there exists p > 0 such that t — &; € D_, is continuous, so is t — a; € LW, Gp).

PROOF. (1) Note that there exists ¢ > 0 such that the map ¢ — &, € £_, is continuous.
Moreover, for all p > 0 there exists p’ > p such that

l18(€, KP) oy = | {06 €) Plidellic, < 102 1NN bell v € €E-

It then follows from Theorem 6.1 that t — a; € L(W, G,) is continuous.
(2) By assumption we have

/; _ —_ -P. = n + 1 ! n
llai (€, K~ )220y = | {8, K7P-) el6K )”21,472(11) = zo (—mz—)—wtﬁ(,—plfﬁ(,—w (eE.

Since the embedding £& < D_,, is continuous, there exist C > 0 and ¢ > 0 such that
~ _ 2
16§ (¢, K#)I3ay < Clelk,p €, £€E.

Then by Theorem 6.1 the map t — aj € L(W, G,) is continuous. . |

By Theorem 6.1, the following result is immediate.

Theorem 6.3 Let p € R and let {E,}52, be a sequence in L(W,G,) and E € L(W,Gp).
Then Z,, converges to = in LW, G,) if and only if there ezist M > 0 and q > 0 such that

IZn(6, K?)}a) < MGa(IE}),  €€E, n=12---,

and for each § € £, én(ﬁ, KP?.) converges to é({, K?.) in E%(v).
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6.2 Quantum stochastic integrals

Recall that the topology of L(W, W*) is defined by the seminorms:

IEllp,pr =sup{|(E4, ¥)|; € B,v€ B}, B,B €B,

where B is the class of all bounded subsets of W. Similarly, for fixed p € R, the topology of
L(W,G,) is defined by

I€Nlp, =sup{llEdllk,; € B}, BeB.

Lemma 6.4 Let {L;} be a quantum stochastic process in L(W,G,). Then for any a,t € R
and f € L, (R) there ezists a unique operator Z,:(f) € L(W,G,) such that

loc

@b, 90 = [ 1 (Lb W5, seW, veg., (6.1)

Moreover, t — Z,,(f) € LW, G,) is continuous.

PROOF. Since s — L, is continuous, the closed interval [a,t] is mapped to a compact
subset of L(W, G,). Hence by applying (ii) in Theorem 6.1 there exists some ¢ > 0 such that

C=sup ||L < 00.
212, 12 leom

Then for any s € [a,t] we have

[€Lss ¥ < || Ls ll oy, 1 8 lg 19 llp S C U SMlg s 1% Ml k,—p

and

[ 1) (26, 9 ds| S CUBl 16y [elas,  sew, weo, 62

Therefore, for each fixed ¢ € W the right hand side of (6.1) is a continuous linear functional
on G_,. Hence, by the Riesz representation theorem there exists a unique ¢' € G, such that

t
(8,90 = [ £6) (L ¥) ds.
Define a linear operator Z,,(f) from W into G, by Z,,(f)¢ = ¢'. Then by (6.2), E..(f) €
L(W,G,) and (6.1) holds.
It is sufficient to prove the continuity on any finite interval (a;,b;). Taking constant

numbers ¢ > 0, C > 0 as above (considering the closed interval [a;, b,]), we obtain that for
anya; <u<t<bandpeW,yeg,,

t
| {(Zast(f) — Eau(£))s NI S Cll Sl N ¥k f |f(s)|ds.
Then for bounded subset B C W we have

t
12049 = ZaalN oy < CU Bl [ U @Nds,  m<u<t<t,



73

where || B{|, , =sup{||¢]|,, ; ¢ € B} < ooc. It follows the continuity immediately. |
The white noise operator Z,;(f) defined in (6.1) is denoted by

Zau(f) = / £(s)Ly ds.

Theorem 6.5 Let two quantum stochastic processes {L;} and {E:} in LW, G,) be related
as

t
Et=/Lsds, teR.
a

Then the map t — =Z, € LW, G,) is differentiable and
d

—Z =1L

dt
holds in LW, G,).

The proof is straightforward by modifying the argument in [25].

7 White Noise Differential Equations

In this section, we study the following white noise differential equation:
dE —
dt

where F : [0,T] x L(W,W*) = L(W, W*) is a continuous function and Z, is a white noise
operator. A solution of (7.1) must be a C'-map defined on [0, T] with values in L(W, W*).
Obviously, the solution depends on the “regularity property” of the initial value Z,.

F(t,Z), Eleo=2%, 0<t<T, (7.1)

7.1 Unique existence

We now consider two weight sequences o = {a(n)} and w = {w(n)} satisfying conditions
(A1)-(A4), the generating functions of which are related in such a way that

Ga(t) = exp v{Gu(t) — 1}, (7.2)
where v > 0 is a certain constant. In that case, we have continuous inclusions:
Wa CW, C L&, 1) C W, CWs
and
LW, Wi) C L(Way Wa)-

The relation given as in (7.2) is abstracted from the case of Bell numbers, see [5], [6].
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Theorem 7.1 (Ji-Obata [16]) Let a = {a(n)} and w = {w(n)} be two weight sequences
satisfying conditions (A1)-(A4), and assume that their generating functions are related as
in (7.2). Let F : [0,T] X L(Wa, W) = L(Wa, Wy) be a continuous function and assume
there erist p > 0 and a nonnegative function M € L[0,T) such that

(i) for all &, € &, E1,55 € LWa, WS), and s € [0,T]
|F(s,51) (€, m) — F(s,Z2)(&,m)* < M(s)Gu(1 € [)Gulln D) Ex(,m) — Ex(&, )1
(ii) for all&,n € E, = € L(W,,W?), and s € [0,T)
(s, D)€ ) < M(s)Gu(I€Gu(|n ) (1 + EE ).

Then, for any =y € L(W,,, W) the initial value problem (7.1) has a unique solution E; €
LW,,W2), t € [0,T).

Example Let {L;}, {M;} C L(W,, W.) be two quantum stochastic processes, where ¢ runs
over [0,T). Then the initial value problem '

d — — — ~— } 3
E -t = Lt o=y + Mt, ‘:‘|t=0 =9 € E(Ww, Ww), (73)

has a unique solution in £(W,, W;). Note that equation (7.3) is already beyond a traditional
quantum stochastic differential equation.

7.2 Regularity of solutions

In this section we study regularity properties of solution =, of (7.1) as usual operators in
LW,G,). Let a = {a(n)} and w = {w(n)} be two weight sequences satisfying conditions
(A1)-(A4), and assume that their generating functions are related as in (7.2).

Theorem 7.2 Let F : [0,T] X L(Wa, W;) = L(Wa, W,) be a continuous function and
assume that there erist ¢ > 0 and a nonnegative function M € L'[0,T], and a nonnegative,
locally bounded function g on € x D_, satisfying

lg(€, KP-)" |22 < n! (RGL(IE))", n=1,2,-- (7.4)
for some R > 0 such that

(i) for allé,n €&, E1,22 € LW, WS), and s € [0,T]
~ ~ 2 -~ ~ 2
IF(S, E1)(&m) — F(s,Z2){&, 77)| < M(s)g(&,n)? |51(§,17) - Ea(¢, 7l)| ;
(i) for all £,n € £, E € L(W.,G,), and s € [0,T] |

[P, 2)Em| < M)t m*(1+[EEm)| ).
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Then, for any = € L',(Wg, Gp) satisfying

lote K2y Bote k)|, <ol (RGLER)",  m=1.2--, (7.5)

E*(v)

for some R' > 0 and ¢’ > 0, the initial value problem (7.1) has a unique solution Z; €
LWa,Gp), t € [0,T).

PROOF. In principle, the proof is based on the standard Picard-Lindeléf method of
successive approximations (see e.g., [11]) applied to the operator symbols. We define

'—(0) _=
- =0,

=M =g, / F(s,2"M)ds, n>1

Then by applying Theorem 5.2 we see that Eg") € L(W,,Gp) forallnand 0 < ¢t < T. In

fact, by (ii)
t 2 t ‘
/ Fs,Z)Emds| < T / \F(s, Z0) (€, m)Pds
0 0

< T (/OtM(S)dS) g(&,m)* (1 + |§o(£; n)lz)

and hence by assumption we have -

2

/0 F(s,Z0)(€, K?)ds str( / tM(s)ds) (RiGL(ER) + RaGu(€R)}  (76)

E2(v)

for some Ry, R, > 0 and q;,¢2 > 0. Moreover, since Zy € L(W,,, Gp), we see from Theorem
5.2 that

[Ea(€, K ||5a, < BoGulléls) (7.7)

for some R3 > 0 and g3 > 0. Put

R = max {2T ( /0 t M(s)ds) Ry, 2T ( /0 t M(s)ds) R2,2R3}

and ¢ = max{q, g3, q3}. Then by (7.6), (7.7) we have

s <2
E%(v)

< 3RG.(|€]%).

2

“._(1)(6’ K?.)

t ~ .
i F(s,Z0)(&, K?-)ds + |20 &, KP-)IIL(,))

E*(v)

Hence by Theorem 5.2 we see that E,(,l) € LW, Gp) for all 0 <t < T. The above argument
can be repeated to conclude that Eg") € L(W,,Gy) for all n and 0 < t < T. Moreover, from
Theorem 6.1 we see that {Z™} c £(W.,,G,) is a quantum stochastic process.
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We shall prove step by step that lim,,_, Eg") is the desired solution to our equation. For

simplicity we put

On(ti,n) = EM(E ) = (EMde, b, EneE, 0<t<T.

By (i) we see that

On(t:£,71) ~ O f,n)l—l [ {FezeEm - P50y} ds

< g(&a 77)‘/0‘ V M(S) Ien—l(S; E’ 77) - en—2(3; 6) 77)| ds: (78)

for §,m € £ and 0 <t < T. Then, repeating this argument we come to

len(t; ga 77) - en—l(t; 6) 17)'

1 t t1 tn-2
< {g(&n)}"" /0 dty /0 dty- - /o dtn_,

X VM) VM(tz) - v/ M(tn1)|01(tn-1;€,1) — Oo(ta1;€,7)|. (7.9)

As for the last quantity it follows from (ii) that

< P(s,Z)Emlds.  (7.10)

101(t:€,m) — Bolt; €, )] = l [ Pez)end

For simplicity we put

_ — _ T
HE) = Mg&, 1+ Bolenl, M= [ VAGYas.
Then (7.10) becomes

|©1(¢;€,m) — ©0(t;€,m)| < H(E, 7).

Similarly, (7.9) becomes
0 (t:€,m) — On-a(t:€,m)| < {9(&, )} H(E,n) x
t t1 tn—2
X / dt / dty - -- / dtn_1vVM(t:)VM(t2) -+ /M(tn_y)

S 1), {Mg(&,n)}" ™" H(E, ). (7.11)

It then follows that for each £,7 € £, the series

Z {en(t; 67 77) - en—l(t; €1 7))}
n=1
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converges absolutely and uniformly in ¢ € [0, T]. In fact,

ZI@ (t:€,m) — Oua(t:6,m)| < H(Em)exp{Mg(&m)}

< exp{2Mg(e,m)} 1+ BolEn.  (712)

We now put

Ou(€,m) = lim ©n(t; €,1) = Eof €,n)+2{ a(t:6,7m) — Ona(:6,1) .

Since g is bounded on every bounded subset of £ x D_,, by (7.12) we can easily see that for
any &,& € € and 0,7’ € D_,, the series

Y {e,,(t; MA+Em+1) = Oua(t; A +E, M+ n’)}

n=1

converges uniformly on every compact subset of C x C. Therefore for each 0 < ¢ < T the
map (), 7) — ©:(Af + &, yn+ 7') is holomorphic on C x C. Also, by (7.12)

2
K?.) — ©,.1(4 ¢ KP)}

E?(v)

_ — 2
exp {27 g(€, KP)} \/1+ [Bo(, KPP

(7.13)

E%(v)

On the other hand, by the Schwartz inequality, forany0<r<1

1/2
exp {2M g(&,n)} < \/11__; (Z (iiuz? g(&, )2n) i

n=0

Therefore, by (7.4) and (7.5) there exist Ry, R, > 0 and ¢;,¢2 > 0 such that
2

exp {28 g(€, K*)} /1 + [Ba(€, K7 )

E*(v)

< 2> BT (1 (RiGLeR)" + ! (RaGullER)"}
n=0

2 b oM )2n "
< 2 O 0 (Reu(eR)
n=0

=2 z-l—<4M RN )) (714)

— 1
1—-r7r —n

where R=R; VR and ¢ = q; V q2. We fix 0 < r < 1 in such a way that

-2
4M™ R
MO(’Y) = Yy 2 17
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where 7 is the constant defined in (7.2). Then by (3.2) we have

4AM’R
T

Gu(IgR) = Mo(v)Go (I€12)
= 7{Mo(m) [Gu (1€12) — 1]} +7Mo()
< v{G. (M 1€12) - 1} + YMo().
Choosing r > 0 such that
My(7)p*™ <11,

we obtain

LG < v {CulIE R ) ~ 1} + 7o) (7.15)

Hence, by (7.2), (7.13), (7.14) and (7.15) we have
2

2 M2R)/r
< 7 o Gallelians):

2_{8n(ti&, K™) ~ Ona(t:€, KP-)}

E3(v)

Therefore, for the function ©, condition (ii) in Theorem 5.2 is satisfied since Zy € L(W,, Gp)-
Hence by Theorem 5.2 there exists a unique operator E; € £(W,, G,) such that

6&n) =8uEm), &nef, telo,T)
By applying Theorem 6.3 with (7.11) we see that

g, = lim =™
n—o0

uniformly in t,
and hence the map ¢t — =, € L(W,,G,) is continuous.

We now prove that {Z;} is a solution of (7.1). We first note that, by Lemma 6.4, the
integral

t
/ F(s,Z,)ds
0

is well-defined as an operator in £(W,,Gy,). On the other hand, by assumption (i) we have

’ 0

2

[ (B2 57— Fis, 5026, ) d

< /0 ' VHG)e(, K

E%(v)
2

2.6 k) - EM(E, k™) ds

E3(v)
2

INA

[ VHGi0te K7) 3 1ou(s 6, KP) - O K7 ds

k=n+1

E*(v)
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Therefore, by (7.11), for any 0 < 7 < 1 we have
2

[ (P26 k7) - Fs 26, K7 ds

0 B2 ()

2

Mo(e, k7)Y = {Mole, K7)}* H(E,K?)

Sl
k=n )
rn 0o —M2(k+2) — 2
KPR+ /1+ o€, KP-)2
< T2 S 96K Vit Bole ko
gpn 2 kD -
< k +2)!
< 727 2 gk + 21 (RGL(ELD)

where R > 0 and p > 0 are pointed out in (7.14). It follows from Theorem 6.3 that
t t
lim [ F(s,E™)ds = / F(s,E;)ds.
n—00 0

Hence we see that

t
=, = lim E™ = &, / F(s,Z5)ds
0

n--00

which shows from Theorem 6.5 that {Z;} is a solution. :
Finally we prove the uniqueness. Assume that we have two solutions {Z;} and {X.},
which satisfies the same integral equation. Modeled after the derivation of (7.8), we come to

260 - Rde)| < g6 [ VATE)

Then ét = )?t follows by a standard argument with the Gronwall inequality. |

és(fv n) — )?8(5,‘77) ds.

The following result for regular solution of normal-ordered white noise differential equa-
tion is immediate from Theorem 7.2. For more relevant study of regularity of solutions of
normal-ordered white noise differential equations, we refer to [5].

Corollary 7.3 Let p € R and let {L:}, {M;} C L(W.,,Gp) be two quantum stochastic pro-
cesses, where t runs over [0, T), satisfying the conditions: there exist ¢ > 0 and a nonnegative
function H € L*(0,T), and a nonnegative, locally bounded function g on € X D_, satisfying

“g(é? Kp.)n“2E2(y) < n! (RGw(lflg))n ) n= 1’ 2; te
for some R > 0 such that for allé,n € € and s € [0,T] '

" } < He)ol .

s { |
Then for any =y € L(W.,, Gp) satisfying
“g(EaKp )nHO(E’Kp) B2(v)

for some R > 0 and ¢ > 0, the (normal-ordered) white noise differential equation (7.8) has
a unique solution Z; in L(W,,Gp), t € [0,T).

<n'(RG (|E| )) n=12,---,
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